Interaction Between Zn Deficiency, Toxicity and Turnip Yellow Mosaic Virus Infection in Noccaea ochroleucum

. 2020 ; 11 () : 739. [epub] 20200605

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32582260

Zinc is essential for the functioning of numerous proteins in plants. To investigate how Zn homeostasis interacts with virus infection, Zn-tolerant Noccaea ochroleucum plants exposed to deficient (Zn'0'), optimal (Zn10), and excess Zn (Zn100) concentrations, as well as Cd amendment, were infected with Turnip yellow mosaic virus (TYMV). Imaging analysis of fluorescence kinetics from the μs (OJIP) to the minutes (Kautsky effect, quenching analysis) time domain revealed strong patchiness of systemic virus-induced photosystem II (PSII) inhibition. That was more pronounced in Zn-deficient plants, while Zn excess acted synergistically with TYMV, in both cases resulting in reduced PSII reaction centers. Infected Cd-treated plants, already severely stressed, showed inhibited non-photochemical quenching and PSII activity. Quantitative in situ hybridization at the cellular level showed increased gene expression of ZNT5 and downregulation of HMA4 in infected Zn-deficient leaves. In Zn10 and Zn100 infected leaves, vacuolar sequestration of Zn increased by activation of HMA3 (mesophyll) and MTP1 (epidermis). This correlated with Zn accumulation in the mesophyll and formation of biomineralization dots in the cell wall (Zn100) visible by micro X-ray fluorescence tomography. The study reveals the importance of adequate Zn supply and distribution in the maintenance of photosynthesis under TYMV infection, achieved by tissue-targeted activation of metal transporter gene expression.

Zobrazit více v PubMed

Alexander M. M., Cilia M. (2016). A molecular tug-of-war: global plant proteome changes during viral infection. Curr. Plant Biol. 5 13–24. 10.1016/j.cpb.2015.10.003 DOI

Andresen E., Küpper H. (2013). “Cadmium toxicity in plants,” in Cadmium: From Toxicity to Essentiality, Chapter 13, Volume 11 of Series Metal Ions in Life Sciences, eds Sigel A., Sigel H., Sigel R. K. O. (Dordrecht: Springer; ), 395–414. PubMed

Andresen E., Lohscheider J., Šetlikova E., Adamska I., Šimek M., Küpper H. (2010). Acclimation of Trichodesmium erythraeum ISM101 to high and low irradiance analysed on the physiological, biophysical and biochemical level. New Phytol. 185:173. 10.1111/j.1469-8137.2009.03068.x PubMed DOI

Andresen E., Lyubenova L., Hubáček T., Bokhari S. N. H., Matoušková Š, Mijovilovich A., et al. (2020). Chronic exposure of soybean plants to nanomolar cadmium reveals specific additional high-affinity targets of Cd toxicity. J. Exper. Bot. 71 1628–1644. 10.1093/jxb/erz530 PubMed DOI PMC

Andresen E., Peiter E., Küpper H. (2018). Trace metal metabolism in plants. J. Exp. Bot. 69 909–954. 10.1093/jxb/erx465 PubMed DOI

Baker N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59 89–113. 10.1146/annurev.arplant.59.032607.092759 PubMed DOI

Bilgin D. D., Zavala J. A., Zhu J. I. N., Clough S. J., Ort D. R., De Lucia E. H. (2010). Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ. 33 1597–1613. 10.1111/j.1365-3040.2010.02167.x PubMed DOI

Boesenberg U., Ryan C. G., Kirkham R., Siddons D. P., Alfeld M., Garrevoet G., et al. (2016). Fast X-ray fluorescence imaging with sub-micrometer resolution integrating a Maia detector at beamline P06 at Petra III. J. Synchrot. Radiat. 23 1550–1560. 10.1107/s1600577516015289 PubMed DOI

Boyd R. S. (2012). Plant defense using toxic inorganic ions: conceptual models of the defensive enhancement and joint effects hypotheses. Plant Sci. 195 88–95. 10.1016/j.plantsci.2012.06.012 PubMed DOI

Broadley M. R., White P. J., Hammond J. P., Zelko I., Lux A. (2007). Zinc in plants. New Phytol. 173 677–702. PubMed

Ciftci-Yilmaz S., Mittler R. (2008). The zinc finger network of plants. Cell. Mol. Life Sci. 65 1150–1160. 10.1007/s00018-007-7473-4 PubMed DOI PMC

Crosbie E. S., Matthews R. E. F. (1974). Effects of TYMV infection on leaf pigments in Brassica pekinensis Rupr. Physiol. Plant Pathol. 4 379–387. 10.1016/0048-4059(74)90022-8 DOI

Cuypers A. N. N., Vangronsveld J., Clijsters H. (2002). Peroxidases in roots and primary leaves of Phaseolus vulgaris copper and zinc phytotoxicity: a comparison. J. Plant Physiol. 159 869–876. 10.1078/0176-1617-00676 DOI

Davis M. A., Murphy J. F., Boyd R. S. (2001). Nickel increases susceptibility of a nickel hyperaccumulator to Turnip mosaic virus. J. Environ. Q. 30 85–90. 10.2134/jeq2001.30185x PubMed DOI

Dreher T. W. (2004). Turnip yellow mosaic virus: transfer RNA mimicry, chloroplasts and a C-rich genome. Mol. Plant Pathol. 5 367–375. 10.1111/j.1364-3703.2004.00236.x PubMed DOI

Fones H., Davis C. A., Rico A., Fang F., Smith J. A. C., Preston G. M. (2010). Metal hyperaccumulation armors plants against disease. PLoS Pathog. 6:e1001093. 10.1371/journal.ppat.1001093 PubMed DOI PMC

Gallego B., Martos S., Cabot C., Barceló J., Poschenrieder C. (2017). Zinc hyperaccumulation substitutes for defense failures beyond salicylate and jasmonate signaling pathways of Alternaria brassicicola attack in Noccaea caerulescens. Physiol. Plant. 159 401–415. 10.1111/ppl.12518 PubMed DOI

Guo D. P., Guo Y. P., Zhao J. P., Liu H., Peng Y., Wang Q. M., et al. (2005). Photosynthetic rate and chlorophyll fluorescence in leaves of stem mustard (Brassica juncea var. tsatsai) after turnip mosaic virus infection. Plant Sci. 168 57–63. 10.1016/j.plantsci.2004.07.019 DOI

Harada E., Kim J. A., Meyer A. J., Hell R., Clemens S., Choi Y. E. (2010). Expression profiling of tobacco leaf Trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol. 51 1627–1637. 10.1093/pcp/pcq118 PubMed DOI

Ishimaru Y., Bashir K., Nishizawa N. K. (2011). Zn uptake and translocation in rice plants. Rice 4 21–27. 10.1007/s12284-011-9061-3 DOI

Kazemi-Dinan A., Barwinski A., Stein R. J., Krämer U., Müller C. (2015). Metal hyperaccumulation in Brassicaceae mediates defense against herbivores in the field and improves growth. Entomol. Exper. Appl. 157 3–10. 10.1111/eea.12333 DOI

Krämer U., Clemens S. (2005). “Functions and homeostasis of zinc, copper, and nickel in plants,” in Topics in Current Genetics, Molecular Biology Of Metal Homeostasis And Detoxification, eds Tamás M. J., Martinoia E. (Berlin: Springer; ), 215–271. 10.1007/4735_96 DOI

Küpper H., Benedikty Z., Morina F., Andresen E., Mishra A., Trtílek M. (2019). Analysis of OJIP chlorophyll fluorescence kinetics and QA re-oxidation kinetics by direct fast imaging. Plant Physiol. 179 369–381. 10.1104/pp.18.00953 PubMed DOI PMC

Küpper H., Kochian L. V. (2010). Transcriptional regulation of metal transport genes and mineral nutrition during acclimation to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol. 185 114–129. 10.1111/j.1469-8137.2009.03051.x PubMed DOI

Küpper H., Parameswaran A., Leitenmaier B., Trtílek M., Šetlík I. (2007a). Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol. 175 655–674. 10.1111/j.1469-8137.2007.02139.x PubMed DOI

Küpper H., Seib L. O., Sivaguru M., Hoekenga O., Kochian L. V. (2007b). A method for cellular localisation of gene expression via quantitative in situ hybridisation in plants. Plant J. 50 159–187. 10.1111/j.1365-313x.2007.03031.x PubMed DOI

Küpper H., Šetlík I., Spiller M., Küpper F. C., Prášil O. (2002). Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J. Phycol. 38 429–441. 10.1046/j.1529-8817.2002.t01-1-01148.x DOI

Küpper H., Zhao F. J., McGrath S. P. (1999). Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 119 305–312. 10.1104/pp.119.1.305 PubMed DOI PMC

Leitenmaier B., Küpper H. (2011). Cadmium uptake and sequestration kinetics in individual leaf cell protoplasts of the Cd/Zn hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 34 208–219. 10.1111/j.1365-3040.2010.02236.x PubMed DOI

Leitenmaier B., Küpper H. (2013). Compartmentation and complexation of metals in hyperaccumulator plants. Front. Plant Sci. 4:374. 10.3389/fpls.2013.00374 PubMed DOI PMC

Li Y., Cui H., Cui X., Wang A. (2016). The altered photosynthetic machinery during compatible virus infection. Curr. Opin. Virol. 17 19–24. 10.1016/j.coviro.2015.11.002 PubMed DOI

Lu Y., Hall D. A., Last R. L. (2011). A small zinc finger thylakoid protein plays a role in maintenance of photosystem II in Arabidopsis thaliana. Plant Cell 23 1861–1875. 10.1105/tpc.111.085456 PubMed DOI PMC

Marschner P. (2012). “Rhizosphere biology,” in Marschner’s Mineral Nutrition of Higher Plants, 3rd Edn, ed. Marschner P. (Amsterdam: Elsevier Ltd; ), 212–223.

McGrath S. P., Shen Z. G., Zhao F. J. (1997). Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 188 153–159.

Mijovilovich A., Mishra A., Brückner D., Spiers K., Andresen E., Garrevoet J., et al. (2019). MicroX-ray absorption near edge structure tomography reveals cell-specific changes of Zn ligands in leaves of turnip yellow mosaic virus infected plants. Spectrochim. Acta Part B 157 53–62. 10.1016/j.sab.2019.05.005 DOI

Mishra S., Alfeld M., Sobotka R., Andresen E., Falkenberg G., Küpper H. (2016). Analysis of sub-lethal arsenic toxicity to Ceratophyllum demersum: subcellular distribution of arsenic and inhibition of chlorophyll biosynthesis. J. Exp. Bot. 67 4639–4646. 10.1093/jxb/erw238 PubMed DOI PMC

Mishra S., Mishra A., Küpper H. (2017). Protein biochemistry and expression regulation of cadmium/zinc pumping ATPases in the hyperaccumulator plants Arabidopsis halleri and Noccaea caerulescens. Front. Plant Sci. 8:835 10.3389/fpls.2013.00835 PubMed DOI PMC

Morina F., Jovanovic L., Mojovic M., Vidovic M., Pankovic D., Veljovic Jovanovic S. (2010). Zinc-induced oxidative stress in Verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall. Physiol. Plant. 140 209–224. PubMed

Morina F., Jovanović L., Prokić L., Veljović-Jovanović S. (2016). Physiological basis of differential zinc and copper tolerance of Verbascum populations from metal-contaminated and uncontaminated areas. Environ. Sci. Pollut. Res. 23 10005–10020. 10.1007/s11356-016-6177-4 PubMed DOI

Ni F., Wu L., Wang Q., Hong J., Qi Y., Zhou X. (2017). Turnip yellow mosaic virus P69 interacts with and suppresses glk transcription factors to cause pale-green symptoms in Arabidopsis. Mol. Plant 10 764–766. 10.1016/j.molp.2016.12.003 PubMed DOI

Nishida S., Kato A., Tsuzuki C., Yoshida J., Mizuno T. (2015). Induction of nickel accumulation in response to zinc deficiency in Arabidopsis thaliana. Intern. J. Mol. Sci. 16 9420–9430. 10.3390/ijms16059420 PubMed DOI PMC

Noman A., Aqeel M., Khalid N., Islam W., Sanaullah T., Anwar M., et al. (2019). Zinc finger protein transcription factors: integrated line of action for plant antimicrobial activity. Microb. Pathogen. 132 141–149. 10.1016/j.micpath.2019.04.042 PubMed DOI

Paunov M., Koleva L., Vassilev A., Vangronsveld J., Goltsev V. (2018). Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. Intern. J. Mol. Sci. 19:787. 10.3390/ijms19030787 PubMed DOI PMC

Penazova E., Eichmeier A., Pokluda R. (2016). New real-time rt-pcr assays for detection of Tymv (Turnip yellow mosaic virus) and evaluation of reaction of cabbages to Tymv infection. Mendelnet 2016 742–747.

Pfaffl M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e45. 10.1093/nar/29.9.e45 PubMed DOI PMC

Prod’homme D., Le Panse S., Drugeon G., Jupin I. (2001). Detection and subcellular localization of the turnip yellow mosaic virus 66K replication protein in infected cells. Virology 281 88–101. 10.1006/viro.2000.0769 PubMed DOI

Riechmann J. L., Heard J., Martin G., Reuber L., Jiang C. Z., Keddie J., et al. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290 2105–2110. 10.1126/science.290.5499.2105 PubMed DOI

Shen Z. G., Zhao F. J., McGrath S. P. (1997). Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ. 20 898–906. 10.1046/j.1365-3040.1997.d01-134.x DOI

Sinclair S. A., Krämer U. (2012). The zinc homeostasis network of land plants. BBA Mol. Cell Res. 1823 1553–1567. 10.1016/j.bbamcr.2012.05.016 PubMed DOI

Slaymaker D. H., Navarre D. A., Clark D., del Pozo O., Martin G. B., Klessig D. F. (2002). The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc. Natl. Acad. Sci. U.S.A. 99 11640–11645. 10.1073/pnas.182427699 PubMed DOI PMC

Špak J., Kubelková D., Hnilička E. (1993). Seed transmission of Turnip yellow mosaic virus in winter turnip and winter oilseed rapes. Ann. Appl. Biol. 123 33–35. 10.1111/j.1744-7348.1993.tb04069.x DOI

Stirbet A. Govindjee (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B Biol. 104 236–257. 10.1016/j.jphotobiol.2010.12.010 PubMed DOI

Stolpe C., Krämer U., Müller C. (2017). Heavy metal (hyper) accumulation in leaves of Arabidopsis halleri is accompanied by a reduced performance of herbivores and shifts in leaf glucosinolate and element concentrations. Environ. Exp. Bot. 133 78–86. 10.1016/j.envexpbot.2016.10.003 DOI

Suzuki M., Bashir K., Inoue H., Takahashi M., Nakanishi H., Nishizawa N. K. (2012). Accumulation of starch in Zn-deficient rice. Rice 5:9. 10.1186/1939-8433-5-9 PubMed DOI PMC

Talke I. N., Hanikenne M., Krämer U. (2006). Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol. 142 148–167. 10.1104/pp.105.076232 PubMed DOI PMC

Van Assche F., Clijsters H. (1986). Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentration of zinc: effect on ribulose-1, 5-bisphosphate carboxylase/oxygenase. J. Plant Physiol. 125 355–360. 10.1016/s0176-1617(86)80157-2 DOI

Verret F., Gravot A., Auroy P., Leonhardt N., David P., Nussaume L., et al. (2004). Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett. 576 306–312. 10.1016/j.febslet.2004.09.023 PubMed DOI

Yang C., Guo R., Jie F., Nettleton D., Peng J., Carr T., et al. (2007). Spatial analysis of Arabidopsis thaliana gene expression in response to Turnip mosaic virus infection. Mol. Plant Microb. Interact. 20 358–370. PubMed

Zhao F., McGrath S. P., Crosland A. R. (1994). Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectrometry (ICP-AES). Commun. Soil Sci. Plant Analy. 25 407–418. 10.1080/00103629409369047 DOI

Zhao J., Zhang X., Hong Y., Liu Y. (2016). Chloroplast in plant-virus interaction. Front. Microbiol. 7:1565 10.3389/fpls.2013.001565 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace