Autonomous Defense Based on Biogenic Nanoparticle Formation in Daunomycin-Producing Streptomyces
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GAJU 080/2022/Z
Grant Agency of the University of South Bohemia
PubMed
39858875
PubMed Central
PMC11767837
DOI
10.3390/microorganisms13010107
PII: microorganisms13010107
Knihovny.cz E-zdroje
- Klíčová slova
- Streptomyces coeruleorubidus, anthracyclines, daunomycin-iron organic complex, iron chelators, medium optimization, production strain development, vivianite,
- Publikační typ
- časopisecké články MeSH
Daunomycin is a chemotherapeutic agent widely used for the treatment of leukemia, but its toxicity toward healthy dividing cells limits its clinical use and its production by fermentation. Herein, we describe the development of a specialized cultivation medium for daunomycin production, including a shift to oil rather than sugar as the primary carbon source. This achieved an almost threefold increase in daunomycin yields, reaching 5.5-6.0 g/L. Daunomycin produced in the oil-based medium was predominantly found in the solid sediment, whereas that produced in the sugar-based medium was mostly soluble. The oil-based medium thus induces an autonomous daunomycin-resistance mechanism involving biogenic nanoparticle formation. The characterization of the nanoparticles confirmed the incorporation of iron and daunomycin, indicating that this approach has the potential to mitigate cytotoxicity while improving yields. The presence of proteins associated with iron homeostasis and oxidative stress responses revealed the ability of the production strain to adapt to high iron concentrations. Our findings provide insight into the mechanisms of biogenic nanoparticle formation and the optimization of cultivation processes. Further investigation will help to refine microbial production systems for daunomycin and also broaden the application of similar strategies for the synthesis of other therapeutically important compounds.
Zobrazit více v PubMed
Thomas G.J. Synthesis of Anthracyclines Related to Daunomycin. In: Lukacs G., Ohno M., editors. Recent Progress in the Chemical Synthesis of Antibiotics. Springer; Berlin/Heidelberg, Germany: 1990. pp. 467–496. DOI
Thirumaran R., Prendergast G.C., Gilman P.B. Chapter 7—Cytotoxic Chemotherapy in Clinical Treatment of Cancer. In: Prendergast G.C., Jaffee E.M., editors. Cancer Immunotherapy. Academic Press; Burlington, VT, USA: 2007. pp. 101–116. DOI
Srinivasan P., Palani S.N., Prasad R. Daunorubicin efflux in Streptomyces peucetius modulates biosynthesis by feedback regulation. FEMS Microbiol. Lett. 2010;305:18–27. doi: 10.1111/j.1574-6968.2010.01905.x. PubMed DOI
Vasanthakumar A., Kattusamy K., Prasad R. Regulation of daunorubicin biosynthesis in Streptomyces peucetius—Feed forward and feedback transcriptional control. J. Basic Microbiol. 2013;53:636–644. doi: 10.1002/jobm.201200302. PubMed DOI
Taatjes D.J., Gaudiano G., Resing K., Koch T.H. Redox pathway leading to the alkylation of DNA by the anthracycline, antitumor drugs adriamycin and daunomycin. J. Med. Chem. 1997;40:1276–1286. doi: 10.1021/jm960835d. PubMed DOI
Kaiserová H., Simunek T., Sterba M., den Hartog G.J., Schröterová L., Popelová O., Gersl V., Kvasnicková E., Bast A. New iron chelators in anthracycline-induced cardiotoxicity. Cardiovasc. Toxicol. 2007;7:145–150. doi: 10.1007/s12012-007-0020-6. PubMed DOI
Cai J., Deng T., Shi J., Chen C., Wang Z., Liu Y. Daunorubicin resensitizes Gram-negative superbugs to the last-line antibiotics and prevents the transmission of antibiotic resistance. iScience. 2023;26:106809. doi: 10.1016/j.isci.2023.106809. PubMed DOI PMC
Pudhuvai B., Beneš K., Čurn V., Bohata A., Lencova J., Vrzalova R., Barta J., Matha V. The Daunomycin: Biosynthesis, Actions, and the Search for New Solutions to Enhance Production. Microorganisms. 2024;12:2639. doi: 10.3390/microorganisms12122639. PubMed DOI PMC
Yuan T., Yin C., Zhu C., Zhu B., Hu Y. Improvement of antibiotic productivity by knock-out of dauW in Streptomyces coeruleobidus. Microbiol. Res. 2011;166:539–547. doi: 10.1016/j.micres.2010.10.006. PubMed DOI
Malla S., Niraula N.P., Liou K., Sohng J.K. Improvement in doxorubicin productivity by overexpression of regulatory genes in Streptomyces peucetius. Res. Microbiol. 2010;161:109–117. doi: 10.1016/j.resmic.2009.12.003. PubMed DOI
Afonso I.S., Cardoso B., Nobrega G., Minas G., Ribeiro J.E., Lima R.A. Green synthesis of nanoparticles from olive oil waste for environmental and health applications: A review. J. Environ. Chem. Eng. 2024;12:114022. doi: 10.1016/j.jece.2024.114022. DOI
Nunes M.A., Costa A.S.G., Bessada S., Santos J., Puga H., Alves R.C., Freitas V., Oliveira M.B.P.P. Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Sci. Total Environ. 2018;644:229–236. doi: 10.1016/j.scitotenv.2018.06.350. PubMed DOI
Mashaghi S., Jadidi T., Koenderink G., Mashaghi A. Lipid nanotechnology. Int. J. Mol. Sci. 2013;14:4242–4282. doi: 10.3390/ijms14024242. PubMed DOI PMC
Lombardo D., Calandra P., Pasqua L., Magazù S. Self-Assembly of Organic Nanomaterials and Biomaterials: The Bottom-Up Approach for Functional Nanostructures Formation and Advanced Applications. Materials. 2020;13:1048. doi: 10.3390/ma13051048. PubMed DOI PMC
Kargari Aghmiouni D., Khoee S. Dual-Drug Delivery by Anisotropic and Uniform Hybrid Nanostructures: A Comparative Study of the Function and Substrate–Drug Interaction Properties. Pharmaceutics. 2023;15:1214. doi: 10.3390/pharmaceutics15041214. PubMed DOI PMC
Perron N.R., Brumaghim J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 2009;53:75–100. doi: 10.1007/s12013-009-9043-x. PubMed DOI
Hsueh C.C., Wu C.C., Chen B.Y. Polyphenolic compounds as electron shuttles for sustainable energy utilization. Biotechnol. Biofuels. 2019;12:1–26. doi: 10.1186/s13068-019-1602-9. PubMed DOI PMC
Amini S.M., Akbari A. Metal nanoparticles synthesis through natural phenolic acids. IET Nanobiotech. 2019;13:771–777. doi: 10.1049/iet-nbt.2018.5386. PubMed DOI PMC
Anand S., Sowbhagya R., Ansari M.A., Alzohairy M.A., Alomary M.N., Almalik A.I., Ahmad W., Tripathi T., Elderdery A.Y. Polyphenols and Their Nanoformulations: Protective Effects against Human Diseases. Life. 2022;12:1639. doi: 10.3390/life12101639. PubMed DOI PMC
Studart A.R., Amstad E., Gauckler L.J. Colloidal stabilization of nanoparticles in concentrated suspensions. Languir. 2017;23:1081–1090. doi: 10.1021/la062042s. PubMed DOI
El-Moslamy S.H., Elnouby M.S., Rezk A.H., El-Fakharany E.M. Scaling-up strategies for controllable biosynthetic ZnO NPs using cell free-extract of endophytic Streptomyces albus: Characterization, statistical optimization, and biomedical activities evaluation. Sci. Rep. 2023;13:3200. doi: 10.1038/s41598-023-29757-9. PubMed DOI PMC
Anani O.A., Inobeme A., Osarenotor O., Olisaka F.N., Aidonojie P.A., Olatunji E.O., Aishatu H.I. Application of Microorganisms as Biofactories to Produce Biogenic Nanoparticles for Environmental Cleanup: Currents Advances and Challenges. Curr. Nanosci. 2023;6:770–782. doi: 10.2174/1573413719666221219164613. DOI
Kulkarni D., Sherkar R., Shirsathe C., Sonwane R., Varpe N., Shelke S., More M.P., Pardeshi S.R., Dhaneshwar G., Junnuthula V., et al. Biofabrication of nanoparticles: Sources, synthesis, and biomedical applications. Front. Bioeng. Biotechnol. 2023;11:1159193. doi: 10.3389/fbioe.2023.1159193. PubMed DOI PMC
McMurry L.M., Oethinger M., Levy S.B. Triclosan targets lipid synthesis. Nature. 1998;394:531–532. doi: 10.1038/28970. PubMed DOI
Hopwood D.A., Wright H.M. Factors affecting recombinant frequency in protoplast fusions of Streptomyces coelicolour. J. Gen. Microbiol. 1979;11:137–143. doi: 10.1099/00221287-111-1-137. PubMed DOI
Hopwood D.A., Wright H.M. Protoplast Fusion in Streptomyces: Fusions Involving Ultraviolet-irradiated Protoplasts. Microbiology. 1981;126:21–27. doi: 10.1099/00221287-126-1-21. DOI
Okanishi M., Suzuki K., Umezawa H. Formation and reversion of streptomycete protoplasts: Cultural conditions and morphological study. J. Gen. Microbiol. 1974;80:389–400. doi: 10.1099/00221287-80-2-389. PubMed DOI
Hopwood D.A., Wright H.M. Bacterial protoplast fusion: Recombination in fused protoplasts of Streptomyces coelicolour. Mol. Gen. Genet. 1978;162:307–317. doi: 10.1007/BF00268856. PubMed DOI
Hopwood D.A., Wright H.M., Bibb M.J., Cohen S.N. Genetic recombination through protoplast fusion in Streptomyces. Nature. 1977;268:171–174. doi: 10.1038/268171a0. PubMed DOI
Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Hurkova K., Uttl L., Rubert J., Navratilova K., Kocourek V., Stranska-Zachariasova M., Paprstein F., Hajslova J. Cranberries versus lingonberries: A challenging authentication of similar Vaccinium fruit. Food Chem. 2019;284:162–170. doi: 10.1016/j.foodchem.2019.01.014. PubMed DOI
Blumauerová M., Pokorný V., Stastná J., Hostálek Z., Vanĕk Z. Development mutants of Streptomyces coeruleorubidus, a producer of anthracyclines: Isolation and preliminary characterization. Folia Microbiol. 1978;23:177–182. doi: 10.1007/BF02876576. PubMed DOI
Li H., Wei J., Dong J., Li Y., Li Y., Chen Y., Guan W. enhanced triacylglycerol metabolism contributes to efficient oil utilization and high-level production of salinomycin in Streptomyces albus ZD11. Appl. Environ. Microbiol. 2020;86:e00763-20. doi: 10.1128/AEM.00763-20. PubMed DOI PMC
Mateos R., Sarria B., Bravo L. Nutritional and other health properties of olive pomace oil. Crit. Rev. Food Sci. Nutr. 2019;60:3506–3521. doi: 10.1080/10408398.2019.1698005. PubMed DOI
Čepo V.D., Radić K., Jurmanović S., Jug M., Grdić Rajković M., Pedisić S., Moslavac T., Albahari P. Valorization of Olive Pomace-Based Nutraceuticals as Antioxidants in Chemical, Food, and Biological Models. Molecules. 2018;23:2070. doi: 10.3390/molecules23082070. PubMed DOI PMC
Zhang M.N., Huang G.R., Jiang J.X. Iron binding capacity of dephytinised soy protein isolate hydrolysate as influenced by the degree of hydrolysis and enzyme type. J. Food Sci. Technol. 2014;51:994–999. doi: 10.1007/s13197-011-0586-7. PubMed DOI PMC
Cruz C., Santos J., Santos F., Silva G., Cruz E., Ramos G., Nascimento J. Texturized soy protein as an alternative low-cost media for bacteria cultivation. Bact. Emp. 2020;3:74–76. doi: 10.36547/be.2020.3.4.74-76. DOI
Malik N., Simarani K., Aziz M.A. Soybean as an alternative nutrient medium for Bacillus subtilis growth. Malays. Appl. Biol. 2022;51:67–74. doi: 10.55230/mabjournal.v51i4.12. DOI
Lynch S.R., Dassenko S.A., Cook J.D., Juillerat M.A., Hurrell R.F. Inhibitory Effect of a Soybean-Protein-Related Moiety on Iron Absorption in Humans13. Am. J. Clin. Nutr. 1994;60:567–572. doi: 10.1093/ajcn/60.4.567. PubMed DOI
Xu X., Sutak R., Richardson D.R. Iron chelation by clinically relevant anthracyclines: Alteration in expression of iron-regulated genes and atypical changes in intracellular iron distribution and trafficking. Mol. Pharmacol. 2008;73:833–844. doi: 10.1124/mol.107.041335. PubMed DOI
Zhang L., Zeng Q., Liu X., Chen P., Guo X., Ma L.Z., Dong H., Huang Y. Iron reduction by diverse actinobacteria under oxic and pH-neutral conditions and the formation of secondary minerals. Chem. Geol. 2019;525:390–399. doi: 10.1016/j.chemgeo.2019.07.038. DOI
He Z., Chang J., Feng Y., Wang S., Yuan Q., Liang D., Liu J., Li N. Carbon nanotubes accelerates the bio-induced vivianite formation. Sci. Total Environ. 2022;844:157060. doi: 10.1016/j.scitotenv.2022.157060. PubMed DOI
Miot J., Benzerara K., Morin G., Bernard S., Beyssac O., Larquet E., Kappler A., Guyot F. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria. Geobiology. 2009;7:373–384. doi: 10.1111/j.1472-4669.2009.00203.x. PubMed DOI
Dong J., Ning J., Tian Y., Li H., Chen H., Guan W. The involvement of multiple ABC transporters in daunorubicin efflux in Streptomyces coeruleorubidus. Microb. Biotechnol. 2024;17:e70023. doi: 10.1111/1751-7915.70023. PubMed DOI PMC
Nguyen J.N.T., Harbison A.M. Scanning Electron Microscopy Sample Preparation and Imaging. Methods Mol. Biol. 2017;1606:71–84. doi: 10.1007/978-1-4939-6990-6_5. PubMed DOI
Rivera M. Bacterioferritin: Structure, Dynamics, and Protein-Protein Interactions at Play in Iron Storage and Mobilization. Acc. Chem. Res. 2017;50:331–340. doi: 10.1021/acs.accounts.6b00514. PubMed DOI PMC
Mahaseth T., Kuzminov A. Potentiation of hydrogen peroxide toxicity: From catalase inhibition to stable DNA-iron complexes. Mutat. Res. Rev. Mutat. Res. 2017;773:274–281. doi: 10.1016/j.mrrev.2016.08.006. PubMed DOI PMC
Kim Y., Roe J.H., Park J.H., Cho Y.J., Lee K.L. Regulation of iron homeostasis by peroxide-sensitive CatR, a Fur-family regulator in Streptomyces coelicolour. J. Microbiol. 2021;59:1083–1091. doi: 10.1007/s12275-021-1457-1. PubMed DOI
Toone E.J. Advances in Enzymology and Related Areas of Molecular Biology, Protein Evolution. Wiley-Interscience; Hoboken, NJ, USA: 2006. DOI
Sirivech S., Driskell J., Frieden E. NADH-FMN oxidoreductase activity and iron content of organs from riboflavin and iron-deficient rats. J. Nutr. 1977;107:739–745. doi: 10.1093/jn/107.5.739. PubMed DOI
Martelin E., Lapatto R., Raivio K.O. Regulation of xanthine oxidoreductase by intracellular iron. Am. J. Physiol. Cell Physiol. 2002;283:C1722–C1728. doi: 10.1152/ajpcell.00280.2002. PubMed DOI
Schnepf M.I. A Study of Iron Binding by Soy Protein; ETD Collection for University of Nebraska-Lincoln. AAI8423827. 1984. [(accessed on 1 January 2025)]. Available online: https://digitalcommons.unl.edu/dissertations/AAI8423827.
Yang R., Zhu L., Meng D., Wang Q., Zhou K., Wang Z., Zhou Z. Proteins from leguminous plants: From structure, property to the function in encapsulation/binding and delivery of bioactive compounds. Crit. Rev. Food Sci. Nutr. 2021;62:5203–5223. doi: 10.1080/10408398.2021.1883545. PubMed DOI
Cascales E., Bernadac A., Gavioli M., Lazzaroni J.C., Lloubes R. Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. J. Bacteriol. 2002;184:754–759. doi: 10.1128/JB.184.3.754-759.2002. PubMed DOI PMC
Ohe T., Watanabe Y. Purification and properties of xanthine dehydrogenase from Streptomyces cyanogenus. J. Biochem. 1979;86:45–53. PubMed
Leimkühler S., Iobbi-Nivol C. Bacterial molybdoenzymes: Old enzymes for new purposes. FEMS Microbiol. Rev. 2016;40:1–18. doi: 10.1093/femsre/fuv043. PubMed DOI
Kantola J., Kunnari T., Hautala A., Hakala J., Ylihonko K., Mäntsälä P. Elucidation of anthracyclinone biosynthesis by stepwise cloning of genes for anthracyclines from three different Streptomyces spp. Microbiology. 2000;146:155–163. doi: 10.1099/00221287-146-1-155. PubMed DOI
Youn H.D., Kim E.J., Roe J.H., Hah Y.C., Kang S.O. A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem. J. 1996;318:889–896. doi: 10.1042/bj3180889. PubMed DOI PMC
LeMaréchal P., Decottignies P., Marchand C.H., Degrouard J., Jaillard D., Dulermo T., Froissard M., Smirnov A., Chapuis V., Virolle M. Comparative Proteomic Analysis of Streptomyces lividans Wild-Type and ppk Mutant Strains Reveals the Importance of Storage Lipids for Antibiotic Biosynthesis. Appl. Environ. Microbiol. 2013;79:5907–5917. doi: 10.1128/AEM.02280-13. PubMed DOI PMC
Chevrette M.G., Carlson C.M., Ortega H.E., Thomas C., Ananiev G.E., Barns K.J., Book A.J., Cagnazzo J., Carlos C., Flanigan W., et al. The antimicrobial potential of Streptomyces from insect microbiomes. Nat. Commun. 2019;10:516. doi: 10.1038/s41467-019-08438-0. PubMed DOI PMC
Van Moll L., De Smet J., Cos P., Van Campenhout L. Microbial symbionts of insects as a source of new antimicrobials: A review. Crit. Rev. Microbiol. 2021;47:562–579. doi: 10.1080/1040841X.2021.1907302. PubMed DOI
Diarra U., Osborne-Naikatini T., Subramani R. Actinomycetes associated with hymenopteran insects: A promising source of bioactive natural products. Front. Microbiol. 2024;15:1303010. doi: 10.3389/fmicb.2024.1303010. PubMed DOI PMC
Dettner K. Potential Pharmaceuticals from Insects and Their Co-Occurring Microorganisms. In: Vilcinskas A., editor. Insect Biotechnology. Biologically-Inspired Systems. Volume 2. Springer; Dordrecht, The Netherlands: 2011. pp. 95–119. DOI
Bode H.B. Insect-Associated Microorganisms as a Source for Novel Secondary Metabolites with Therapeutic Potential. In: Vilcinskas A., editor. Insect Biotechnology. Biologically-Inspired Systems. Volume 2. Springer; Dordrecht, The Netherlands: 2011. pp. 77–93. DOI