Autonomous Defense Based on Biogenic Nanoparticle Formation in Daunomycin-Producing Streptomyces

. 2025 Jan 08 ; 13 (1) : . [epub] 20250108

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39858875

Grantová podpora
GAJU 080/2022/Z Grant Agency of the University of South Bohemia

Odkazy

PubMed 39858875
PubMed Central PMC11767837
DOI 10.3390/microorganisms13010107
PII: microorganisms13010107
Knihovny.cz E-zdroje

Daunomycin is a chemotherapeutic agent widely used for the treatment of leukemia, but its toxicity toward healthy dividing cells limits its clinical use and its production by fermentation. Herein, we describe the development of a specialized cultivation medium for daunomycin production, including a shift to oil rather than sugar as the primary carbon source. This achieved an almost threefold increase in daunomycin yields, reaching 5.5-6.0 g/L. Daunomycin produced in the oil-based medium was predominantly found in the solid sediment, whereas that produced in the sugar-based medium was mostly soluble. The oil-based medium thus induces an autonomous daunomycin-resistance mechanism involving biogenic nanoparticle formation. The characterization of the nanoparticles confirmed the incorporation of iron and daunomycin, indicating that this approach has the potential to mitigate cytotoxicity while improving yields. The presence of proteins associated with iron homeostasis and oxidative stress responses revealed the ability of the production strain to adapt to high iron concentrations. Our findings provide insight into the mechanisms of biogenic nanoparticle formation and the optimization of cultivation processes. Further investigation will help to refine microbial production systems for daunomycin and also broaden the application of similar strategies for the synthesis of other therapeutically important compounds.

Zobrazit více v PubMed

Thomas G.J. Synthesis of Anthracyclines Related to Daunomycin. In: Lukacs G., Ohno M., editors. Recent Progress in the Chemical Synthesis of Antibiotics. Springer; Berlin/Heidelberg, Germany: 1990. pp. 467–496. DOI

Thirumaran R., Prendergast G.C., Gilman P.B. Chapter 7—Cytotoxic Chemotherapy in Clinical Treatment of Cancer. In: Prendergast G.C., Jaffee E.M., editors. Cancer Immunotherapy. Academic Press; Burlington, VT, USA: 2007. pp. 101–116. DOI

Srinivasan P., Palani S.N., Prasad R. Daunorubicin efflux in Streptomyces peucetius modulates biosynthesis by feedback regulation. FEMS Microbiol. Lett. 2010;305:18–27. doi: 10.1111/j.1574-6968.2010.01905.x. PubMed DOI

Vasanthakumar A., Kattusamy K., Prasad R. Regulation of daunorubicin biosynthesis in Streptomyces peucetius—Feed forward and feedback transcriptional control. J. Basic Microbiol. 2013;53:636–644. doi: 10.1002/jobm.201200302. PubMed DOI

Taatjes D.J., Gaudiano G., Resing K., Koch T.H. Redox pathway leading to the alkylation of DNA by the anthracycline, antitumor drugs adriamycin and daunomycin. J. Med. Chem. 1997;40:1276–1286. doi: 10.1021/jm960835d. PubMed DOI

Kaiserová H., Simunek T., Sterba M., den Hartog G.J., Schröterová L., Popelová O., Gersl V., Kvasnicková E., Bast A. New iron chelators in anthracycline-induced cardiotoxicity. Cardiovasc. Toxicol. 2007;7:145–150. doi: 10.1007/s12012-007-0020-6. PubMed DOI

Cai J., Deng T., Shi J., Chen C., Wang Z., Liu Y. Daunorubicin resensitizes Gram-negative superbugs to the last-line antibiotics and prevents the transmission of antibiotic resistance. iScience. 2023;26:106809. doi: 10.1016/j.isci.2023.106809. PubMed DOI PMC

Pudhuvai B., Beneš K., Čurn V., Bohata A., Lencova J., Vrzalova R., Barta J., Matha V. The Daunomycin: Biosynthesis, Actions, and the Search for New Solutions to Enhance Production. Microorganisms. 2024;12:2639. doi: 10.3390/microorganisms12122639. PubMed DOI PMC

Yuan T., Yin C., Zhu C., Zhu B., Hu Y. Improvement of antibiotic productivity by knock-out of dauW in Streptomyces coeruleobidus. Microbiol. Res. 2011;166:539–547. doi: 10.1016/j.micres.2010.10.006. PubMed DOI

Malla S., Niraula N.P., Liou K., Sohng J.K. Improvement in doxorubicin productivity by overexpression of regulatory genes in Streptomyces peucetius. Res. Microbiol. 2010;161:109–117. doi: 10.1016/j.resmic.2009.12.003. PubMed DOI

Afonso I.S., Cardoso B., Nobrega G., Minas G., Ribeiro J.E., Lima R.A. Green synthesis of nanoparticles from olive oil waste for environmental and health applications: A review. J. Environ. Chem. Eng. 2024;12:114022. doi: 10.1016/j.jece.2024.114022. DOI

Nunes M.A., Costa A.S.G., Bessada S., Santos J., Puga H., Alves R.C., Freitas V., Oliveira M.B.P.P. Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Sci. Total Environ. 2018;644:229–236. doi: 10.1016/j.scitotenv.2018.06.350. PubMed DOI

Mashaghi S., Jadidi T., Koenderink G., Mashaghi A. Lipid nanotechnology. Int. J. Mol. Sci. 2013;14:4242–4282. doi: 10.3390/ijms14024242. PubMed DOI PMC

Lombardo D., Calandra P., Pasqua L., Magazù S. Self-Assembly of Organic Nanomaterials and Biomaterials: The Bottom-Up Approach for Functional Nanostructures Formation and Advanced Applications. Materials. 2020;13:1048. doi: 10.3390/ma13051048. PubMed DOI PMC

Kargari Aghmiouni D., Khoee S. Dual-Drug Delivery by Anisotropic and Uniform Hybrid Nanostructures: A Comparative Study of the Function and Substrate–Drug Interaction Properties. Pharmaceutics. 2023;15:1214. doi: 10.3390/pharmaceutics15041214. PubMed DOI PMC

Perron N.R., Brumaghim J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 2009;53:75–100. doi: 10.1007/s12013-009-9043-x. PubMed DOI

Hsueh C.C., Wu C.C., Chen B.Y. Polyphenolic compounds as electron shuttles for sustainable energy utilization. Biotechnol. Biofuels. 2019;12:1–26. doi: 10.1186/s13068-019-1602-9. PubMed DOI PMC

Amini S.M., Akbari A. Metal nanoparticles synthesis through natural phenolic acids. IET Nanobiotech. 2019;13:771–777. doi: 10.1049/iet-nbt.2018.5386. PubMed DOI PMC

Anand S., Sowbhagya R., Ansari M.A., Alzohairy M.A., Alomary M.N., Almalik A.I., Ahmad W., Tripathi T., Elderdery A.Y. Polyphenols and Their Nanoformulations: Protective Effects against Human Diseases. Life. 2022;12:1639. doi: 10.3390/life12101639. PubMed DOI PMC

Studart A.R., Amstad E., Gauckler L.J. Colloidal stabilization of nanoparticles in concentrated suspensions. Languir. 2017;23:1081–1090. doi: 10.1021/la062042s. PubMed DOI

El-Moslamy S.H., Elnouby M.S., Rezk A.H., El-Fakharany E.M. Scaling-up strategies for controllable biosynthetic ZnO NPs using cell free-extract of endophytic Streptomyces albus: Characterization, statistical optimization, and biomedical activities evaluation. Sci. Rep. 2023;13:3200. doi: 10.1038/s41598-023-29757-9. PubMed DOI PMC

Anani O.A., Inobeme A., Osarenotor O., Olisaka F.N., Aidonojie P.A., Olatunji E.O., Aishatu H.I. Application of Microorganisms as Biofactories to Produce Biogenic Nanoparticles for Environmental Cleanup: Currents Advances and Challenges. Curr. Nanosci. 2023;6:770–782. doi: 10.2174/1573413719666221219164613. DOI

Kulkarni D., Sherkar R., Shirsathe C., Sonwane R., Varpe N., Shelke S., More M.P., Pardeshi S.R., Dhaneshwar G., Junnuthula V., et al. Biofabrication of nanoparticles: Sources, synthesis, and biomedical applications. Front. Bioeng. Biotechnol. 2023;11:1159193. doi: 10.3389/fbioe.2023.1159193. PubMed DOI PMC

McMurry L.M., Oethinger M., Levy S.B. Triclosan targets lipid synthesis. Nature. 1998;394:531–532. doi: 10.1038/28970. PubMed DOI

Hopwood D.A., Wright H.M. Factors affecting recombinant frequency in protoplast fusions of Streptomyces coelicolour. J. Gen. Microbiol. 1979;11:137–143. doi: 10.1099/00221287-111-1-137. PubMed DOI

Hopwood D.A., Wright H.M. Protoplast Fusion in Streptomyces: Fusions Involving Ultraviolet-irradiated Protoplasts. Microbiology. 1981;126:21–27. doi: 10.1099/00221287-126-1-21. DOI

Okanishi M., Suzuki K., Umezawa H. Formation and reversion of streptomycete protoplasts: Cultural conditions and morphological study. J. Gen. Microbiol. 1974;80:389–400. doi: 10.1099/00221287-80-2-389. PubMed DOI

Hopwood D.A., Wright H.M. Bacterial protoplast fusion: Recombination in fused protoplasts of Streptomyces coelicolour. Mol. Gen. Genet. 1978;162:307–317. doi: 10.1007/BF00268856. PubMed DOI

Hopwood D.A., Wright H.M., Bibb M.J., Cohen S.N. Genetic recombination through protoplast fusion in Streptomyces. Nature. 1977;268:171–174. doi: 10.1038/268171a0. PubMed DOI

Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI

Hurkova K., Uttl L., Rubert J., Navratilova K., Kocourek V., Stranska-Zachariasova M., Paprstein F., Hajslova J. Cranberries versus lingonberries: A challenging authentication of similar Vaccinium fruit. Food Chem. 2019;284:162–170. doi: 10.1016/j.foodchem.2019.01.014. PubMed DOI

Blumauerová M., Pokorný V., Stastná J., Hostálek Z., Vanĕk Z. Development mutants of Streptomyces coeruleorubidus, a producer of anthracyclines: Isolation and preliminary characterization. Folia Microbiol. 1978;23:177–182. doi: 10.1007/BF02876576. PubMed DOI

Li H., Wei J., Dong J., Li Y., Li Y., Chen Y., Guan W. enhanced triacylglycerol metabolism contributes to efficient oil utilization and high-level production of salinomycin in Streptomyces albus ZD11. Appl. Environ. Microbiol. 2020;86:e00763-20. doi: 10.1128/AEM.00763-20. PubMed DOI PMC

Mateos R., Sarria B., Bravo L. Nutritional and other health properties of olive pomace oil. Crit. Rev. Food Sci. Nutr. 2019;60:3506–3521. doi: 10.1080/10408398.2019.1698005. PubMed DOI

Čepo V.D., Radić K., Jurmanović S., Jug M., Grdić Rajković M., Pedisić S., Moslavac T., Albahari P. Valorization of Olive Pomace-Based Nutraceuticals as Antioxidants in Chemical, Food, and Biological Models. Molecules. 2018;23:2070. doi: 10.3390/molecules23082070. PubMed DOI PMC

Zhang M.N., Huang G.R., Jiang J.X. Iron binding capacity of dephytinised soy protein isolate hydrolysate as influenced by the degree of hydrolysis and enzyme type. J. Food Sci. Technol. 2014;51:994–999. doi: 10.1007/s13197-011-0586-7. PubMed DOI PMC

Cruz C., Santos J., Santos F., Silva G., Cruz E., Ramos G., Nascimento J. Texturized soy protein as an alternative low-cost media for bacteria cultivation. Bact. Emp. 2020;3:74–76. doi: 10.36547/be.2020.3.4.74-76. DOI

Malik N., Simarani K., Aziz M.A. Soybean as an alternative nutrient medium for Bacillus subtilis growth. Malays. Appl. Biol. 2022;51:67–74. doi: 10.55230/mabjournal.v51i4.12. DOI

Lynch S.R., Dassenko S.A., Cook J.D., Juillerat M.A., Hurrell R.F. Inhibitory Effect of a Soybean-Protein-Related Moiety on Iron Absorption in Humans13. Am. J. Clin. Nutr. 1994;60:567–572. doi: 10.1093/ajcn/60.4.567. PubMed DOI

Xu X., Sutak R., Richardson D.R. Iron chelation by clinically relevant anthracyclines: Alteration in expression of iron-regulated genes and atypical changes in intracellular iron distribution and trafficking. Mol. Pharmacol. 2008;73:833–844. doi: 10.1124/mol.107.041335. PubMed DOI

Zhang L., Zeng Q., Liu X., Chen P., Guo X., Ma L.Z., Dong H., Huang Y. Iron reduction by diverse actinobacteria under oxic and pH-neutral conditions and the formation of secondary minerals. Chem. Geol. 2019;525:390–399. doi: 10.1016/j.chemgeo.2019.07.038. DOI

He Z., Chang J., Feng Y., Wang S., Yuan Q., Liang D., Liu J., Li N. Carbon nanotubes accelerates the bio-induced vivianite formation. Sci. Total Environ. 2022;844:157060. doi: 10.1016/j.scitotenv.2022.157060. PubMed DOI

Miot J., Benzerara K., Morin G., Bernard S., Beyssac O., Larquet E., Kappler A., Guyot F. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria. Geobiology. 2009;7:373–384. doi: 10.1111/j.1472-4669.2009.00203.x. PubMed DOI

Dong J., Ning J., Tian Y., Li H., Chen H., Guan W. The involvement of multiple ABC transporters in daunorubicin efflux in Streptomyces coeruleorubidus. Microb. Biotechnol. 2024;17:e70023. doi: 10.1111/1751-7915.70023. PubMed DOI PMC

Nguyen J.N.T., Harbison A.M. Scanning Electron Microscopy Sample Preparation and Imaging. Methods Mol. Biol. 2017;1606:71–84. doi: 10.1007/978-1-4939-6990-6_5. PubMed DOI

Rivera M. Bacterioferritin: Structure, Dynamics, and Protein-Protein Interactions at Play in Iron Storage and Mobilization. Acc. Chem. Res. 2017;50:331–340. doi: 10.1021/acs.accounts.6b00514. PubMed DOI PMC

Mahaseth T., Kuzminov A. Potentiation of hydrogen peroxide toxicity: From catalase inhibition to stable DNA-iron complexes. Mutat. Res. Rev. Mutat. Res. 2017;773:274–281. doi: 10.1016/j.mrrev.2016.08.006. PubMed DOI PMC

Kim Y., Roe J.H., Park J.H., Cho Y.J., Lee K.L. Regulation of iron homeostasis by peroxide-sensitive CatR, a Fur-family regulator in Streptomyces coelicolour. J. Microbiol. 2021;59:1083–1091. doi: 10.1007/s12275-021-1457-1. PubMed DOI

Toone E.J. Advances in Enzymology and Related Areas of Molecular Biology, Protein Evolution. Wiley-Interscience; Hoboken, NJ, USA: 2006. DOI

Sirivech S., Driskell J., Frieden E. NADH-FMN oxidoreductase activity and iron content of organs from riboflavin and iron-deficient rats. J. Nutr. 1977;107:739–745. doi: 10.1093/jn/107.5.739. PubMed DOI

Martelin E., Lapatto R., Raivio K.O. Regulation of xanthine oxidoreductase by intracellular iron. Am. J. Physiol. Cell Physiol. 2002;283:C1722–C1728. doi: 10.1152/ajpcell.00280.2002. PubMed DOI

Schnepf M.I. A Study of Iron Binding by Soy Protein; ETD Collection for University of Nebraska-Lincoln. AAI8423827. 1984. [(accessed on 1 January 2025)]. Available online: https://digitalcommons.unl.edu/dissertations/AAI8423827.

Yang R., Zhu L., Meng D., Wang Q., Zhou K., Wang Z., Zhou Z. Proteins from leguminous plants: From structure, property to the function in encapsulation/binding and delivery of bioactive compounds. Crit. Rev. Food Sci. Nutr. 2021;62:5203–5223. doi: 10.1080/10408398.2021.1883545. PubMed DOI

Cascales E., Bernadac A., Gavioli M., Lazzaroni J.C., Lloubes R. Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. J. Bacteriol. 2002;184:754–759. doi: 10.1128/JB.184.3.754-759.2002. PubMed DOI PMC

Ohe T., Watanabe Y. Purification and properties of xanthine dehydrogenase from Streptomyces cyanogenus. J. Biochem. 1979;86:45–53. PubMed

Leimkühler S., Iobbi-Nivol C. Bacterial molybdoenzymes: Old enzymes for new purposes. FEMS Microbiol. Rev. 2016;40:1–18. doi: 10.1093/femsre/fuv043. PubMed DOI

Kantola J., Kunnari T., Hautala A., Hakala J., Ylihonko K., Mäntsälä P. Elucidation of anthracyclinone biosynthesis by stepwise cloning of genes for anthracyclines from three different Streptomyces spp. Microbiology. 2000;146:155–163. doi: 10.1099/00221287-146-1-155. PubMed DOI

Youn H.D., Kim E.J., Roe J.H., Hah Y.C., Kang S.O. A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem. J. 1996;318:889–896. doi: 10.1042/bj3180889. PubMed DOI PMC

LeMaréchal P., Decottignies P., Marchand C.H., Degrouard J., Jaillard D., Dulermo T., Froissard M., Smirnov A., Chapuis V., Virolle M. Comparative Proteomic Analysis of Streptomyces lividans Wild-Type and ppk Mutant Strains Reveals the Importance of Storage Lipids for Antibiotic Biosynthesis. Appl. Environ. Microbiol. 2013;79:5907–5917. doi: 10.1128/AEM.02280-13. PubMed DOI PMC

Chevrette M.G., Carlson C.M., Ortega H.E., Thomas C., Ananiev G.E., Barns K.J., Book A.J., Cagnazzo J., Carlos C., Flanigan W., et al. The antimicrobial potential of Streptomyces from insect microbiomes. Nat. Commun. 2019;10:516. doi: 10.1038/s41467-019-08438-0. PubMed DOI PMC

Van Moll L., De Smet J., Cos P., Van Campenhout L. Microbial symbionts of insects as a source of new antimicrobials: A review. Crit. Rev. Microbiol. 2021;47:562–579. doi: 10.1080/1040841X.2021.1907302. PubMed DOI

Diarra U., Osborne-Naikatini T., Subramani R. Actinomycetes associated with hymenopteran insects: A promising source of bioactive natural products. Front. Microbiol. 2024;15:1303010. doi: 10.3389/fmicb.2024.1303010. PubMed DOI PMC

Dettner K. Potential Pharmaceuticals from Insects and Their Co-Occurring Microorganisms. In: Vilcinskas A., editor. Insect Biotechnology. Biologically-Inspired Systems. Volume 2. Springer; Dordrecht, The Netherlands: 2011. pp. 95–119. DOI

Bode H.B. Insect-Associated Microorganisms as a Source for Novel Secondary Metabolites with Therapeutic Potential. In: Vilcinskas A., editor. Insect Biotechnology. Biologically-Inspired Systems. Volume 2. Springer; Dordrecht, The Netherlands: 2011. pp. 77–93. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...