Determination of the Critical Voltage for the Observation of Uncoated Wood Samples in Electron Microscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA A_02_24
Development and analysis of thermal insulation material based on foamed wood
PubMed
39859708
PubMed Central
PMC11767164
DOI
10.3390/ma18020236
PII: ma18020236
Knihovny.cz E-zdroje
- Klíčová slova
- SEM analysis, density, electron microscopy (EM), surface, voltage, wood,
- Publikační typ
- časopisecké články MeSH
Electron microscopy (EM) is a key tool for studying the microstructure of wood; however, observing uncoated samples poses a challenge due to surface charging. This study aims to identify the critical voltage that allows for the effective observation of uncoated wood samples without significant loading. As part of the experiment, samples of different wood species were tested, including Acacia (Robinia pseudoacacia L.), Oak (Quercus robur L.), Maple (Acer pseudoplatanus spp.), Ash (Fraxinus excelsior L.), Spruce (Picea abies (L.) Karst.), Thermowood (Thermal modifed Spruce), Garapa (Apuleia leiocarpa), Ipé (Handroanthus spp.), Merbau (Intsia bijuga), and Massaranduba (Manilkara spp.). Several methods were tested for surface preparation for SEM analysis, including the use of a circular saw, a hand milling machine, and a microtome. The results show that the optimal voltage for observing uncoated wood samples varied depending on the wood species. Regarding the selection of wood species and the results obtained, it was found that uncoated samples could be effectively observed. This finding suggests that practical observations can be accelerated and more cost-effective, as all wood species exhibited the required voltage range of 1 kV to 1.6 kV. Additionally, it was determined that using a secondary electron detector was optimal for such observations, as it provided a sufficiently strong signal even at relatively low voltages. Conversely, when using a backscattered electron detector, it was more beneficial to use coated samples to achieve a sufficient signal at higher voltages. This study brings new knowledge that will facilitate further research and applications of electron microscopy in the study of other wood species or wood-based materials.
Zobrazit více v PubMed
Sulaiman M.S., Wahab R., Mokhtar N., Edin T., Razali S.M., Ghani R.S.M. Scanning Electron MicroscopyStudy of the Effectiveness Oil Heat Treatment on 10-years old teak wood in ground contact test. Borneo J. Sci. Technol. 2021;3:24–32. doi: 10.3570/bjost.2021.3.2-05. DOI
Adobes-Vidal M., Frey M., Keplinger T. Atomic force microscopy imaging of delignified secondary cell walls in liquid conditions facilitates interpretation of wood ultrastructure. J. Struct. Biol. 2020;211:107532. doi: 10.1016/j.jsb.2020.107532. PubMed DOI
Mohammed A., Abdullah A. Scanning electron microscopy (SEM): A review; Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX; Băile Govora, Romania. 8–10 November 2018; pp. 7–9.
Wang C., Wang N., Liu S., Zhang H., Zhi Z. Investigation of microfibril angle of flax fibers using X-ray diffraction and scanning electron microscopy. J. Nat. Fibers. 2020;17:1001–1010. doi: 10.1080/15440478.2018.1546639. DOI
Toumpanaki E., Shah D.U., Eichhorn S.J. Beyond what meets the eye: Imaging and imagining wood mechanical–structural properties. Adv. Mater. 2021;33:2001613. doi: 10.1002/adma.202001613. PubMed DOI PMC
Panshin A.J., Zeeuw C. Textbook of Wood Technology: Structure, Identification, Properties, and Uses of the Commercial Woods of the United States and Canada. 4th ed. McGraw-Hill; New York, NY, USA: 1980. 736p. (McGraw-Hill Series in Forest Resources).
Calovi M., Rossi S. Impact of high concentrations of cellulose fibers on the morphology, durability and protective properties of wood paint. Coatings. 2023;13:721. doi: 10.3390/coatings13040721. DOI
Xu X., Garemark J., Ram F., Wang Z., Li Y. Metallic Wood through Deep-Cell-Wall Metallization: Synthesis and Applications. ACS Appl. Mater. Interfaces. 2024;16:22433–22442. doi: 10.1021/acsami.4c02779. PubMed DOI PMC
Lu X., Lagnoni M., Bertei A., Das S., Owen R.E., Li Q., O’Regan K., Wade A., Finegan D.P., Kendrick E., et al. Multiscale dynamics of charging and plating in graphite electrodes coupling operando microscopy and phase-field modelling. Nat. Commun. 2023;14:5127. doi: 10.1038/s41467-023-40574-6. PubMed DOI PMC
Kwon H.M., Kim N.H., Hong S.J., Sim W.H., Lee M., Son S., Bae K.Y., Kim J.Y., Youn D.H., Kim Y.S., et al. Uniform Li-metal growth on renewable lignin with lithiophilic functional groups derived from wood for high-performance Li-metal batteries. Surf. Interfaces. 2024;44:103643. doi: 10.1016/j.surfin.2023.103643. DOI
Hasan K.F., Champramary S., Al Hasan K.N., Indic B., Ahmed T., Pervez M.N., Horváth P.G., Bak M., Sándor B., Hofmann T., et al. Eco-friendly production of cellulosic fibers from Scots pine wood and sustainable nanosilver modification: A path toward sustainability. Results Eng. 2023;19:101244. doi: 10.1016/j.rineng.2023.101244. DOI
Wang X., Zhao W., Zhang Y., Shi J., Shan S., Cai L. Exploring wood micromechanical structure: Impact of microfibril angle and crystallinity on cell wall strength. J. Build. Eng. 2024;90:109452. doi: 10.1016/j.jobe.2024.109452. DOI
Thiel B.L., Toth M. Secondary electron contrast in low-vacuum/environmental scanning electron microscopy of dielectrics. J. Appl. Phys. 2005;97:051101. doi: 10.1063/1.1861149. DOI
Feria-Reyes R., Ramírez-Cruz S.O., Ruiz-Aquino F., Robledo-Taboada L.H., Sánchez-Medina M.A., Mijangos-Ricárdez O.F., Gabriel-Parra R., Suárez-Mota M.E., Puc-Kauil R., Porcallo-Vargas J. Pine bark as a potential source of condensed tannin: Analysis through fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) Forests. 2023;14:1433. doi: 10.3390/f14071433. DOI
Kamdem D.P., Zhang J., Freeman M.H. The effect of post-steaming on copper naphthenate-treated southern pine. Wood Fiber Sci. 1998;56:210–217.
Sader K., Stopps M., Lesley J., Calder P., Rosenthal B. Cryomicroscopy of radiation sensitive specimens on unmodified graphene sheets: Reduction of electron-optical effects of charging. J. Struct. Biol. 2013;183:531–536. doi: 10.1016/j.jsb.2013.04.014. PubMed DOI PMC
Kitin P., Hermanson J.C., Abe H., Nakaba S., Funada R. Light microscopy of wood using sanded surface instead of slides. IAWA J. 2021;42:322–335. doi: 10.1163/22941932-bja10061. DOI
Akahori H., Yoshida H., Amakawa Y., Takahashi I., Yamada M. Studies on the SEM examination of uncoated non-conductive specimens prepared by plasma-ion shower method. J. Electron. Microsc. 1997;46:457–466. doi: 10.1093/oxfordjournals.jmicro.a023543. PubMed DOI
Bozzola J.J., dee Russell L. Electron Microscopy: Principles and Techniques for Biologists. 2nd ed. Jones and Bartlett; Sudbury, MA, USA: 1999. 670p.
Meyer E., Hans J.H., Bennewitz R. Scanning Probe Microscopy: The Lab on a Tip. Springer; Berlin, Germany: New York, NY, USA: 2004. 210p. Advanced Texts in Physics.
Malac M., Hettler S., Hayashida M., Kano E., Egerton R.F., Beleggia M. Phase plates in the transmission electron microscope: Operating principles and applications. Microscopy. 2021;70:75–115. doi: 10.1093/jmicro/dfaa070. PubMed DOI
Reimer L., Kohl H. Transmission Electron Microscopy: Physics of Image Formation. Springer; New York, NY, USA: 2008. 590p. DOI
Kaegi R., Holzer L. Transfer of a single particle for continued ESEM and TEM analysis. Atmosph. Environ. 2003;37:4353–4359. doi: 10.1016/S1352-2310(03)00574-0. DOI
Merela M., Thaler N., Balzano A., Plavčak D. Optimal Surface Preparation for Wood Anatomy Research of Invasive Species by Scanning Electron Microscopy. Wood Ind./Drv. Ind. 2020;71:117–127. doi: 10.5552/drvind.2020.1958. DOI
Stokes D.J., Mugnier J.Y., Clarke C.J. Static and dynamic experiments in cryo-electron microscopy: Comparative observations using high-vacuum, low-voltage and low-vacuum SEM. J. Microsc. 2004;213:198–204. doi: 10.1111/j.1365-2818.2004.01282.x. PubMed DOI
Frank L., Mikmeková E., Lejeune M. Treatment of surfaces with low-energy electrons. Appl. Surf. Sci. 2017;407:105–108. doi: 10.1016/j.apsusc.2017.02.131. DOI
Zobačová J., Frank L. Specimen charging and detection of signal from non-conductors in a cathode lens-equipped scanning electron microscope. Scanning J. Scanning Microsc. 2003;25:150–156. doi: 10.1002/sca.4950250307. PubMed DOI
Thermo Fisher Scientific—CZ; [(accessed on 27 July 2024)]. Environmental Scanning Electron Microscope|Quattro ESEM. Available online: https://www.thermofisher.com/cz/en/home/electron-microscopy/products/scanning-electron-microscopes/quattro-esem.html.html#em-contact-form.
Mamoňová M. Elektrónová Mikroskopia a Štúdium Drevných Štruktúr (Electron Microscopy and the Study of Wood Structures) 1st ed. Technical University in Zvolen; Zvolen, Slovakia: 2018. 94p.
Tokareva E.N., Fardim P., Pranovich A.V., Fagerholm H.P., Daniel G., Holmbom B. Imaging of wood tissue by ToF-SIMS: Critical evaluation and development of sample preparation techniques. Appl. Surf. Sci. 2007;253:7569–7577. doi: 10.1016/j.apsusc.2007.03.059. DOI
Jansen S., Kitin P., De Pauw H., Idris M., Beeckman H., Smets E. Preparation of wood specimens for transmitted light microscopy and scanning electron microscopy. Belg. J. Bot. 1998;131:41–49.
Balzano A., Merela M., Čufar K. Scanning Electron Microscopy Protocol for Studying Anatomy of Highly Degraded Waterlogged Archaeological Wood. Forests. 2022;13:161. doi: 10.3390/f13020161. DOI
Shan X., Li L., Wang L., Chen Z., Wang X. Regulation of wood porous structure and construction of reduced graphene oxide@ wood derived carbon conducting collector. Ind. Crops Prod. 2024;219:119069. doi: 10.1016/j.indcrop.2024.119069. DOI
de Silveira G., Forsberg P., Conners T.E. Surface Analysis of Paper. CRC Press; Boca Raton, FL, USA: 2020. Scanning electron microscopy: A tool for the analysis of wood pulp fibers and paper; pp. 41–71. DOI
Wentzel M., Koddenberg T., Militz H. Anatomical characteristics of thermally modified Eucalyptus nitens wood in an open and closed reactor system. Wood Mater. Sci. Eng. 2019;15:223–228. doi: 10.1080/17480272.2019.1572649. DOI
Setyawan E., Napitupulu R., Djiwo S., Djoko P., Nugroho A. A Preliminary Study of Scanning Electron Microscopy (SEM) for Characterization of The Wood Pellet Process of Sengon Wood (Albizia chinensis); Proceedings of the 2nd Universitas Kuningan International Conference on System Engineering, and Technology, UNISET 2021; Kuningan, Indonesia. 2 December 2021; DOI
Chen C., Kuang Y., Zhu S., Burgert I., Keplinger T., Gong A., Li T., Berglund L., Eichhorn S.J., Hu L. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 2020;5:642–666. doi: 10.1038/s41578-020-0195-z. DOI
Shan X., Wang L., Wu J., Wang X. Preparation of Wood-based Graphene Material and Its Three-dimensional Electrical Conductivity. J. Northeast For. Univ. 2021;50:123–130. doi: 10.13759/j.cnki.dlxb.2022.01.019. DOI
van Huis M.A., Friedrich H. Electron Microscopy Techniques. In: De Mello Donega C., editor. Nanoparticles. Springer; Cham, Switzerland: 2024. DOI
Müller A., Schmidt D., Albrecht J.P., Rieckert L., Otto M., Galicia Garcia L.E., Fabig G., Solimena M., Weigert M. Modular segmentation, spatial analysis and visualization of volume electron microscopy datasets. Nat. Protoc. 2024;19:1436–1466. doi: 10.1038/s41596-024-00957-5. PubMed DOI