Genetic and species rearrangements in microbial consortia impact biodegradation potential
Language English Country Great Britain, England Media print
Document type Journal Article
Grant support
University of Seville from the Ministry of Universities
CLU-2018-04
Regional Government of Castilla y León
European NextGenerationEU program
University of Salamanca
101090267
EU Horizon Europe program
ProyExcel_00358
Programa de Excelencia de la Junta de Andalucía
V Plan Propio de investigación of the University Pablo de Olavide
PubMed
39861970
PubMed Central
PMC11892951
DOI
10.1093/ismejo/wraf014
PII: 7979093
Knihovny.cz E-resources
- Keywords
- biodegradation, consortia evolution, emerging pollutants, ibuprofen, microbial ecology,
- MeSH
- Bacteria * genetics metabolism classification MeSH
- Biodegradation, Environmental MeSH
- Phylogeny MeSH
- Ibuprofen * metabolism MeSH
- Microbial Consortia * genetics MeSH
- Wastewater microbiology MeSH
- Plasmids genetics MeSH
- Gene Transfer, Horizontal MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Ibuprofen * MeSH
- Wastewater MeSH
Genomic reorganisation between species and horizontal gene transfer have been considered the most important mechanism of biological adaptation under selective pressure. Still, the impact of mobile genes in microbial ecology is far from being completely understood. Here we present the collection and characterisation of microbial consortia enriched from environments contaminated with emerging pollutants, such as non-steroidal anti-inflammatory drugs. We have obtained and further enriched two ibuprofen-degrading microbial consortia from two unrelated wastewater treatment plants. We have also studied their ability to degrade the drug and the dynamics of the re-organisations of the genetic information responsible for its biodegradation among the species within the consortium. Our results show that genomic reorganisation within microorganisms and species rearrangements occur rapidly and efficiently during the selection process, which may be facilitated by plasmids and/or transposable elements located within the sequences. We show the evolution of at least two different plasmid backbones on samples from different locations, showing rearrangements of genomic information, including genes encoding activities for IBU degradation. As a result, we found variations in the expression pattern of the consortia after evolution under selective pressure, as an adaptation process to the new conditions. This work provides evidence for changes in the metagenomes of microbial communities that allow adaptation under a selective constraint -ibuprofen as a sole carbon source- and represents a step forward in knowledge that can inspire future biotechnological developments for drug bioremediation.
Departamento de Microbiología y Genética Universidad de Salamanca 37007 Salamanca Spain
Institute for Agrobiotechnology Research Universidad de Salamanca 37185 Salamanca Spain
See more in PubMed
Shaffer JP, Nothias L-F, Thompson LR et al. Standardized multi-omics of Earth’s microbiomes reveals microbial and metabolite diversity. Nat Microbiol 2022;7:2128–50. 10.1038/s41564-022-01266-x PubMed DOI PMC
Zhang Z, Peng H, Yang D et al. Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae. Nat Commun 2022;13:5360. 10.1038/s41467-022-32903-y PubMed DOI PMC
He Y, Deng X, Jiang L et al. Current advances, challenges and strategies for enhancing the biodegradation of plastic waste. Sci Total Environ 2024;906:167850. 10.1016/j.scitotenv.2023.167850 PubMed DOI
Dong X, Greening C, Rattray JE et al. Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nat Commun 2019;10:1816. 10.1038/s41467-019-09747-0 PubMed DOI PMC
Chen S-C, Sun G-X, Rosen BP et al. Recurrent horizontal transfer of arsenite methyltransferase genes facilitated adaptation of life to arsenic. Sci Rep 2017;7:7741. 10.1038/s41598-017-08313-2 PubMed DOI PMC
Arnold BJ, Huang I-T, Hanage WP. Horizontal gene transfer and adaptive evolution in bacteria. Nat Rev Microbiol 2022;20:206–18. 10.1038/s41579-021-00650-4 PubMed DOI
Saati-Santamaría Z. Global map of specialized metabolites encoded in prokaryotic plasmids. Microbiol Spectr 2023;11:e01523–3. 10.1128/spectrum.01523-23 PubMed DOI PMC
Rodriguez-R LM, Conrad RE, Viver T et al. An ANI gap within bacterial species that advances the definitions of intra-species units. MBio 2023;15:e02696–23. 10.1128/mbio.02696-23 PubMed DOI PMC
Brito IL. Examining horizontal gene transfer in microbial communities. Nat Rev Microbiol 2021;19:442–53. 10.1038/s41579-021-00534-7 PubMed DOI
Chevallereau A, Pons BJ, van Houte S et al. Interactions between bacterial and phage communities in natural environments. Nat Rev Microbiol 2022;20:49–62. 10.1038/s41579-021-00602-y PubMed DOI
Douglas GM, Shapiro BJ. Genic selection within prokaryotic pangenomes. Genome Biol Evol 2021;13:evab234. 10.1093/gbe/evab234 PubMed DOI PMC
Van Rossum T, Ferretti P, Maistrenko OM et al. Diversity within species: interpreting strains in microbiomes. Nat Rev Microbiol 2020;18:491–506. 10.1038/s41579-020-0368-1 PubMed DOI PMC
Zheng X, Jahn MT, Sun M et al. Organochlorine contamination enriches virus-encoded metabolism and pesticide degradation associated auxiliary genes in soil microbiomes. ISME J 2022;16:1397–408. 10.1038/s41396-022-01188-w PubMed DOI PMC
Dennis JJ. The evolution of IncP catabolic plasmids. Curr Op Biotec 2005;16:291–8. 10.1016/j.copbio.2005.04.002 PubMed DOI
Wyndham RC, Cashore AE, Nakatsu CH et al. Catabolic transposons. Biodegradation 1994;5:323–42. 10.1007/BF00696468 PubMed DOI
Yang Y, Ok YS, Kim K-H et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review. Sci Total Environ 2017;596-597:303–20. 10.1016/j.scitotenv.2017.04.102 PubMed DOI
Żur J, Piński A, Marchlewicz A et al. Organic micropollutants paracetamol and ibuprofen—toxicity, biodegradation, and genetic background of their utilization by bacteria. Environ Sci Pollut Res 2018;25:21498–524. 10.1007/s11356-018-2517-x PubMed DOI PMC
Silori R, Shrivastava V, Singh A et al. Global groundwater vulnerability for pharmaceutical and personal care products (PPCPs): the scenario of second decade of 21st century. J Environ Manag 2022;320:115703. 10.1016/j.jenvman.2022.115703 PubMed DOI
Trombini C, Blasco J, Hampel M. Ibuprofen and diclofenac: Effects on freshwater and marine aquatic organisms – Are they at risk? In: Gómez-Oliván, L.M. (ed.), Non-Steroidal Anti-Inflammatory Drugs in Water. The Handbook of Environmental Chemistry, vol. 96. Cham: Springer. 10.1007/698_2020_548 DOI
Rastogi A, Tiwari MK, Ghangrekar MM. A review on environmental occurrence, toxicity and microbial degradation of non-steroidal anti-inflammatory drugs (NSAIDs). J Environ Manag 2021;300:113694. 10.1016/j.jenvman.2021.113694 PubMed DOI
Jan-Roblero J, Cruz-Maya JA. Ibuprofen: toxicology and biodegradation of an emerging contaminant. Molecules 2023;28:2097. 10.3390/molecules28052097 PubMed DOI PMC
Murdoch RW, Hay AG. Genetic and chemical characterization of ibuprofen degradation by Sphingomonas Ibu-2. Microbiology 2013;159:621–32. 10.1099/mic.0.062273-0 PubMed DOI PMC
Aulestia M, Flores A, Mangas EL et al. Isolation and genomic characterization of the ibuprofen-degrading bacterium Sphingomonas strain MPO218. Environ Microbiol 2021;23:267–80. 10.1111/1462-2920.15309 PubMed DOI
Aguilar-Romero I, De la Torre-Zúñiga J, Quesada JM et al. Effluent decontamination by the ibuprofen-mineralizing strain, Sphingopyxis granuli RW412: metabolic processes. Environ Pollut 2021;274:116536. 10.1016/j.envpol.2021.116536 PubMed DOI
Murdoch RW, Hay AG. Formation of catechols via removal of acid side chains from ibuprofen and related aromatic acids. Appl Environ Microbiol 2005;71:6121–5. 10.1128/AEM.71.10.6121-6125.2005 PubMed DOI PMC
Aulestia M, Flores A, Acosta-Jurado S et al. Genetic characterization of the ibuprofen-degradative pathway of Rhizorhabdus wittichii MPO218. Appl Environ Microbiol 2022;88:e00388–22. 10.1128/aem.00388-22 PubMed DOI PMC
Murdoch RW, Hay AG. The biotransformation of ibuprofen to trihydroxyibuprofen in activated sludge and by Variovorax Ibu-1. Biodegradation 2015;26:105–13. 10.1007/s10532-015-9719-4 PubMed DOI
Chen Y, Rosazza JPN. Microbial transformation of ibuprofen by a Nocardia species. Appl Environ Microbiol 1994;60:1292–6. 10.1128/aem.60.4.1292-1296.1994 PubMed DOI PMC
Almeida B, Vaz-Moreira I, Schumann P et al. Patulibacter medicamentivorans sp. nov., isolated from activated sludge of a wastewater treatment plant. Int J Sys Evol Microbiol 2013;63:2588–93. 10.1099/ijs.0.047522-0 PubMed DOI
Chopra S, Kumar D. Characteristics and growth kinetics of biomass of Citrobacter freundii strains PYI-2 and Citrobacter portucalensis strain YPI-2 during the biodegradation of ibuprofen. Int Microbiol 2022;25:615–28. 10.1007/s10123-022-00248-7 PubMed DOI
Marchlewicz A, Domaradzka D, Guzik U et al. Bacillus thuringiensis B1(2015b) is a gram-positive bacteria able to degrade naproxen and ibuprofen. Water Air Soil Pollut 2016;227:197. 10.1007/s11270-016-2893-0 PubMed DOI PMC
Zhang L, Hu J, Zhu R et al. Degradation of paracetamol by pure bacterial cultures and their microbial consortium. App Microbiol Biotechnol 2013;97:3687–98. 10.1007/s00253-012-4170-5 PubMed DOI
Cavaliere M, Feng S, Soyer OS et al. Cooperation in microbial communities and their biotechnological applications. Environ Microbiol 2017;19:2949–63. 10.1111/1462-2920.13767 PubMed DOI PMC
Kang D, Jacquiod S, Herschend J et al. Construction of simplified microbial consortia to degrade recalcitrant materials based on enrichment and dilution-to-extinction cultures. Front Microbiol 2020;10:3010. 10.3389/fmicb.2019.03010 PubMed DOI PMC
Zachar I, Boza G. The evolution of microbial facilitation: sociogenesis, symbiogenesis, and transition in individuality. Front Ecol Evol 2022;10:798045. 10.3389/fevo.2022.798045 DOI
Marchlewicz A, Guzik U, Hupert-Kocurek K et al. Evaluation of the defined bacterial consortium efficacy in the biodegradation of NSAIDs. Molecules 2023;28:2185. 10.3390/molecules28052185 PubMed DOI PMC
Chen R, Huang J, Li X et al. Functional characterization of an efficient ibuprofen-mineralizing bacterial consortium. J Hazard Mater 2023;447:130751. 10.1016/j.jhazmat.2023.130751 PubMed DOI
Suleiman M, Demaria F, Zimmardi C et al. Analyzing microbial communities and their biodegradation of multiple pharmaceuticals in membrane bioreactors. Appl Microbiol Biotechnol 2023;107:5545–54. 10.1007/s00253-023-12677-z PubMed DOI PMC
Navrozidou E, Melidis P, Ntougias S. Biodegradation aspects of ibuprofen and identification of ibuprofen-degrading microbiota in an immobilized cell bioreactor. Environl Sci Poll Res 2019;26:14238–49. 10.1007/s11356-019-04771-5 PubMed DOI
Ben Said S, Tecon R, Borer B et al. The engineering of spatially linked microbial consortia – potential and perspectives. Curr Opin Biotechnol 2020;62:137–45. 10.1016/j.copbio.2019.09.015 PubMed DOI PMC
Rapp KM, Jenkins JP, Betenbaugh MJ. Partners for life: building microbial consortia for the future. Curr Opin Biotechnol 2020;66:292–300. 10.1016/j.copbio.2020.10.001 PubMed DOI
Aguilar-Romero I, Madrid F, Villaverde J et al. Ibuprofen-enhanced biodegradation in solution and sewage sludge by a mineralizing microbial consortium. Shift in associated bacterial communities. J Hazard Mater 2024;464:132970. 10.1016/j.jhazmat.2023.132970 PubMed DOI
Hernáez MJ, Reineke W, Santero E. Genetic analysis of biodegradation of tetralin by a Sphingomonas strain. Appl Environ Microbiol 1999;65:1806–10. 10.1128/AEM.65.4.1806-1810.1999 PubMed DOI PMC
Wickham H. ggplot2. WIREs Computational Statistics 2011;3:180–5. 10.1002/wics.147 DOI
Saati-Santamaría Z, González-Dominici LI, Jiménez-Gómez A et al. Revealing new bacterial functions in the plant rhizoplane. 2023. Preprint available at ResearchSquare. 10.21203/rs.3.rs-3438462/v1 DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20. 10.1093/bioinformatics/btu170 PubMed DOI PMC
De Coster W, Rademakers R. NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics 2023;39:btad311. 10.1093/bioinformatics/btad311 PubMed DOI PMC
Kolmogorov M, Bickhart DM, Behsaz B et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods 2020;17:1103–10. 10.1038/s41592-020-00971-x PubMed DOI PMC
Li H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 2021;37:4572–4. 10.1093/bioinformatics/btab705 PubMed DOI PMC
Vaser R, Sović I, Nagarajan N et al. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017;27:737–46. 10.1101/gr.214270.116 PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods 2012;9:357–9. 10.1038/nmeth.1923 PubMed DOI PMC
Walker BJ, Abeel T, Shea T et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014;9:e112963. 10.1371/journal.pone.0112963 PubMed DOI PMC
Kang DD, Li F, Kirton E et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019;7:e7359. 10.7717/peerj.7359 PubMed DOI PMC
Alneberg J, Bjarnason BS, de Bruijn I et al. Binning metagenomic contigs by coverage and composition. Nat Methods 2014;11:1144–6. 10.1038/nmeth.3103 PubMed DOI
Sieber CMK, Probst AJ, Sharrar A et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol 2018;3:836–43. 10.1038/s41564-018-0171-1 PubMed DOI PMC
Tian R, Zhou J, Imanian B. PlasmidHunter: accurate and fast prediction of plasmid sequences using gene content profile and machine learning. Brief Bioinform 2024;25:bbae322. 10.1093/bib/bbae322 PubMed DOI PMC
Callahan BJ, McMurdie PJ, Rosen MJ et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 2016;13:581–3. 10.1038/nmeth.3869 PubMed DOI PMC
Bolyen E, Rideout JR, Dillon MR et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 2019;37:852–7. 10.1038/s41587-019-0209-9 PubMed DOI PMC
Wang Q, Cole JR. Updated RDP taxonomy and RDP classifier for more accurate taxonomic classification. Microbiol Resour Announc 2024;13:e01063–23. 10.1128/mra.01063-23 PubMed DOI PMC
Saati-Santamaría Z, Vicentefranqueira R, Kolařik M et al. Microbiome specificity and fluxes between two distant plant taxa in Iberian forests. Environ Microbiome 2023;18:64. 10.1186/s40793-023-00520-x PubMed DOI PMC
Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2003:2.3.1–2.3.22. 10.1002/0471250953.bi0203s00 PubMed DOI
Kumar S, Stecher G, Li M et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35:1547–9. 10.1093/molbev/msy096 PubMed DOI PMC
Letunic I, Bork P. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res 2024;52:W78–82. 10.1093/nar/gkae268 PubMed DOI PMC
Parks DH, Imelfort M, Skennerton CT et al. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25:1043–55. 10.1101/gr.186072.114 PubMed DOI PMC
Simão FA, Waterhouse RM, Ioannidis P et al. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015;31:3210–2. 10.1093/bioinformatics/btv351 PubMed DOI
Hyatt D, Chen G-L, LoCascio PF et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11:119. 10.1186/1471-2105-11-119 PubMed DOI PMC
Na S-I, Kim YO, Yoon S-H et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018;56:280–5. 10.1007/s12275-018-8014-6 PubMed DOI
Chaumeil P-A, Mussig AJ, Hugenholtz P et al. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 2022;38:5315–6. 10.1093/bioinformatics/btac672 PubMed DOI PMC
Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019;10:2182. 10.1038/s41467-019-10210-3 PubMed DOI PMC
Ruscheweyh H-J, Milanese A, Paoli L et al. Cultivation-independent genomes greatly expand taxonomic-profiling capabilities of mOTUs across various environments. Microbiome 2022;10:212. 10.1186/s40168-022-01410-z PubMed DOI PMC
Altschul SF, Gish W, Miller W et al. Basic local alignment search tool. J Mol Biol 1990;215:403–10. 10.1016/S0022-2836(05)80360-2 PubMed DOI
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015;12:59–60. 10.1038/nmeth.3176 PubMed DOI
Nayfach S, Roux S, Seshadri R et al. A genomic catalog of Earth’s microbiomes. Nat Biotechnol 2021;39:499–509. 10.1038/s41587-020-0718-6 PubMed DOI PMC
Singleton CM, Petriglieri F, Kristensen JM et al. Connecting structure to function with the recovery of over 1000 high-quality metagenome-assembled genomes from activated sludge using long-read sequencing. Nat Commun 2021;12:2009. 10.1038/s41467-021-22203-2 PubMed DOI PMC
Camargo AP, Call L, Roux S et al. IMG/PR: a database of plasmids from genomes and metagenomes with rich annotations and metadata. Nucleic Acids Res 2024;52:D164–73. 10.1093/nar/gkad964 PubMed DOI PMC
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–9. 10.1093/bioinformatics/btu153 PubMed DOI
Branger M, Leclercq SO. GenoFig: a user-friendly application for the visualization and comparison of genomic regions. Bioinformatics 2024;40:btae372. 10.1093/bioinformatics/btae372 PubMed DOI PMC
Yuste L, Hervás AB, Canosa I et al. Growth phase-dependent expression of the pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray. EnvironMicrobiol 2006;8:165–77. 10.1111/j.1462-2920.2005.00890.x PubMed DOI
Ramiro-Martínez P, de Quinto I, Gama JA et al. Universal rules govern plasmid copy number. Preprint available at bioRxiv. 2024; 2024.10.04.616648.
Wongkittichote P, Ah Mew N, Chapman KA. Propionyl-CoA carboxylase – a review. Mol Genet Metab 2017;122:145–52. 10.1016/j.ymgme.2017.10.002 PubMed DOI PMC
Ma X, Liang B, Qi M et al. Novel pathway for chloramphenicol catabolism in the activated sludge bacterial isolate Sphingobium sp. CAP-1. Environ Sci Technol 2020;54:7591–600. 10.1021/acs.est.9b07324 PubMed DOI
El-Kurdi N, El-Shatoury S, ElBaghdady K et al. Biodegradation of polystyrene nanoplastics by Achromobacter xylosoxidans M9 offers a mealworm gut-derived solution for plastic pollution. Arch Microbiol 2024;206:238. 10.1007/s00203-024-03947-z PubMed DOI PMC
Marzec-Grządziel A, Gałązka A. Sequencing of the whole genome of a bacterium of the genus Achromobacter reveals its potential for xenobiotics biodegradation. Agriculture 2023;13:1519. 10.3390/agriculture13081519 DOI
Arulazhagan P, Vasudevan N. Biodegradation of polycyclic aromatic hydrocarbons by a halotolerant bacterial strain Ochrobactrum sp. VA1. Mar Pollut Bull 2011;62:388–94. 10.1016/j.marpolbul.2010.09.020 PubMed DOI
El-Sayed WS, Ibrahim MK, Abu-Shady M et al. Isolation and identification of a novel strain of the genus Ochrobactrum with phenol-degrading activity. J Biosci Bioeng 2003;96:310–2. 10.1016/S1389-1723(03)80200-1 PubMed DOI
Ghosal D, Chakraborty J, Khara P et al. Degradation of phenanthrene via meta-cleavage of 2-hydroxy-1-naphthoic acid by Ochrobactrum sp. strain PWTJD. FEMS Microbiol Lett 2010;313:103–10. 10.1111/j.1574-6968.2010.02129.x PubMed DOI
Kowalczyk A, Chyc M, Ryszka P et al. Achromobacter xylosoxidans as a new microorganism strain colonizing high-density polyethylene as a key step to its biodegradation. Environ Sci Pollut Res Int 2016;23:11349–56. 10.1007/s11356-016-6563-y PubMed DOI PMC
Muhammad JB, Jagaba AH, Yusuf F et al. Achromobacter xylosoxidans bacteria isolated from contaminated agricultural environment for a sustainable 2,4-dichlorophenoxyacetic acid herbicide degradation: an experimental study. Case Stud Chem Environ Eng 2024;9:100604. 10.1016/j.cscee.2023.100604 DOI
Zhang B, Xu W, Ma Y et al. Effects of bioaugmentation by isolated Achromobacter xylosoxidans BP1 on PAHs degradation and microbial community in contaminated soil. J Environ Manag 2023;334:117491. 10.1016/j.jenvman.2023.117491 PubMed DOI
Vélez JMB, Martínez JG, Ospina JT et al. Bioremediation potential of pseudomonas genus isolates from residual water, capable of tolerating lead through mechanisms of exopolysaccharide production and biosorption. Biotechnol Rep 2021;32:e00685. 10.1016/j.btre.2021.e00685 PubMed DOI PMC
Mahgoub SA, Qattan SYA, Salem SS et al. Characterization and biodegradation of phenol by Pseudomonas aeruginosa and Klebsiella variicola strains isolated from sewage sludge and their effect on soybean seeds germination. Molecules 2023;28:1203. 10.3390/molecules28031203 PubMed DOI PMC
Lara-Moreno A, Costa MC, Vargas-Villagomez A et al. New bacterial strains for ibuprofen biodegradation: drug removal, transformation, and potential catabolic genes. Environ Microbiol Rep 2024;16:e13320. 10.1111/1758-2229.13320 PubMed DOI PMC
Pápai M, Benedek T, Táncsics A et al. Selective enrichment, identification, and isolation of diclofenac, ibuprofen, and carbamazepine degrading bacteria from a groundwater biofilm. Environ Sci Pollut Res 2023;30:44518–35. 10.1007/s11356-022-24975-6 PubMed DOI PMC
Haigler BE, Johnson GR, Suen WC et al. Biochemical and genetic evidence for meta-ring cleavage of 2,4, 5-trihydroxytoluene in Burkholderia sp. strain DNT. J Bacteriol 1999;181:965–72. 10.1128/JB.181.3.965-972.1999 PubMed DOI PMC
Snellinx Z, Taghavi S, Vangronsveld J et al. Microbial consortia that degrade 2,4-DNT by interspecies metabolism: isolation and characterisation. Biodegradation 2003;14:19–29. 10.1023/A:1023539104747 PubMed DOI
Peng X, Wang S, Wang M et al. Metabolic interdependencies in thermophilic communities are revealed using co-occurrence and complementarity networks. Nat Commun 2024;15:8166. 10.1038/s41467-024-52532-x PubMed DOI PMC
Morris JJ, Lenski RE, Zinser ER. The black queen hypothesis: evolution of dependencies through adaptive gene loss. MBio 2012;3:e00036–12. 10.1128/mBio.00036-12 PubMed DOI PMC
Bagheri B, Bauer FF, Cardinali G et al. Ecological interactions are a primary driver of population dynamics in wine yeast microbiota during fermentation. Sci Rep 2020;10:4911. 10.1038/s41598-020-61690-z PubMed DOI PMC
Crocker K, Lee KK, Chakraverti-Wuerthwein M et al. Environmentally dependent interactions shape patterns in gene content across natural microbiomes. Nat Microbiol 2024;9:2022–37. 10.1038/s41564-024-01752-4 PubMed DOI PMC
Chen X, Wang M, Luo L et al. The evolution of autonomy from two cooperative specialists in fluctuating environments. Proc Natl Acad Sci USA 2024;121:e2317182121. 10.1073/pnas.2317182121 PubMed DOI PMC
Nagata Y, Kato H, Ohtsubo Y et al. Lessons from the genomes of lindane-degrading sphingomonads. Environ Microbiol Rep 2019;11:630–44. 10.1111/1758-2229.12762 PubMed DOI
Santos JL, Aparicio I, Alonso E. Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain). Environ Int 2007;33:596–601. 10.1016/j.envint.2006.09.014 PubMed DOI
Canosa I, Sánchez-Romero JM, Yuste L et al. A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the pseudomonas oleovorans alkane degradation pathway. Mol Microbiol 2000;35:791–9. 10.1046/j.1365-2958.2000.01751.x PubMed DOI
Madhushani A, del Peso-Santos T, Moreno R et al. Transcriptional and translational control through the 5′-leader region of the dmpR master regulatory gene of phenol metabolism. Environ Microbiol 2015;17:119–33. 10.1111/1462-2920.12511 PubMed DOI
Schell MA, Wender PE. Identification of the nahR gene product and nucleotide sequences required for its activation of the Sal operon. J Bacteriol 1986;166:9–14. 10.1128/jb.166.1.9-14.1986 PubMed DOI PMC