• This record comes from PubMed

Genetic and species rearrangements in microbial consortia impact biodegradation potential

. 2025 Jan 02 ; 19 (1) : .

Language English Country Great Britain, England Media print

Document type Journal Article

Grant support
University of Seville from the Ministry of Universities
CLU-2018-04 Regional Government of Castilla y León
European NextGenerationEU program
University of Salamanca
101090267 EU Horizon Europe program
ProyExcel_00358 Programa de Excelencia de la Junta de Andalucía
V Plan Propio de investigación of the University Pablo de Olavide

Genomic reorganisation between species and horizontal gene transfer have been considered the most important mechanism of biological adaptation under selective pressure. Still, the impact of mobile genes in microbial ecology is far from being completely understood. Here we present the collection and characterisation of microbial consortia enriched from environments contaminated with emerging pollutants, such as non-steroidal anti-inflammatory drugs. We have obtained and further enriched two ibuprofen-degrading microbial consortia from two unrelated wastewater treatment plants. We have also studied their ability to degrade the drug and the dynamics of the re-organisations of the genetic information responsible for its biodegradation among the species within the consortium. Our results show that genomic reorganisation within microorganisms and species rearrangements occur rapidly and efficiently during the selection process, which may be facilitated by plasmids and/or transposable elements located within the sequences. We show the evolution of at least two different plasmid backbones on samples from different locations, showing rearrangements of genomic information, including genes encoding activities for IBU degradation. As a result, we found variations in the expression pattern of the consortia after evolution under selective pressure, as an adaptation process to the new conditions. This work provides evidence for changes in the metagenomes of microbial communities that allow adaptation under a selective constraint -ibuprofen as a sole carbon source- and represents a step forward in knowledge that can inspire future biotechnological developments for drug bioremediation.

See more in PubMed

Shaffer  JP, Nothias  L-F, Thompson  LR  et al.  Standardized multi-omics of Earth’s microbiomes reveals microbial and metabolite diversity. Nat Microbiol  2022;7:2128–50. 10.1038/s41564-022-01266-x PubMed DOI PMC

Zhang  Z, Peng  H, Yang  D  et al.  Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae. Nat Commun  2022;13:5360. 10.1038/s41467-022-32903-y PubMed DOI PMC

He  Y, Deng  X, Jiang  L  et al.  Current advances, challenges and strategies for enhancing the biodegradation of plastic waste. Sci Total Environ  2024;906:167850. 10.1016/j.scitotenv.2023.167850 PubMed DOI

Dong  X, Greening  C, Rattray  JE  et al.  Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nat Commun  2019;10:1816. 10.1038/s41467-019-09747-0 PubMed DOI PMC

Chen  S-C, Sun  G-X, Rosen  BP  et al.  Recurrent horizontal transfer of arsenite methyltransferase genes facilitated adaptation of life to arsenic. Sci Rep  2017;7:7741. 10.1038/s41598-017-08313-2 PubMed DOI PMC

Arnold  BJ, Huang  I-T, Hanage  WP. Horizontal gene transfer and adaptive evolution in bacteria. Nat Rev Microbiol  2022;20:206–18. 10.1038/s41579-021-00650-4 PubMed DOI

Saati-Santamaría  Z. Global map of specialized metabolites encoded in prokaryotic plasmids. Microbiol Spectr  2023;11:e01523–3. 10.1128/spectrum.01523-23 PubMed DOI PMC

Rodriguez-R  LM, Conrad  RE, Viver  T  et al.  An ANI gap within bacterial species that advances the definitions of intra-species units. MBio  2023;15:e02696–23. 10.1128/mbio.02696-23 PubMed DOI PMC

Brito  IL. Examining horizontal gene transfer in microbial communities. Nat Rev Microbiol  2021;19:442–53. 10.1038/s41579-021-00534-7 PubMed DOI

Chevallereau  A, Pons  BJ, van Houte  S  et al.  Interactions between bacterial and phage communities in natural environments. Nat Rev Microbiol  2022;20:49–62. 10.1038/s41579-021-00602-y PubMed DOI

Douglas  GM, Shapiro  BJ. Genic selection within prokaryotic pangenomes. Genome Biol Evol  2021;13:evab234. 10.1093/gbe/evab234 PubMed DOI PMC

Van Rossum  T, Ferretti  P, Maistrenko  OM  et al.  Diversity within species: interpreting strains in microbiomes. Nat Rev Microbiol  2020;18:491–506. 10.1038/s41579-020-0368-1 PubMed DOI PMC

Zheng  X, Jahn  MT, Sun  M  et al.  Organochlorine contamination enriches virus-encoded metabolism and pesticide degradation associated auxiliary genes in soil microbiomes. ISME J  2022;16:1397–408. 10.1038/s41396-022-01188-w PubMed DOI PMC

Dennis  JJ. The evolution of IncP catabolic plasmids. Curr Op Biotec  2005;16:291–8. 10.1016/j.copbio.2005.04.002 PubMed DOI

Wyndham  RC, Cashore  AE, Nakatsu  CH  et al.  Catabolic transposons. Biodegradation  1994;5:323–42. 10.1007/BF00696468 PubMed DOI

Yang  Y, Ok  YS, Kim  K-H  et al.  Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review. Sci Total Environ  2017;596-597:303–20. 10.1016/j.scitotenv.2017.04.102 PubMed DOI

Żur  J, Piński  A, Marchlewicz  A  et al.  Organic micropollutants paracetamol and ibuprofen—toxicity, biodegradation, and genetic background of their utilization by bacteria. Environ Sci Pollut Res  2018;25:21498–524. 10.1007/s11356-018-2517-x PubMed DOI PMC

Silori  R, Shrivastava  V, Singh  A  et al.  Global groundwater vulnerability for pharmaceutical and personal care products (PPCPs): the scenario of second decade of 21st century. J Environ Manag  2022;320:115703. 10.1016/j.jenvman.2022.115703 PubMed DOI

Trombini  C, Blasco  J, Hampel  M. Ibuprofen and diclofenac: Effects on freshwater and marine aquatic organisms – Are they at risk? In: Gómez-Oliván, L.M. (ed.), Non-Steroidal Anti-Inflammatory Drugs in Water. The Handbook of Environmental Chemistry, vol. 96. Cham: Springer. 10.1007/698_2020_548 DOI

Rastogi  A, Tiwari  MK, Ghangrekar  MM. A review on environmental occurrence, toxicity and microbial degradation of non-steroidal anti-inflammatory drugs (NSAIDs). J Environ Manag  2021;300:113694. 10.1016/j.jenvman.2021.113694 PubMed DOI

Jan-Roblero  J, Cruz-Maya  JA. Ibuprofen: toxicology and biodegradation of an emerging contaminant. Molecules  2023;28:2097. 10.3390/molecules28052097 PubMed DOI PMC

Murdoch  RW, Hay  AG. Genetic and chemical characterization of ibuprofen degradation by Sphingomonas Ibu-2. Microbiology  2013;159:621–32. 10.1099/mic.0.062273-0 PubMed DOI PMC

Aulestia  M, Flores  A, Mangas  EL  et al.  Isolation and genomic characterization of the ibuprofen-degrading bacterium Sphingomonas strain MPO218. Environ Microbiol  2021;23:267–80. 10.1111/1462-2920.15309 PubMed DOI

Aguilar-Romero  I, De la Torre-Zúñiga  J, Quesada  JM  et al.  Effluent decontamination by the ibuprofen-mineralizing strain, Sphingopyxis granuli RW412: metabolic processes. Environ Pollut  2021;274:116536. 10.1016/j.envpol.2021.116536 PubMed DOI

Murdoch  RW, Hay  AG. Formation of catechols via removal of acid side chains from ibuprofen and related aromatic acids. Appl Environ Microbiol  2005;71:6121–5. 10.1128/AEM.71.10.6121-6125.2005 PubMed DOI PMC

Aulestia  M, Flores  A, Acosta-Jurado  S  et al.  Genetic characterization of the ibuprofen-degradative pathway of Rhizorhabdus wittichii MPO218. Appl Environ Microbiol  2022;88:e00388–22. 10.1128/aem.00388-22 PubMed DOI PMC

Murdoch  RW, Hay  AG. The biotransformation of ibuprofen to trihydroxyibuprofen in activated sludge and by Variovorax Ibu-1. Biodegradation  2015;26:105–13. 10.1007/s10532-015-9719-4 PubMed DOI

Chen  Y, Rosazza  JPN. Microbial transformation of ibuprofen by a Nocardia species. Appl Environ Microbiol  1994;60:1292–6. 10.1128/aem.60.4.1292-1296.1994 PubMed DOI PMC

Almeida  B, Vaz-Moreira  I, Schumann  P  et al.  Patulibacter medicamentivorans sp. nov., isolated from activated sludge of a wastewater treatment plant. Int J Sys Evol Microbiol  2013;63:2588–93. 10.1099/ijs.0.047522-0 PubMed DOI

Chopra  S, Kumar  D. Characteristics and growth kinetics of biomass of Citrobacter freundii strains PYI-2 and Citrobacter portucalensis strain YPI-2 during the biodegradation of ibuprofen. Int Microbiol  2022;25:615–28. 10.1007/s10123-022-00248-7 PubMed DOI

Marchlewicz  A, Domaradzka  D, Guzik  U  et al.  Bacillus thuringiensis B1(2015b) is a gram-positive bacteria able to degrade naproxen and ibuprofen. Water Air Soil Pollut  2016;227:197. 10.1007/s11270-016-2893-0 PubMed DOI PMC

Zhang  L, Hu  J, Zhu  R  et al.  Degradation of paracetamol by pure bacterial cultures and their microbial consortium. App Microbiol Biotechnol  2013;97:3687–98. 10.1007/s00253-012-4170-5 PubMed DOI

Cavaliere  M, Feng  S, Soyer  OS  et al.  Cooperation in microbial communities and their biotechnological applications. Environ Microbiol  2017;19:2949–63. 10.1111/1462-2920.13767 PubMed DOI PMC

Kang  D, Jacquiod  S, Herschend  J  et al.  Construction of simplified microbial consortia to degrade recalcitrant materials based on enrichment and dilution-to-extinction cultures. Front Microbiol  2020;10:3010. 10.3389/fmicb.2019.03010 PubMed DOI PMC

Zachar  I, Boza  G. The evolution of microbial facilitation: sociogenesis, symbiogenesis, and transition in individuality. Front Ecol Evol  2022;10:798045. 10.3389/fevo.2022.798045 DOI

Marchlewicz  A, Guzik  U, Hupert-Kocurek  K  et al.  Evaluation of the defined bacterial consortium efficacy in the biodegradation of NSAIDs. Molecules  2023;28:2185. 10.3390/molecules28052185 PubMed DOI PMC

Chen  R, Huang  J, Li  X  et al.  Functional characterization of an efficient ibuprofen-mineralizing bacterial consortium. J Hazard Mater  2023;447:130751. 10.1016/j.jhazmat.2023.130751 PubMed DOI

Suleiman  M, Demaria  F, Zimmardi  C  et al.  Analyzing microbial communities and their biodegradation of multiple pharmaceuticals in membrane bioreactors. Appl Microbiol Biotechnol  2023;107:5545–54. 10.1007/s00253-023-12677-z PubMed DOI PMC

Navrozidou  E, Melidis  P, Ntougias  S. Biodegradation aspects of ibuprofen and identification of ibuprofen-degrading microbiota in an immobilized cell bioreactor. Environl Sci Poll Res  2019;26:14238–49. 10.1007/s11356-019-04771-5 PubMed DOI

Ben Said  S, Tecon  R, Borer  B  et al.  The engineering of spatially linked microbial consortia – potential and perspectives. Curr Opin Biotechnol  2020;62:137–45. 10.1016/j.copbio.2019.09.015 PubMed DOI PMC

Rapp  KM, Jenkins  JP, Betenbaugh  MJ. Partners for life: building microbial consortia for the future. Curr Opin Biotechnol  2020;66:292–300. 10.1016/j.copbio.2020.10.001 PubMed DOI

Aguilar-Romero  I, Madrid  F, Villaverde  J  et al.  Ibuprofen-enhanced biodegradation in solution and sewage sludge by a mineralizing microbial consortium. Shift in associated bacterial communities. J Hazard Mater  2024;464:132970. 10.1016/j.jhazmat.2023.132970 PubMed DOI

Hernáez  MJ, Reineke  W, Santero  E. Genetic analysis of biodegradation of tetralin by a Sphingomonas strain. Appl Environ Microbiol  1999;65:1806–10. 10.1128/AEM.65.4.1806-1810.1999 PubMed DOI PMC

Wickham  H. ggplot2. WIREs Computational Statistics  2011;3:180–5. 10.1002/wics.147 DOI

Saati-Santamaría  Z, González-Dominici  LI, Jiménez-Gómez  A  et al.  Revealing new bacterial functions in the plant rhizoplane. 2023. Preprint available at ResearchSquare. 10.21203/rs.3.rs-3438462/v1 DOI

Bolger  AM, Lohse  M, Usadel  B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics  2014;30:2114–20. 10.1093/bioinformatics/btu170 PubMed DOI PMC

De Coster  W, Rademakers  R. NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics  2023;39:btad311. 10.1093/bioinformatics/btad311 PubMed DOI PMC

Kolmogorov  M, Bickhart  DM, Behsaz  B  et al.  metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods  2020;17:1103–10. 10.1038/s41592-020-00971-x PubMed DOI PMC

Li  H. New strategies to improve minimap2 alignment accuracy. Bioinformatics  2021;37:4572–4. 10.1093/bioinformatics/btab705 PubMed DOI PMC

Vaser  R, Sović  I, Nagarajan  N  et al.  Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res  2017;27:737–46. 10.1101/gr.214270.116 PubMed DOI PMC

Langmead  B, Salzberg  SL. Fast gapped-read alignment with bowtie 2. Nat Methods  2012;9:357–9. 10.1038/nmeth.1923 PubMed DOI PMC

Walker  BJ, Abeel  T, Shea  T  et al.  Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One  2014;9:e112963. 10.1371/journal.pone.0112963 PubMed DOI PMC

Kang  DD, Li  F, Kirton  E  et al.  MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ  2019;7:e7359. 10.7717/peerj.7359 PubMed DOI PMC

Alneberg  J, Bjarnason  BS, de Bruijn  I  et al.  Binning metagenomic contigs by coverage and composition. Nat Methods  2014;11:1144–6. 10.1038/nmeth.3103 PubMed DOI

Sieber  CMK, Probst  AJ, Sharrar  A  et al.  Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol  2018;3:836–43. 10.1038/s41564-018-0171-1 PubMed DOI PMC

Tian  R, Zhou  J, Imanian  B. PlasmidHunter: accurate and fast prediction of plasmid sequences using gene content profile and machine learning. Brief Bioinform  2024;25:bbae322. 10.1093/bib/bbae322 PubMed DOI PMC

Callahan  BJ, McMurdie  PJ, Rosen  MJ  et al.  DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods  2016;13:581–3. 10.1038/nmeth.3869 PubMed DOI PMC

Bolyen  E, Rideout  JR, Dillon  MR  et al.  Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol  2019;37:852–7. 10.1038/s41587-019-0209-9 PubMed DOI PMC

Wang  Q, Cole  JR. Updated RDP taxonomy and RDP classifier for more accurate taxonomic classification. Microbiol Resour Announc  2024;13:e01063–23. 10.1128/mra.01063-23 PubMed DOI PMC

Saati-Santamaría  Z, Vicentefranqueira  R, Kolařik  M  et al.  Microbiome specificity and fluxes between two distant plant taxa in Iberian forests. Environ Microbiome  2023;18:64. 10.1186/s40793-023-00520-x PubMed DOI PMC

Thompson  JD, Gibson  TJ, Higgins  DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics  2003:2.3.1–2.3.22. 10.1002/0471250953.bi0203s00 PubMed DOI

Kumar  S, Stecher  G, Li  M  et al.  MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol  2018;35:1547–9. 10.1093/molbev/msy096 PubMed DOI PMC

Letunic  I, Bork  P. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res  2024;52:W78–82. 10.1093/nar/gkae268 PubMed DOI PMC

Parks  DH, Imelfort  M, Skennerton  CT  et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res  2015;25:1043–55. 10.1101/gr.186072.114 PubMed DOI PMC

Simão  FA, Waterhouse  RM, Ioannidis  P  et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics  2015;31:3210–2. 10.1093/bioinformatics/btv351 PubMed DOI

Hyatt  D, Chen  G-L, LoCascio  PF  et al.  Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics  2010;11:119. 10.1186/1471-2105-11-119 PubMed DOI PMC

Na  S-I, Kim  YO, Yoon  S-H  et al.  UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol  2018;56:280–5. 10.1007/s12275-018-8014-6 PubMed DOI

Chaumeil  P-A, Mussig  AJ, Hugenholtz  P  et al.  GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics  2022;38:5315–6. 10.1093/bioinformatics/btac672 PubMed DOI PMC

Meier-Kolthoff  JP, Göker  M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun  2019;10:2182. 10.1038/s41467-019-10210-3 PubMed DOI PMC

Ruscheweyh  H-J, Milanese  A, Paoli  L  et al.  Cultivation-independent genomes greatly expand taxonomic-profiling capabilities of mOTUs across various environments. Microbiome  2022;10:212. 10.1186/s40168-022-01410-z PubMed DOI PMC

Altschul  SF, Gish  W, Miller  W  et al.  Basic local alignment search tool. J Mol Biol  1990;215:403–10. 10.1016/S0022-2836(05)80360-2 PubMed DOI

Buchfink  B, Xie  C, Huson  DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods  2015;12:59–60. 10.1038/nmeth.3176 PubMed DOI

Nayfach  S, Roux  S, Seshadri  R  et al.  A genomic catalog of Earth’s microbiomes. Nat Biotechnol  2021;39:499–509. 10.1038/s41587-020-0718-6 PubMed DOI PMC

Singleton  CM, Petriglieri  F, Kristensen  JM  et al.  Connecting structure to function with the recovery of over 1000 high-quality metagenome-assembled genomes from activated sludge using long-read sequencing. Nat Commun  2021;12:2009. 10.1038/s41467-021-22203-2 PubMed DOI PMC

Camargo  AP, Call  L, Roux  S  et al.  IMG/PR: a database of plasmids from genomes and metagenomes with rich annotations and metadata. Nucleic Acids Res  2024;52:D164–73. 10.1093/nar/gkad964 PubMed DOI PMC

Seemann  T. Prokka: rapid prokaryotic genome annotation. Bioinformatics  2014;30:2068–9. 10.1093/bioinformatics/btu153 PubMed DOI

Branger  M, Leclercq  SO. GenoFig: a user-friendly application for the visualization and comparison of genomic regions. Bioinformatics  2024;40:btae372. 10.1093/bioinformatics/btae372 PubMed DOI PMC

Yuste  L, Hervás  AB, Canosa  I  et al.  Growth phase-dependent expression of the pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray. EnvironMicrobiol  2006;8:165–77. 10.1111/j.1462-2920.2005.00890.x PubMed DOI

Ramiro-Martínez  P, de Quinto  I, Gama  JA  et al.  Universal rules govern plasmid copy number. Preprint available at bioRxiv. 2024; 2024.10.04.616648.

Wongkittichote  P, Ah Mew  N, Chapman  KA. Propionyl-CoA carboxylase – a review. Mol Genet Metab  2017;122:145–52. 10.1016/j.ymgme.2017.10.002 PubMed DOI PMC

Ma  X, Liang  B, Qi  M  et al.  Novel pathway for chloramphenicol catabolism in the activated sludge bacterial isolate Sphingobium sp. CAP-1. Environ Sci Technol  2020;54:7591–600. 10.1021/acs.est.9b07324 PubMed DOI

El-Kurdi  N, El-Shatoury  S, ElBaghdady  K  et al.  Biodegradation of polystyrene nanoplastics by Achromobacter xylosoxidans M9 offers a mealworm gut-derived solution for plastic pollution. Arch Microbiol  2024;206:238. 10.1007/s00203-024-03947-z PubMed DOI PMC

Marzec-Grządziel  A, Gałązka  A. Sequencing of the whole genome of a bacterium of the genus Achromobacter reveals its potential for xenobiotics biodegradation. Agriculture  2023;13:1519. 10.3390/agriculture13081519 DOI

Arulazhagan  P, Vasudevan  N. Biodegradation of polycyclic aromatic hydrocarbons by a halotolerant bacterial strain Ochrobactrum sp. VA1. Mar Pollut Bull  2011;62:388–94. 10.1016/j.marpolbul.2010.09.020 PubMed DOI

El-Sayed  WS, Ibrahim  MK, Abu-Shady  M  et al.  Isolation and identification of a novel strain of the genus Ochrobactrum with phenol-degrading activity. J Biosci Bioeng  2003;96:310–2. 10.1016/S1389-1723(03)80200-1 PubMed DOI

Ghosal  D, Chakraborty  J, Khara  P  et al.  Degradation of phenanthrene via meta-cleavage of 2-hydroxy-1-naphthoic acid by Ochrobactrum sp. strain PWTJD. FEMS Microbiol Lett  2010;313:103–10. 10.1111/j.1574-6968.2010.02129.x PubMed DOI

Kowalczyk  A, Chyc  M, Ryszka  P  et al.  Achromobacter xylosoxidans as a new microorganism strain colonizing high-density polyethylene as a key step to its biodegradation. Environ Sci Pollut Res Int  2016;23:11349–56. 10.1007/s11356-016-6563-y PubMed DOI PMC

Muhammad  JB, Jagaba  AH, Yusuf  F  et al.  Achromobacter xylosoxidans bacteria isolated from contaminated agricultural environment for a sustainable 2,4-dichlorophenoxyacetic acid herbicide degradation: an experimental study. Case Stud Chem Environ Eng  2024;9:100604. 10.1016/j.cscee.2023.100604 DOI

Zhang  B, Xu  W, Ma  Y  et al.  Effects of bioaugmentation by isolated Achromobacter xylosoxidans BP1 on PAHs degradation and microbial community in contaminated soil. J Environ Manag  2023;334:117491. 10.1016/j.jenvman.2023.117491 PubMed DOI

Vélez  JMB, Martínez  JG, Ospina  JT  et al.  Bioremediation potential of pseudomonas genus isolates from residual water, capable of tolerating lead through mechanisms of exopolysaccharide production and biosorption. Biotechnol Rep  2021;32:e00685. 10.1016/j.btre.2021.e00685 PubMed DOI PMC

Mahgoub  SA, Qattan  SYA, Salem  SS  et al.  Characterization and biodegradation of phenol by Pseudomonas aeruginosa and Klebsiella variicola strains isolated from sewage sludge and their effect on soybean seeds germination. Molecules  2023;28:1203. 10.3390/molecules28031203 PubMed DOI PMC

Lara-Moreno  A, Costa  MC, Vargas-Villagomez  A  et al.  New bacterial strains for ibuprofen biodegradation: drug removal, transformation, and potential catabolic genes. Environ Microbiol Rep  2024;16:e13320. 10.1111/1758-2229.13320 PubMed DOI PMC

Pápai  M, Benedek  T, Táncsics  A  et al.  Selective enrichment, identification, and isolation of diclofenac, ibuprofen, and carbamazepine degrading bacteria from a groundwater biofilm. Environ Sci Pollut Res  2023;30:44518–35. 10.1007/s11356-022-24975-6 PubMed DOI PMC

Haigler  BE, Johnson  GR, Suen  WC  et al.  Biochemical and genetic evidence for meta-ring cleavage of 2,4, 5-trihydroxytoluene in Burkholderia sp. strain DNT. J Bacteriol  1999;181:965–72. 10.1128/JB.181.3.965-972.1999 PubMed DOI PMC

Snellinx  Z, Taghavi  S, Vangronsveld  J  et al.  Microbial consortia that degrade 2,4-DNT by interspecies metabolism: isolation and characterisation. Biodegradation  2003;14:19–29. 10.1023/A:1023539104747 PubMed DOI

Peng  X, Wang  S, Wang  M  et al.  Metabolic interdependencies in thermophilic communities are revealed using co-occurrence and complementarity networks. Nat Commun  2024;15:8166. 10.1038/s41467-024-52532-x PubMed DOI PMC

Morris  JJ, Lenski  RE, Zinser  ER. The black queen hypothesis: evolution of dependencies through adaptive gene loss. MBio  2012;3:e00036–12. 10.1128/mBio.00036-12 PubMed DOI PMC

Bagheri  B, Bauer  FF, Cardinali  G  et al.  Ecological interactions are a primary driver of population dynamics in wine yeast microbiota during fermentation. Sci Rep  2020;10:4911. 10.1038/s41598-020-61690-z PubMed DOI PMC

Crocker  K, Lee  KK, Chakraverti-Wuerthwein  M  et al.  Environmentally dependent interactions shape patterns in gene content across natural microbiomes. Nat Microbiol  2024;9:2022–37. 10.1038/s41564-024-01752-4 PubMed DOI PMC

Chen  X, Wang  M, Luo  L  et al.  The evolution of autonomy from two cooperative specialists in fluctuating environments. Proc Natl Acad Sci USA  2024;121:e2317182121. 10.1073/pnas.2317182121 PubMed DOI PMC

Nagata  Y, Kato  H, Ohtsubo  Y  et al.  Lessons from the genomes of lindane-degrading sphingomonads. Environ Microbiol Rep  2019;11:630–44. 10.1111/1758-2229.12762 PubMed DOI

Santos  JL, Aparicio  I, Alonso  E. Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain). Environ Int  2007;33:596–601. 10.1016/j.envint.2006.09.014 PubMed DOI

Canosa  I, Sánchez-Romero  JM, Yuste  L  et al.  A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the pseudomonas oleovorans alkane degradation pathway. Mol Microbiol  2000;35:791–9. 10.1046/j.1365-2958.2000.01751.x PubMed DOI

Madhushani  A, del Peso-Santos  T, Moreno  R  et al.  Transcriptional and translational control through the 5′-leader region of the dmpR master regulatory gene of phenol metabolism. Environ Microbiol  2015;17:119–33. 10.1111/1462-2920.12511 PubMed DOI

Schell  MA, Wender  PE. Identification of the nahR gene product and nucleotide sequences required for its activation of the Sal operon. J Bacteriol  1986;166:9–14. 10.1128/jb.166.1.9-14.1986 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...