Tubulin tyrosination/detyrosination regulate the affinity and sorting of intraflagellar transport trains on axonemal microtubule doublets
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39865093
PubMed Central
PMC11770126
DOI
10.1038/s41467-025-56098-0
PII: 10.1038/s41467-025-56098-0
Knihovny.cz E-zdroje
- MeSH
- axonema * metabolismus MeSH
- biologický transport MeSH
- Chlamydomonas reinhardtii * metabolismus genetika MeSH
- cilie metabolismus MeSH
- flagella * metabolismus MeSH
- mikrotubuly * metabolismus MeSH
- tubulin * metabolismus MeSH
- tyrosin * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- tubulin * MeSH
- tyrosin * MeSH
Cilia assembly and function rely on the bidirectional transport of components between the cell body and ciliary tip via Intraflagellar Transport (IFT) trains. Anterograde and retrograde IFT trains travel along the B- and A-tubules of microtubule doublets, respectively, ensuring smooth traffic flow. However, the mechanism underlying this segregation remains unclear. Here, we test whether tubulin detyrosination (enriched on B-tubules) and tyrosination (enriched on A-tubules) have a role in IFT logistics. We report that knockout of tubulin detyrosinase VashL in Chlamydomonas reinhardtii causes frequent IFT train stoppages and impaired ciliary growth. By reconstituting IFT train motility on de-membranated axonemes and synthetic microtubules, we show that anterograde and retrograde trains preferentially associate with detyrosinated and tyrosinated microtubules, respectively. We propose that tubulin tyrosination/detyrosination is crucial for spatial segregation and collision-free IFT train motion, highlighting the significance of the tubulin code in ciliary transport.
Cluster of Excellence Physics of Life TUD Dresden University of Technology 01062 Dresden Germany
Human Technopole 20017 Milan Italy
Institute of Molecular Genetics Czech Academy of Sciences 14220 Prague Czech Republic
Max Planck Institute of Molecular Cell Biology and Genetics 01307 Dresden Germany
Zobrazit více v PubMed
Kozminski, K. G., Johnson, K. A., Forscher, P. & Rosenbaum, J. L. A motility in the eukaryotic flagellum unrelated to flagellar beating. PubMed DOI PMC
Lacey, S. E., Foster, H. E. & Pigino, G. The molecular structure of IFT-A and IFT-B in anterograde intraflagellar transport trains. PubMed DOI PMC
Stepanek, L. & Pigino, G. Microtubule doublets are double-track railways for intraflagellar transport trains. PubMed
Maheshwari, A. et al. α- and β-tubulin lattice of the axonemal microtubule doublet and binding proteins revealed by single particle cryo-electron microscopy and tomography. PubMed DOI
Orbach, R. & Howard, J. The dynamic and structural properties of axonemal tubulins support the high length stability of cilia. PubMed DOI PMC
Lechtreck, K. F. S. G. Distribution of polyglutamylated tubulin in the flagellar apparatus of green flagellates. PubMed DOI
Alvarez Viar, G. et al. Protofilament-specific nanopatterns of tubulin post-translational modifications regulate the mechanics of ciliary beating. Curr Biol. PubMed PMC
Kubo, T., Hirono, M., Aikawa, T., Kamiya, R. & Witman, G. B. Reduced tubulin polyglutamylation suppresses flagellar shortness in Chlamydomonas. PubMed DOI PMC
Gadadhar, S. et al. Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. PubMed PMC
Johnson, K. A. The axonemal microtubules of the Chlamydomonas flagellum differ in tubulin isoform content. PubMed DOI
Nieuwenhuis, J. et al. Vasohibins encode tubulin detyrosinating activity. PubMed
Landskron, L. et al. Posttranslational modification of microtubules by the MATCAP detyrosinase. PubMed
Hammond, J. W. et al. Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. PubMed DOI PMC
Kaul, N., Soppina, V. & Verhey, K. J. Effects of α-Tubulin K40 acetylation and detyrosination on kinesin-1 motility in a purified system. PubMed DOI PMC
Dunn, S. et al. Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. PubMed DOI
Sirajuddin, M., Rice, L. M. & Vale, R. D. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. PubMed DOI PMC
Peris, L. et al. Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. PubMed DOI PMC
Nirschl, J. J., Magiera, M. M., Lazarus, J. E., Janke, C. & Holzbaur, E. L. F. α-Tubulin Tyrosination and CLIP-170 phosphorylation regulate the initiation of dynein-driven transport in neurons. PubMed DOI PMC
McKenney, R. J., Huynh, W., Vale, R. D. & Sirajuddin, M. Tyrosination of α-tubulin controls the initiation of processive dynein-dynactin motility. PubMed DOI PMC
Nievergelt, A. P., Diener, D. R., Bogdanova, A., Brown, T. & Pigino, G. Efficient precision editing of endogenous Chlamydomonas reinhardtii genes with CRISPR-Cas. 10.1016/j.crmeth.2023.100562 (2023). PubMed PMC
Lechtreck, K. F. et al. Chlamydomonas ARMC2/PF27 is an obligate cargo adapter for intraflagellar transport of radial spokes. PubMed DOI PMC
Dai, J., Barbieri, F., Mitchell, D. R. & Lechtreck, K. F. In vivo analysis of outer arm dynein transport reveals cargo-specific intraflagellar transport properties. PubMed DOI PMC
Sonar, P. et al. Kinesin-2 from C. reinhardtii Is an atypically fast and auto-inhibited motor that is activated by heterotrimerization for intraflagellar transport. PubMed DOI PMC
Petriman, N. A. et al. Biochemically validated structural model of the 15-subunit intraflagellar transport complex IFT-B. PubMed DOI PMC
Taschner, M. & Lorentzen, E. Recombinant Reconstitution and Purification of the IFT-B Core Complex from Chlamydomonas reinhardtii. in PubMed
Behal, R. H. et al. Subunit interactions and organization of the Chlamydomonas reinhardtii intraflagellar transport complex A proteins. PubMed DOI PMC
Prota, A. E. et al. Structural basis of tubulin tyrosination by tubulin tyrosine ligase. PubMed DOI PMC
Wall, K. P. et al. C-terminal tail polyglycylation and polyglutamylation alter microtubule mechanical properties. PubMed DOI PMC
Van den Hoek, H. et al. In situ architecture of the ciliary base reveals the stepwise assembly of intraflagellar transport trains. PubMed
Louka, P. et al. Proteins that control the geometry of microtubules at the ends of cilia. PubMed DOI PMC
Stepp, W. L., Merck, G., Mueller-Planitz, F. & Ökten, Z. Kinesin-2 motors adapt their stepping behavior for processive transport on axonemes and microtubules. PubMed DOI PMC
van der Laan, S. et al. Evolutionary divergence of enzymatic mechanisms for tubulin detyrosination. PubMed DOI
Pagnamenta, A. T. et al. Defective tubulin detyrosination causes structural brain abnormalities with cognitive deficiency in humans and mice. PubMed DOI PMC
Burute, M., Jansen, K. I., Mihajlovic, M., Vermonden, T. & Kapitein, L. C. Local changes in microtubule network mobility instruct neuronal polarization and axon specification. PubMed PMC
McKenney, R. J., Huynh, W., Vale, R. D. & Sirajuddin, M. Tyrosination of α‐tubulin controls the initiation of processive dynein–dynactin motility. PubMed DOI PMC
Bhogaraju, S. et al. Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. PubMed PMC
Taschner, M. et al. Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin‐binding IFT ‐B2 complex. PubMed DOI PMC
Zhu, X., Wang, J., Li, S., Lechtreck, K. & Pan, J. IFT54 directly interacts with kinesin‐II and IFT dynein to regulate anterograde intraflagellar transport. PubMed PMC
Mohamed, M. A. A., Stepp, W. L. & Ökten, Z. Reconstitution reveals motor activation for intraflagellar transport. PubMed DOI PMC
Cole, D. G. et al. Chlamydomonas Kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in caenorhabditis elegans sensory neurons. PubMed DOI PMC
Piperno, G. & Mead, K. Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella. PubMed DOI PMC
Lucker, B. F. et al. Characterization of the intraflagellar transport complex B core: Direct interaction of the IFT81 and IFT74/72 subunits. PubMed DOI
Breslow, D. K. & Holland, A. J. Mechanism and regulation of centriole and cilium biogenesis. PubMed DOI PMC
Vale, R. D. The molecular motor toolbox for intracellular transport. PubMed DOI
Ma, M. et al. Structure of the decorated ciliary doublet microtubule. PubMed DOI PMC
Nievergelt, A. P., Diener, D. R., Bogdanova, A., Brown, T. & Pigino, G. Efficient precision editing of endogenous Chlamydomonas reinhardtii genes with CRISPR-Cas. PubMed DOI PMC
Castoldi, M. & Popov, A. V. Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. PubMed DOI
Craige, B., Brown, J. M. & Witman, G. B. Isolation of Chlamydomonas Flagella. PubMed PMC
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. PubMed DOI
Zheng, S. Q. et al. MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. PubMed DOI PMC
Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. PubMed DOI
Xiong, Q., Morphew, M. K., Schwartz, C. L., Hoenger, A. H. & Mastronarde, D. N. CTF determination and correction for low dose tomographic tilt series. PubMed DOI PMC
Heumann, J. M., Hoenger, A. & Mastronarde, D. N. Clustering and variance maps for cryo-electron tomography using wedge-masked differences. PubMed DOI PMC
Pettersen, E. F. et al. UCSF Chimera-a visualization system for exploratory research and analysis. PubMed DOI
Viar, G. A. et al. Protofilament-specific nanopatterns of tubulin post-translational modifications regulate the mechanics of ciliary beating. PubMed DOI PMC
Phosphorylation at the Helm: Kinase-Mediated Regulation of Primary Cilia Assembly and Disassembly