Phosphorylation at the Helm: Kinase-Mediated Regulation of Primary Cilia Assembly and Disassembly
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Czech Science Foundation (22-13277S)
PubMed
40062413
PubMed Central
PMC12620543
DOI
10.1002/cm.22012
Knihovny.cz E-zdroje
- Klíčová slova
- kinase, phosphorylation, primary cilium, substrate,
- MeSH
- cilie * metabolismus MeSH
- fosforylace MeSH
- lidé MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The primary cilium serves as an antenna of most vertebrate cells and is important for conveying cues from several signaling pathways into appropriate cellular responses during development and homeostasis. Cilia assembly and disassembly processes are thought to be strictly controlled; however, the precise nature of molecular events underlying this control still awaits full resolution. Through their enzymatic activity, kinases function as flexible yet highly controllable regulators of a vast variety of cellular processes. Their activity ranges from cell cycle control to regulation of cell motility, signal transduction, and metabolism. This review focuses on the emerging role of kinases in primary cilia biology. We underscore their functions in primary cilia formation, maintenance, and resorption while examining available models and the respective mechanisms of their actions.
Zobrazit více v PubMed
Amack, J. D. 2022. “Structures and Functions of Cilia During Vertebrate Embryo Development.” Molecular Reproduction and Development 89, no. 12: 579–596. 10.1002/mrd.23650. PubMed DOI PMC
Anvarian, Z. , Mykytyn K., Mukhopadhyay S., Pedersen L. B., and Christensen S. T.. 2019. “Cellular Signalling by Primary Cilia in Development, Organ Function and Disease.” Nature Reviews. Nephrology 15, no. 4: 199–219. 10.1038/s41581-019-0116-9. PubMed DOI PMC
Bangs, F. , and Anderson K. V.. 2017. “Primary Cilia and Mammalian Hedgehog Signaling.” Cold Spring Harbor Perspectives in Biology 9, no. 5: a028175. 10.1101/cshperspect.a028175. PubMed DOI PMC
Berman, S. A. , Wilson N. F., Haas N. A., and Lefebvre P. A.. 2003. “A Novel MAP Kinase Regulates Flagellar Length in Chlamydomonas.” Current Biology 13, no. 13: 1145–1149. 10.1016/S0960-9822(03)00415-9. PubMed DOI
Bernatik, O. , Pejskova P., Vyslouzil D., Hanakova K., Zdrahal Z., and Cajanek L.. 2020. “Phosphorylation of Multiple Proteins Involved in Ciliogenesis by Tau Tubulin Kinase 2.” Molecular Biology of the Cell 31, no. 10: 1032–1046. 10.1091/mbc.E19-06-0334. PubMed DOI PMC
Bhogaraju, S. , Cajanek L., Fort C., et al. 2013. “Molecular Basis of Tubulin Transport Within the Cilium by IFT74 and IFT81.” Science 341, no. 6149: 1009–1012. 10.1126/science.1240985. PubMed DOI PMC
Binó, L. , and Čajánek L.. 2023. “Tau Tubulin Kinase 1 and 2 Regulate Ciliogenesis and Human Pluripotent Stem Cells–Derived Neural Rosettes.” Scientific Reports 13, no. 1: 12–884. 10.1038/s41598-023-39887-9. PubMed DOI PMC
Boggiano, J. C. , Vanderzalm P. J., and Fehon R. G.. 2011. “Tao‐1 Phosphorylates Hippo/MST Kinases to Regulate the Hippo‐Salvador‐Warts Tumor Suppressor Pathway.” Developmental Cell 21, no. 5: 888–895. 10.1016/j.devcel.2011.08.028. PubMed DOI PMC
Bowie, E. , and Goetz S. C.. 2020. “TTBK2 and Primary Cilia Are Essential for the Connectivity and Survival of Cerebellar Purkinje Neurons.” eLife 9: e51166. 10.7554/eLife.51166. PubMed DOI PMC
Bowie, E. , Norris R., Anderson K. V., and Goetz S. C.. 2018. “Spinocerebellar Ataxia Type 11‐Associated Alleles of Ttbk2 Dominantly Interfere With Ciliogenesis and Cilium Stability.” PLoS Genetics 14, no. 12: e1007844. 10.1371/journal.pgen.1007844. PubMed DOI PMC
Breslow, D. K. , Hoogendoorn S., Kopp A. R., et al. 2018. “A CRISPR‐Based Screen for Hedgehog Signaling Provides Insights Into Ciliary Function and Ciliopathies.” Nature Genetics 50, no. 3: 460–471. 10.1038/s41588-018-0054-7. PubMed DOI PMC
Broekhuis, J. R. , Verhey K. J., and Jansen G.. 2014. “Regulation of Cilium Length and Intraflagellar Transport by the RCK‐Kinases ICK and MOK in Renal Epithelial Cells.” PLoS One 9, no. 9: e108470. 10.1371/journal.pone.0108470. PubMed DOI PMC
Bryja, V. , Cervenka I., and Cajanek L.. 2017. “The Connections of Wnt Pathway Components With Cell Cycle and Centrosome: Side Effects or a Hidden Logic?” Critical Reviews in Biochemistry and Molecular Biology 52, no. 6: 614–637. 10.1080/10409238.2017.1350135. PubMed DOI PMC
Burghoorn, J. , Dekkers M. P. J., Rademakers S., de Jong T., Willemsen R., and Jansen G.. 2007. “Mutation of the MAP Kinase DYF‐5 Affects Docking and Undocking of Kinesin‐2 Motors and Reduces Their Speed in the Cilia of Caenorhabditis Elegans.” Proceedings of the National Academy of Sciences 104, no. 17: 7157–7162. 10.1073/pnas.0606974104. PubMed DOI PMC
Čajánek, L. , and Nigg E. A.. 2014. “Cep164 Triggers Ciliogenesis by Recruiting Tau Tubulin Kinase 2 to the Mother Centriole.” Proceedings of the National Academy of Sciences of the United States of America 111, no. 28: E2841–E2850. 10.1073/pnas.1401777111. PubMed DOI PMC
Cao, J. , Shen Y., Zhu L., et al. 2012. “Mir‐129‐3p Controls Cilia Assembly by Regulating CP110 and Actin Dynamics.” Nature Cell Biology 14, no. 7: 697–706. 10.1038/ncb2512. PubMed DOI
Casey, J. P. , Brennan K., Scheidel N., et al. 2016. “Recessive NEK9 Mutation Causes a Lethal Skeletal Dysplasia With Evidence of Cell Cycle and Ciliary Defects.” Human Molecular Genetics 25, no. 9: 1824–1835. 10.1093/hmg/ddw054. PubMed DOI
Chang, T.‐J. B. , Hsu J. C.‐C., and Yang T. T.. 2023. “Single‐Molecule Localization Microscopy Reveals the Ultrastructural Constitution of Distal Appendages in Expanded Mammalian Centrioles.” Nature Communications 14, no. 1: 1688. 10.1038/s41467-023-37342-x. PubMed DOI PMC
Chaya, T. , Omori Y., Kuwahara R., and Furukawa T.. 2014. “ICK Is Essential for Cell Type‐Specific Ciliogenesis and the Regulation of Ciliary Transport.” EMBO Journal 33, no. 11: 1227–1242. 10.1002/embj.201488175. PubMed DOI PMC
Chen, Z. , Indjeian V. B., McManus M., Wang L., and Dynlacht B. D.. 2002. “CP110, a Cell Cycle‐Dependent CDK Substrate, Regulates Centrosome Duplication in Human Cells.” Developmental Cell 3, no. 3: 339–350. 10.1016/s1534-5807(02)00258-7. PubMed DOI
Chhatre, A. , Stepanek L., Nievergelt A. P., Alvarez Viar G., Diez S., and Pigino G.. 2025. “Tubulin Tyrosination/Detyrosination Regulate the Affinity and Sorting of Intraflagellar Transport Trains on Axonemal Microtubule Doublets.” Nature Communications 16, no. 1: 1055. 10.1038/s41467-025-56098-0. PubMed DOI PMC
Civiero, L. , Cirnaru M. D., Beilina A., et al. 2015. “Leucine‐Rich Repeat Kinase 2 Interacts With p21‐Activated Kinase 6 to Control Neurite Complexity in Mammalian Brain.” Journal of Neurochemistry 135, no. 6: 1242–1256. 10.1111/jnc.13369. PubMed DOI PMC
Constable, S. , Ott C. M., Lemire A. L., et al. 2024. “Permanent Cilia Loss During Cerebellar Granule Cell Neurogenesis Involves Withdrawal of Cilia Maintenance and Centriole Capping.” Proceedings of the National Academy of Sciences of the United States of America 121, no. 52: e2408083121. 10.1073/pnas.2408083121. PubMed DOI PMC
Deretic, J. , Odabasi E., and Firat‐Karalar E. N.. 2023. “The Multifaceted Roles of Microtubule‐Associated Proteins in the Primary Cilium and Ciliopathies.” Journal of Cell Science 136, no. 23: jcs261148. 10.1242/jcs.261148. PubMed DOI
Dhekne, H. S. , Yanatori I., Vides E. G., et al. 2021. “LRRK2‐Phosphorylated Rab10 Sequesters Myosin Va With RILPL2 During Ciliogenesis Blockade.” Life Science Alliance 4, no. 5: e202101050. 10.26508/lsa.202101050. PubMed DOI PMC
Doornbos, C. , and Roepman R.. 2021. “Moonlighting of Mitotic Regulators in Cilium Disassembly.” Cellular and Molecular Life Sciences 78, no. 11: 4955–4972. 10.1007/s00018-021-03827-5. PubMed DOI PMC
Endicott, S. J. , Basu B., Khokha M., and Brueckner M.. 2015. “The NIMA‐Like Kinase Nek2 Is a Key Switch Balancing Cilia Biogenesis and Resorption in the Development of Left–Right Asymmetry.” Development 142, no. 23: 4068–4079. 10.1242/dev.126953. PubMed DOI PMC
Fakhro, K. A. , Choi M., Ware S. M., et al. 2011. “Rare Copy Number Variations in Congenital Heart Disease Patients Identify Unique Genes in Left–Right Patterning.” Proceedings of the National Academy of Sciences of the United States of America 108, no. 7: 2915–2920. 10.1073/pnas.1019645108. PubMed DOI PMC
Flax, R. G. , Rosston P., Rocha C., et al. 2024. “Illumination of Understudied Ciliary Kinases.” Frontiers in Molecular Biosciences 11: 1352781. 10.3389/fmolb.2024.1352781. PubMed DOI PMC
Ford, M. J. , Yeyati P. L., Mali G. R., et al. 2018. “A Cell/Cilia Cycle Biosensor for Single‐Cell Kinetics Reveals Persistence of Cilia After G1/S Transition Is a General Property in Cells and Mice.” Developmental Cell 47, no. 4: 509–523. 10.1016/j.devcel.2018.10.027. PubMed DOI PMC
Gailey, C. D. , Wang E. J., Jin L., et al. 2021. “Phosphosite T674A Mutation in Kinesin Family Member 3A Fails to Reproduce Tissue and Ciliary Defects Characteristic of CILK1 Loss of Function.” Developmental Dynamics 250, no. 2: 263–273. 10.1002/dvdy.252. PubMed DOI PMC
Ganga, A. K. , Kennedy M. C., Oguchi M. E., et al. 2021. “Rab34 GTPase Mediates Ciliary Membrane Formation in the Intracellular Ciliogenesis Pathway.” Current Biology 31, no. 13: 2895–2905. 10.1016/j.cub.2021.04.075. PubMed DOI PMC
Garcia‐Gonzalo, F. R. , and Reiter J. F.. 2017. “Open Sesame: How Transition Fibers and the Transition Zone Control Ciliary Composition.” Cold Spring Harbor Perspectives in Biology 9, no. 2: a028134. 10.1101/cshperspect.a028134. PubMed DOI PMC
Goetz, S. C. , Liem K. F., and Anderson K. V.. 2012. “The Spinocerebellar Ataxia‐Associated Gene Tau Tubulin Kinase 2 Controls the Initiation of Ciliogenesis.” Cell 151, no. 4: 847–858. 10.1016/j.cell.2012.10.010. PubMed DOI PMC
Gopalakrishnan, J. , Feistel K., Friedrich B. M., et al. 2023. “Emerging Principles of Primary Cilia Dynamics in Controlling Tissue Organization and Function.” EMBO Journal 42, no. 21: e113891. 10.15252/embj.2023113891. PubMed DOI PMC
Guen, V. J. , Gamble C., Perez D. E., et al. 2016. “Star Syndrome‐Associated CDK10/Cyclin M Regulates Actin Network Architecture and Ciliogenesis.” Cell Cycle 15, no. 5: 678–688. 10.1080/15384101.2016.1147632. PubMed DOI PMC
Hilgendorf, K. I. , Myers B. R., and Reiter J. F.. 2024. “Emerging Mechanistic Understanding of Cilia Function in Cellular Signalling.” Nature Reviews Molecular Cell Biology 25, no. 7: 555–573. 10.1038/s41580-023-00698-5. PubMed DOI PMC
Hilton, L. K. , Gunawardane K., Kim J. W., Schwarz M. C., and Quarmby L. M.. 2013. “The Kinases LF4 and CNK2 Control Ciliary Length by Feedback Regulation of Assembly and Disassembly Rates.” Current Biology: CB 23, no. 22: 2208–2214. 10.1016/j.cub.2013.09.038. PubMed DOI
Iannotta, L. , Fasiczka R., Favetta G., et al. 2024. “PAK6 Rescues Pathogenic LRRK2‐Mediated Ciliogenesis and Centrosomal Cohesion Defects in a Mutation‐Specific Manner.” Cell Death & Disease 15, no. 10: 1–14. 10.1038/s41419-024-07124-4. PubMed DOI PMC
Inoko, A. , Matsuyama M., Goto H., et al. 2012. “Trichoplein and Aurora A Block Aberrant Primary Cilia Assembly in Proliferating Cells.” Journal of Cell Biology 197, no. 3: 391–405. 10.1083/jcb.201106101. PubMed DOI PMC
Ishikawa, H. , and Marshall W. F.. 2011. “Ciliogenesis: Building the Cell's Antenna.” Nature Reviews Molecular Cell Biology 12, no. 4: 222–234. 10.1038/nrm3085. PubMed DOI
Iyer, S. S. , Chen F., Ogunmolu F. E., et al. 2025. “Centriolar Cap Proteins CP110 and CPAP Control Slow Elongation of Microtubule Plus Ends.” Journal of Cell Biology 224, no. 3: e202406061. 10.1083/jcb.202406061. PubMed DOI PMC
Jacob, L. S. , Wu X., Dodge M. E., et al. 2011. “Genome‐Wide RNAi Screen Reveals Disease‐Associated Genes That Are Common to Hedgehog and Wnt Signaling.” Science Signaling 4, no. 157: 2001225. 10.1126/scisignal.2001225. PubMed DOI PMC
Janke, C. , and Magiera M. M.. 2020. “The Tubulin Code and Its Role in Controlling Microtubule Properties and Functions.” Nature Reviews. Molecular Cell Biology 21, no. 6: 307–326. 10.1038/s41580-020-0214-3. PubMed DOI
Jiang, X. , Shao W., Chai Y., et al. 2022. “DYF‐5/MAK‐Dependent Phosphorylation Promotes Ciliary Tubulin Unloading.” Proceedings of the National Academy of Sciences of the United States of America 119, no. 34: e2207134119. 10.1073/pnas.2207134119. PubMed DOI PMC
Johnson, J. L. , Yaron T. M., Huntsman E. M., et al. 2023. “An Atlas of Substrate Specificities for the Human Serine/Threonine Kinome.” Nature 613, no. 7945: 759–766. 10.1038/s41586-022-05575-3. PubMed DOI PMC
Kanie, T. , Liu B., Love J. F., Fisher S. D., Gustavsson A.‐K., and Jackson P. K.. 2025. “A Hierarchical Pathway for Assembly of the Distal Appendages That Organize Primary Cilia.” eLife 14: e85999. 10.7554/eLife.85999. PubMed DOI PMC
Kasahara, K. , Aoki H., Kiyono T., et al. 2018. “EGF Receptor Kinase Suppresses Ciliogenesis Through Activation of USP8 Deubiquitinase.” Nature Communications 9, no. 1: 758. 10.1038/s41467-018-03117-y. PubMed DOI PMC
Kiesel, P. , Alvarez Viar G., Tsoy N., et al. 2020. “The Molecular Structure of Mammalian Primary Cilia Revealed by Cryo‐Electron Tomography.” Nature Structural & Molecular Biology 27, no. 12: 1115–1124. 10.1038/s41594-020-0507-4. PubMed DOI PMC
Kim, J. , Jo H., Hong H., et al. 2015. “Actin Remodelling Factors Control Ciliogenesis by Regulating YAP/TAZ Activity and Vesicle Trafficking.” Nature Communications 6, no. 1: 6781. 10.1038/ncomms7781. PubMed DOI
Kim, J. , Lee J. E., Heynen‐Genel S., et al. 2010. “Functional Genomic Screen for Modulators of Ciliogenesis and Cilium Length.” Nature 464, no. 7291: 1048–1051. 10.1038/nature08895. PubMed DOI PMC
Kim, M. , Kim M., Lee M.‐S., Kim C.‐H., and Lim D.‐S.. 2014. “The MST1/2‐SAV1 Complex of the Hippo Pathway Promotes Ciliogenesis.” Nature Communications 5, no. 1: 5370. 10.1038/ncomms6370. PubMed DOI
Kim, S. , Lee K., Choi J.‐H., Ringstad N., and Dynlacht B. D.. 2015. “Nek2 Activation of Kif24 Ensures Cilium Disassembly During the Cell Cycle.” Nature Communications 6: 8087. 10.1038/ncomms9087. PubMed DOI PMC
Kong, D. , Farmer V., Shukla A., et al. 2014. “Centriole Maturation Requires Regulated Plk1 Activity During Two Consecutive Cell Cycles.” Journal of Cell Biology 206, no. 7: 855–865. 10.1083/jcb.201407087. PubMed DOI PMC
Kuhns, S. , Schmidt K. N., Reymann J., et al. 2013. “The Microtubule Affinity Regulating Kinase MARK4 Promotes Axoneme Extension During Early Ciliogenesis.” Journal of Cell Biology 200, no. 4: 505–522. 10.1083/jcb.201206013. PubMed DOI PMC
Kunova Bosakova, M. , Varecha M., Hampl M., et al. 2018. “Regulation of Ciliary Function by Fibroblast Growth Factor Signaling Identifies FGFR3‐Related Disorders Achondroplasia and Thanatophoric Dysplasia as Ciliopathies.” Human Molecular Genetics 27, no. 6: 1093–1105. 10.1093/hmg/ddy031. PubMed DOI PMC
Lacey, S. E. , and Pigino G.. 2024. “The Intraflagellar Transport Cycle.” Nature Reviews Molecular Cell Biology 26, no. 3: 1–18. 10.1038/s41580-024-00797-x. PubMed DOI
Lee, K. H. , Johmura Y., Yu L.‐R., et al. 2012. “Identification of a Novel Wnt5a‐CK1ɛ‐Dvl2‐Plk1‐Mediated Primary Cilia Disassembly Pathway.” EMBO Journal 31, no. 14: 3104–3117. 10.1038/emboj.2012.144. PubMed DOI PMC
Lin, I.‐H. , Li Y.‐R., Chang C.‐H., et al. 2024. “Regulation of Primary Cilia Disassembly Through HUWE1‐Mediated TTBK2 Degradation Plays a Crucial Role in Cerebellar Development and Medulloblastoma Growth.” Cell Death and Differentiation 31, no. 10: 1349–1361. 10.1038/s41418-024-01325-2. PubMed DOI PMC
Lizcano, J. M. , Göransson O., Toth R., et al. 2004. “LKB1 Is a Master Kinase That Activates 13 Kinases of the AMPK Subfamily, Including MARK/PAR‐1.” EMBO Journal 23, no. 4: 833–843. 10.1038/sj.emboj.7600110. PubMed DOI PMC
Lo, C.‐H. , Lin I.‐H., Yang T. T., et al. 2019. “Phosphorylation of CEP83 by TTBK2 Is Necessary for Cilia Initiation.” Journal of Cell Biology 218, no. 10: 3489–3505. 10.1083/jcb.201811142. PubMed DOI PMC
Loukil, A. , Barrington C., and Goetz S. C.. 2021. “A Complex of Distal Appendage‐Associated Kinases Linked to Human Disease Regulates Ciliary Trafficking and Stability.” Proceedings of the National Academy of Sciences of the United States of America 118, no. 16: e2018740118. 10.1073/pnas.2018740118. PubMed DOI PMC
Lu, Q. , Insinna C., Ott C., et al. 2015. “Early Steps in Primary Cilium Assembly Require EHD1/EHD3‐Dependent Ciliary Vesicle Formation.” Nature Cell Biology 17, no. 3: 228–240. 10.1038/ncb3109. PubMed DOI PMC
Łysyganicz, P. K. , Pooranachandran N., Liu X., et al. 2021. “Loss of Deacetylation Enzymes Hdac6 and Sirt2 Promotes Acetylation of Cytoplasmic Tubulin, but Suppresses Axonemal Acetylation in Zebrafish Cilia.” Frontiers in Cell and Developmental Biology 9: 676214. 10.3389/fcell.2021.676214. PubMed DOI PMC
Ma, D. , Wang F., Teng J., Huang N., and Chen J.. 2023. “Structure and Function of Distal and Subdistal Appendages of the Mother Centriole.” Journal of Cell Science 136, no. 3: jcs260560. 10.1242/jcs.260560. PubMed DOI
Maurya, A. K. , Rogers T., and Sengupta P.. 2019. “A CCRK and a MAK Kinase Modulate Cilia Branching and Length via Regulation of Axonemal Microtubule Dynamics in Caenorhabditis Elegans.” Current Biology: CB 29, no. 8: 1286–1300. 10.1016/j.cub.2019.02.062. PubMed DOI PMC
Mill, P. , Christensen S. T., and Pedersen L. B.. 2023. “Primary Cilia as Dynamic and Diverse Signalling Hubs in Development and Disease.” Nature Reviews. Genetics 24, no. 7: 421–441. 10.1038/s41576-023-00587-9. PubMed DOI PMC
Mirvis, M. , Siemers K. A., Nelson W. J., and Stearns T. P.. 2019. “Primary Cilium Loss in Mammalian Cells Occurs Predominantly by Whole‐Cilium Shedding.” PLoS Biology 17, no. 7: e3000381. 10.1371/journal.pbio.3000381. PubMed DOI PMC
Miyamoto, T. , Hosoba K., Ochiai H., et al. 2015. “The Microtubule‐Depolymerizing Activity of a Mitotic Kinesin Protein KIF2A Drives Primary Cilia Disassembly Coupled With Cell Proliferation.” Cell Reports 10: 664–673. 10.1016/j.celrep.2015.01.003. PubMed DOI PMC
Nager, A. R. , Goldstein J. S., Herranz‐Pérez V., et al. 2017. “An Actin Network Dispatches Ciliary GPCRs Into Extracellular Vesicles to Modulate Signaling.” Cell 168, no. 1–2: 252–263. 10.1016/j.cell.2016.11.036. PubMed DOI PMC
Nakamura, K. , Noguchi T., Takahara M., et al. 2020. “Anterograde Trafficking of Ciliary MAP Kinase‐Like ICK/CILK1 by the Intraflagellar Transport Machinery Is Required for Intraciliary Retrograde Protein Trafficking.” Journal of Biological Chemistry 295, no. 38: 13363–13376. 10.1074/jbc.RA120.014142. PubMed DOI PMC
Needham, E. J. , Parker B. L., Burykin T., James D. E., and Humphrey S. J.. 2019. “Illuminating the Dark Phosphoproteome.” Science Signaling 12, no. 565: eaau8645. 10.1126/scisignal.aau8645. PubMed DOI
Nguyen, A. , and Goetz S. C.. 2023. “TTBK2 Controls Cilium Stability by Regulating Distinct Modules of Centrosomal Proteins.” Molecular Biology of the Cell 34, no. 1: ar8. 10.1091/mbc.E22-08-0373. PubMed DOI PMC
Nigg, E. A. , Čajánek L., and Arquint C.. 2014. “The Centrosome Duplication Cycle in Health and Disease.” FEBS Letters 588, no. 15: 2366–2372. 10.1016/j.febslet.2014.06.030. PubMed DOI
Ott, C. M. , Constable S., Nguyen T. M., et al. 2024. “Permanent Deconstruction of Intracellular Primary Cilia in Differentiating Granule Cell Neurons.” Journal of Cell Biology 223, no. 10: e202404038. 10.1083/jcb.202404038. PubMed DOI PMC
Otto, E. A. , Trapp M. L., Schultheiss U. T., Helou J., Quarmby L. M., and Hildebrandt F.. 2008. “NEK8 Mutations Affect Ciliary and Centrosomal Localization and May Cause Nephronophthisis.” Journal of the American Society of Nephrology: JASN 19, no. 3: 587. 10.1681/ASN.2007040490. PubMed DOI PMC
Pan, J. , Wang Q., and Snell W. J.. 2004. “An Aurora Kinase Is Essential for Flagellar Disassembly in Chlamydomonas.” Developmental Cell 6, no. 3: 445–451. 10.1016/s1534-5807(04)00064-4. PubMed DOI
Park, K. , and Leroux M. R.. 2022. “Composition, Organization and Mechanisms of the Transition Zone, a Gate for the Cilium.” EMBO Reports 23, no. 12: e55420. 10.15252/embr.202255420. PubMed DOI PMC
Patel, H. , Li J., Herrero A., et al. 2020. “Novel Roles of PRK1 and PRK2 in Cilia and Cancer Biology.” Scientific Reports 10, no. 1: 3902. 10.1038/s41598-020-60604-3. PubMed DOI PMC
Pedersen, L. B. , and Rosenbaum J. L.. 2008. “Chapter Two Intraflagellar Transport (IFT): Role in Ciliary Assembly, Resorption and Signalling.” In Current Topics in Developmental Biology, vol. 85, 23–61. Academic Press. 10.1016/S0070-2153(08)00802-8. PubMed DOI
Phua, S. C. , Chiba S., Suzuki M., et al. 2017. “Dynamic Remodeling of Membrane Composition Drives Cell Cycle Through Primary Cilia Excision.” Cell 168, no. 1–2: 264–279. 10.1016/j.cell.2016.12.032. PubMed DOI PMC
Plotnikova, O. V. , Nikonova A. S., Loskutov Y. V., Kozyulina P. Y., Pugacheva E. N., and Golemis E. A.. 2012. “Calmodulin Activation of Aurora‐A Kinase (AURKA) is Required During Ciliary Disassembly and in Mitosis.” Molecular Biology of the Cell 23, no. 14: 2658–2670. 10.1091/mbc.e11-12-1056. PubMed DOI PMC
Poon, C. L. C. , Lin J. I., Zhang X., and Harvey K. F.. 2011. “The Sterile 20‐Like Kinase Tao‐1 Controls Tissue Growth by Regulating the Salvador‐Warts‐Hippo Pathway.” Developmental Cell 21, no. 5: 896–906. 10.1016/j.devcel.2011.09.012. PubMed DOI
Prasai, A. , Ivashchenko O., Maskova K., et al. 2024. “Bbsome‐Deficient Cells Activate Intraciliary CDC42 to Trigger Actin‐Dependent Ciliary Ectocytosis.” EMBO Reports 26, no. 1: 36–60. 10.1038/s44319-024-00326-z. PubMed DOI PMC
Pugacheva, E. N. , and Golemis E. A.. 2005. “The Focal Adhesion Scaffolding Protein HEF1 Regulates Activation of the Aurora‐A and Nek2 Kinases at the Centrosome.” Nature Cell Biology 7, no. 10: 937–946. 10.1038/ncb1309. PubMed DOI PMC
Pugacheva, E. N. , Jablonski S. A., Hartman T. R., Henske E. P., and Golemis E. A.. 2007. “HEF1‐Dependent Aurora A Activation Induces Disassembly of the Primary Cilium.” Cell 129, no. 7: 1351–1363. 10.1016/j.cell.2007.04.035. PubMed DOI PMC
Quarmby, L. M. 2004. “Cellular Deflagellation.” International Review of Cytology 233: 47–91. 10.1016/S0074-7696(04)33002-0. PubMed DOI
Quarmby, L. M. , and Mahjoub M. R.. 2005. “Caught Nek‐Ing: Cilia and Centrioles.” Journal of Cell Science 118, no. 22: 5161–5169. 10.1242/jcs.02681. PubMed DOI
Reilly, M. L. , and Benmerah A.. 2019. “Ciliary Kinesins Beyond IFT: Cilium Length, Disassembly, Cargo Transport and Signalling.” Biology of the Cell 111, no. 4: 79–94. 10.1111/boc.201800074. PubMed DOI
Reiter, J. F. , and Leroux M. R.. 2017. “Genes and Molecular Pathways Underpinning Ciliopathies.” Nature Reviews. Molecular Cell Biology 18, no. 9: 533–547. 10.1038/nrm.2017.60. PubMed DOI PMC
Sakaji, K. , Ebrahimiazar S., Harigae Y., et al. 2023. “MAST4 Promotes Primary Ciliary Resorption Through Phosphorylation of Tctex‐1.” Life Science Alliance 6, no. 11: e202301947. 10.26508/lsa.202301947. PubMed DOI PMC
Schmidt, T. I. , Kleylein‐Sohn J., Westendorf J., et al. 2009. “Control of Centriole Length by CPAP and CP110.” Current Biology: CB 19, no. 12: 1005–1011. 10.1016/j.cub.2009.05.016. PubMed DOI
Scholey, J. M. 2008. “Intraflagellar Transport Motors in Cilia: Moving Along the Cell's Antenna.” Journal of Cell Biology 180, no. 1: 23–29. 10.1083/jcb.200709133. PubMed DOI PMC
Seeley, E. S. , and Nachury M. V.. 2010. “The Perennial Organelle: Assembly and Disassembly of the Primary Cilium.” Journal of Cell Science 123, no. 4: 511–518. 10.1242/jcs.061093. PubMed DOI PMC
Seki, A. , Coppinger J. A., Jang C.‐Y., Yates J. R. III, and Fang G.. 2008. “Bora and Aurora A Cooperatively Activate Plk1 and Control the Entry Into Mitosis.” Science 320, no. 5883: 1655. 10.1126/science.1157425. PubMed DOI PMC
Shakya, S. , and Westlake C. J.. 2021. “Recent Advances in Understanding Assembly of the Primary Cilium Membrane.” Faculty Reviews 10: 16. 10.12703/r/10-16. PubMed DOI PMC
Silva, I. R. e. , Binó L., Johnson C. M., et al. 2022. “Molecular Mechanisms Underlying the Role of the Centriolar CEP164‐TTBK2 Complex in Ciliopathies.” Structure 30, no. 1: 114. 10.1016/j.str.2021.08.007. PubMed DOI PMC
Sobu, Y. , Wawro P. S., Dhekne H. S., Yeshaw W. M., and Pfeffer S. R.. 2021. “Pathogenic LRRK2 Regulates Ciliation Probability Upstream of Tau Tubulin Kinase 2 via Rab10 and RILPL1 Proteins.” Proceedings of the National Academy of Sciences 118, no. 10: e2005894118. 10.1073/pnas.2005894118. PubMed DOI PMC
Sorokin, S. 1962. “Centrioles and the Formation of Rudimentary Cilia by Fibroblasts and Smooth Muscle Cells.” Journal of Cell Biology 15: 363–377. PubMed PMC
Spalluto, C. , Wilson D. I., and Hearn T.. 2012. “Nek2 Localises to the Distal Portion of the Mother Centriole/Basal Body and Is Required for Timely Cilium Disassembly at the G2/M Transition.” European Journal of Cell Biology 91, no. 9: 675–686. 10.1016/j.ejcb.2012.03.009. PubMed DOI
Spektor, A. , Tsang W. Y., Khoo D., and Dynlacht B. D.. 2007. “Cep97 and CP110 Suppress a Cilia Assembly Program.” Cell 130, no. 4: 678–690. 10.1016/j.cell.2007.06.027. PubMed DOI
Steger, M. , Diez F., Dhekne H. S., et al. 2017. “Systematic Proteomic Analysis of LRRK2‐Mediated Rab GTPase Phosphorylation Establishes a Connection to Ciliogenesis.” eLife 6: e31012. 10.7554/eLife.31012. PubMed DOI PMC
Stoetzel, C. , Bär S., De Craene J.‐O., et al. 2016. “A Mutation in VPS15 (PIK3R4) Causes a Ciliopathy and Affects IFT20 Release From the Cis‐Golgi.” Nature Communications 7, no. 13: 586. 10.1038/ncomms13586. PubMed DOI PMC
Stuck, M. W. , Chong W. M., Liao J.‐C., and Pazour G. J.. 2021. “Rab34 Is Necessary for Early Stages of Intracellular Ciliogenesis.” Current Biology: CB 31, no. 13: 2887–2894. 10.1016/j.cub.2021.04.018. PubMed DOI PMC
Sun, S. , Fisher R. L., Bowser S. S., Pentecost B. T., and Sui H.. 2019. “Three‐Dimensional Architecture of Epithelial Primary Cilia.” Proceedings of the National Academy of Sciences of the United States of America 116, no. 19: 9370–9379. 10.1073/pnas.1821064116. PubMed DOI PMC
Tanos, B. E. , Yang H. J., Soni R., et al. 2013. “Centriole Distal Appendages Promote Membrane Docking, Leading to Cilia Initiation.” Genes & Development 27, no. 2: 163–168. 10.1101/gad.207043.112. PubMed DOI PMC
Taylor, L. M. , McMillan P. J., Kraemer B. C., and Liachko N. F.. 2019. “Tau Tubulin Kinases in Proteinopathy.” FEBS Journal 286, no. 13: 2434–2446. 10.1111/febs.14866. PubMed DOI PMC
Thiel, C. , Kessler K., Giessl A., et al. 2011. “NEK1 Mutations Cause Short‐Rib Polydactyly Syndrome Type Majewski.” American Journal of Human Genetics 88, no. 1: 106–114. 10.1016/j.ajhg.2010.12.004. PubMed DOI PMC
Upadhya, P. , Birkenmeier E. H., Birkenmeier C. S., and Barker J. E.. 2000. “Mutations in a NIMA‐Related Kinase Gene, Nek1, Cause Pleiotropic Effects Including a Progressive Polycystic Kidney Disease in Mice.” Proceedings of the National Academy of Sciences 97, no. 1: 217–221. 10.1073/pnas.97.1.217. PubMed DOI PMC
Viol, L. , Hata S., Pastor‐Peidro A., et al. 2020. “Nek2 Kinase Displaces Distal Appendages From the Mother Centriole Prior to Mitosis.” Journal of Cell Biology 219, no. 3: e201907136. 10.1083/jcb.201907136. PubMed DOI PMC
Vysloužil, B. D. , Bernatík O., Lánská E., et al. 2025. “Tau‐Tubulin Kinase 2 Restrains Microtubule‐Depolymerizer KIF2A to Support Primary Cilia Growth.” Cell Communication and Signaling 23, no. 1: 73. 10.1186/s12964-025-02072-8. PubMed DOI PMC
Walentek, P. , Quigley I. K., Sun D. I., Sajjan U. K., Kintner C., and Harland R. M.. 2016. “Ciliary Transcription Factors and miRNAs Precisely Regulate Cp110 Levels Required for Ciliary Adhesions and Ciliogenesis.” eLife 5: e17557. 10.7554/eLife.17557. PubMed DOI PMC
Wang, G. , Chen Q., Zhang X., et al. 2013. “PCM1 Recruits Plk1 to Pericentriolar Matrix to Promote Primary Cilia Disassembly Before Mitotic Entry.” Journal of Cell Science 126, no. 6: 1355–1365. 10.1242/jcs.114918. PubMed DOI
Watanabe, T. , Kakeno M., Matsui T., et al. 2015. “TTBK2 With EB1/3 Regulates Microtubule Dynamics in Migrating Cells Through KIF2A Phosphorylation.” Journal of Cell Biology 210, no. 5: 737–751. 10.1083/jcb.201412075. PubMed DOI PMC
Wells, C. M. , and Jones G. E.. 2010. “The Emerging Importance of Group II PAKs.” Biochemical Journal 425, no. 3: 465–473. 10.1042/BJ20091173. PubMed DOI
Wu, C.‐T. , Chen H.‐Y., and Tang T. K.. 2018. “Myosin‐Va Is Required for Preciliary Vesicle Transportation to the Mother Centriole During Ciliogenesis.” Nature Cell Biology 20, no. 2: 175–185. 10.1038/s41556-017-0018-7. PubMed DOI
Xu, Q. , Zhang Y., Wei Q., Huang Y., Hu J., and Ling K.. 2016. “Phosphatidylinositol Phosphate Kinase PIPKIγ and Phosphatase INPP5E Coordinate Initiation of Ciliogenesis.” Nature Communications 7: 10777. 10.1038/ncomms10777. PubMed DOI PMC
Yadav, S. P. , Sharma N. K., Liu C., Dong L., Li T., and Swaroop A.. 2016. “Centrosomal Protein CP110 Controls Maturation of the Mother Centriole During Cilia Biogenesis.” Development (Cambridge, England) 143, no. 9: 1491–1501. 10.1242/dev.130120. PubMed DOI PMC
Yi, P. , Xie C., and Ou G.. 2018. “The Kinases Male Germ Cell‐Associated Kinase and Cell Cycle‐Related Kinase Regulate Kinesin‐2 Motility in Neuronal Cilia.” Traffic 19, no. 7: 522–535. 10.1111/tra.12572. PubMed DOI
Yin, F. , Chen Q., Shi Y., et al. 2022. “Activation of EGFR‐Aurora A Induces Loss of Primary Cilia in Oral Squamous Cell Carcinoma.” Oral Diseases 28, no. 3: 621–630. 10.1111/odi.13791. PubMed DOI
Zhang, B. , Wang G., Xu X., et al. 2017. “DAZ‐Interacting Protein 1 (Dzip1) Phosphorylation by Polo‐Like Kinase 1 (Plk1) Regulates the Centriolar Satellite Localization of the BBSome Protein During the Cell Cycle.” Journal of Biological Chemistry 292, no. 4: 1351–1360. 10.1074/jbc.M116.765438. PubMed DOI PMC
Zhang, Y. , Kwon S., Yamaguchi T., et al. 2008. “Mice Lacking Histone Deacetylase 6 Have Hyperacetylated Tubulin but Are Viable and Develop Normally.” Molecular and Cellular Biology 28, no. 5: 1688–1701. 10.1128/MCB.01154-06. PubMed DOI PMC