Phosphorylation at the Helm: Kinase-Mediated Regulation of Primary Cilia Assembly and Disassembly

. 2025 Nov ; 82 (11) : 707-718. [epub] 20250310

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40062413

Grantová podpora
Czech Science Foundation (22-13277S)

The primary cilium serves as an antenna of most vertebrate cells and is important for conveying cues from several signaling pathways into appropriate cellular responses during development and homeostasis. Cilia assembly and disassembly processes are thought to be strictly controlled; however, the precise nature of molecular events underlying this control still awaits full resolution. Through their enzymatic activity, kinases function as flexible yet highly controllable regulators of a vast variety of cellular processes. Their activity ranges from cell cycle control to regulation of cell motility, signal transduction, and metabolism. This review focuses on the emerging role of kinases in primary cilia biology. We underscore their functions in primary cilia formation, maintenance, and resorption while examining available models and the respective mechanisms of their actions.

Zobrazit více v PubMed

Amack, J. D. 2022. “Structures and Functions of Cilia During Vertebrate Embryo Development.” Molecular Reproduction and Development 89, no. 12: 579–596. 10.1002/mrd.23650. PubMed DOI PMC

Anvarian, Z. , Mykytyn K., Mukhopadhyay S., Pedersen L. B., and Christensen S. T.. 2019. “Cellular Signalling by Primary Cilia in Development, Organ Function and Disease.” Nature Reviews. Nephrology 15, no. 4: 199–219. 10.1038/s41581-019-0116-9. PubMed DOI PMC

Bangs, F. , and Anderson K. V.. 2017. “Primary Cilia and Mammalian Hedgehog Signaling.” Cold Spring Harbor Perspectives in Biology 9, no. 5: a028175. 10.1101/cshperspect.a028175. PubMed DOI PMC

Berman, S. A. , Wilson N. F., Haas N. A., and Lefebvre P. A.. 2003. “A Novel MAP Kinase Regulates Flagellar Length in Chlamydomonas.” Current Biology 13, no. 13: 1145–1149. 10.1016/S0960-9822(03)00415-9. PubMed DOI

Bernatik, O. , Pejskova P., Vyslouzil D., Hanakova K., Zdrahal Z., and Cajanek L.. 2020. “Phosphorylation of Multiple Proteins Involved in Ciliogenesis by Tau Tubulin Kinase 2.” Molecular Biology of the Cell 31, no. 10: 1032–1046. 10.1091/mbc.E19-06-0334. PubMed DOI PMC

Bhogaraju, S. , Cajanek L., Fort C., et al. 2013. “Molecular Basis of Tubulin Transport Within the Cilium by IFT74 and IFT81.” Science 341, no. 6149: 1009–1012. 10.1126/science.1240985. PubMed DOI PMC

Binó, L. , and Čajánek L.. 2023. “Tau Tubulin Kinase 1 and 2 Regulate Ciliogenesis and Human Pluripotent Stem Cells–Derived Neural Rosettes.” Scientific Reports 13, no. 1: 12–884. 10.1038/s41598-023-39887-9. PubMed DOI PMC

Boggiano, J. C. , Vanderzalm P. J., and Fehon R. G.. 2011. “Tao‐1 Phosphorylates Hippo/MST Kinases to Regulate the Hippo‐Salvador‐Warts Tumor Suppressor Pathway.” Developmental Cell 21, no. 5: 888–895. 10.1016/j.devcel.2011.08.028. PubMed DOI PMC

Bowie, E. , and Goetz S. C.. 2020. “TTBK2 and Primary Cilia Are Essential for the Connectivity and Survival of Cerebellar Purkinje Neurons.” eLife 9: e51166. 10.7554/eLife.51166. PubMed DOI PMC

Bowie, E. , Norris R., Anderson K. V., and Goetz S. C.. 2018. “Spinocerebellar Ataxia Type 11‐Associated Alleles of Ttbk2 Dominantly Interfere With Ciliogenesis and Cilium Stability.” PLoS Genetics 14, no. 12: e1007844. 10.1371/journal.pgen.1007844. PubMed DOI PMC

Breslow, D. K. , Hoogendoorn S., Kopp A. R., et al. 2018. “A CRISPR‐Based Screen for Hedgehog Signaling Provides Insights Into Ciliary Function and Ciliopathies.” Nature Genetics 50, no. 3: 460–471. 10.1038/s41588-018-0054-7. PubMed DOI PMC

Broekhuis, J. R. , Verhey K. J., and Jansen G.. 2014. “Regulation of Cilium Length and Intraflagellar Transport by the RCK‐Kinases ICK and MOK in Renal Epithelial Cells.” PLoS One 9, no. 9: e108470. 10.1371/journal.pone.0108470. PubMed DOI PMC

Bryja, V. , Cervenka I., and Cajanek L.. 2017. “The Connections of Wnt Pathway Components With Cell Cycle and Centrosome: Side Effects or a Hidden Logic?” Critical Reviews in Biochemistry and Molecular Biology 52, no. 6: 614–637. 10.1080/10409238.2017.1350135. PubMed DOI PMC

Burghoorn, J. , Dekkers M. P. J., Rademakers S., de Jong T., Willemsen R., and Jansen G.. 2007. “Mutation of the MAP Kinase DYF‐5 Affects Docking and Undocking of Kinesin‐2 Motors and Reduces Their Speed in the Cilia of Caenorhabditis Elegans.” Proceedings of the National Academy of Sciences 104, no. 17: 7157–7162. 10.1073/pnas.0606974104. PubMed DOI PMC

Čajánek, L. , and Nigg E. A.. 2014. “Cep164 Triggers Ciliogenesis by Recruiting Tau Tubulin Kinase 2 to the Mother Centriole.” Proceedings of the National Academy of Sciences of the United States of America 111, no. 28: E2841–E2850. 10.1073/pnas.1401777111. PubMed DOI PMC

Cao, J. , Shen Y., Zhu L., et al. 2012. “Mir‐129‐3p Controls Cilia Assembly by Regulating CP110 and Actin Dynamics.” Nature Cell Biology 14, no. 7: 697–706. 10.1038/ncb2512. PubMed DOI

Casey, J. P. , Brennan K., Scheidel N., et al. 2016. “Recessive NEK9 Mutation Causes a Lethal Skeletal Dysplasia With Evidence of Cell Cycle and Ciliary Defects.” Human Molecular Genetics 25, no. 9: 1824–1835. 10.1093/hmg/ddw054. PubMed DOI

Chang, T.‐J. B. , Hsu J. C.‐C., and Yang T. T.. 2023. “Single‐Molecule Localization Microscopy Reveals the Ultrastructural Constitution of Distal Appendages in Expanded Mammalian Centrioles.” Nature Communications 14, no. 1: 1688. 10.1038/s41467-023-37342-x. PubMed DOI PMC

Chaya, T. , Omori Y., Kuwahara R., and Furukawa T.. 2014. “ICK Is Essential for Cell Type‐Specific Ciliogenesis and the Regulation of Ciliary Transport.” EMBO Journal 33, no. 11: 1227–1242. 10.1002/embj.201488175. PubMed DOI PMC

Chen, Z. , Indjeian V. B., McManus M., Wang L., and Dynlacht B. D.. 2002. “CP110, a Cell Cycle‐Dependent CDK Substrate, Regulates Centrosome Duplication in Human Cells.” Developmental Cell 3, no. 3: 339–350. 10.1016/s1534-5807(02)00258-7. PubMed DOI

Chhatre, A. , Stepanek L., Nievergelt A. P., Alvarez Viar G., Diez S., and Pigino G.. 2025. “Tubulin Tyrosination/Detyrosination Regulate the Affinity and Sorting of Intraflagellar Transport Trains on Axonemal Microtubule Doublets.” Nature Communications 16, no. 1: 1055. 10.1038/s41467-025-56098-0. PubMed DOI PMC

Civiero, L. , Cirnaru M. D., Beilina A., et al. 2015. “Leucine‐Rich Repeat Kinase 2 Interacts With p21‐Activated Kinase 6 to Control Neurite Complexity in Mammalian Brain.” Journal of Neurochemistry 135, no. 6: 1242–1256. 10.1111/jnc.13369. PubMed DOI PMC

Constable, S. , Ott C. M., Lemire A. L., et al. 2024. “Permanent Cilia Loss During Cerebellar Granule Cell Neurogenesis Involves Withdrawal of Cilia Maintenance and Centriole Capping.” Proceedings of the National Academy of Sciences of the United States of America 121, no. 52: e2408083121. 10.1073/pnas.2408083121. PubMed DOI PMC

Deretic, J. , Odabasi E., and Firat‐Karalar E. N.. 2023. “The Multifaceted Roles of Microtubule‐Associated Proteins in the Primary Cilium and Ciliopathies.” Journal of Cell Science 136, no. 23: jcs261148. 10.1242/jcs.261148. PubMed DOI

Dhekne, H. S. , Yanatori I., Vides E. G., et al. 2021. “LRRK2‐Phosphorylated Rab10 Sequesters Myosin Va With RILPL2 During Ciliogenesis Blockade.” Life Science Alliance 4, no. 5: e202101050. 10.26508/lsa.202101050. PubMed DOI PMC

Doornbos, C. , and Roepman R.. 2021. “Moonlighting of Mitotic Regulators in Cilium Disassembly.” Cellular and Molecular Life Sciences 78, no. 11: 4955–4972. 10.1007/s00018-021-03827-5. PubMed DOI PMC

Endicott, S. J. , Basu B., Khokha M., and Brueckner M.. 2015. “The NIMA‐Like Kinase Nek2 Is a Key Switch Balancing Cilia Biogenesis and Resorption in the Development of Left–Right Asymmetry.” Development 142, no. 23: 4068–4079. 10.1242/dev.126953. PubMed DOI PMC

Fakhro, K. A. , Choi M., Ware S. M., et al. 2011. “Rare Copy Number Variations in Congenital Heart Disease Patients Identify Unique Genes in Left–Right Patterning.” Proceedings of the National Academy of Sciences of the United States of America 108, no. 7: 2915–2920. 10.1073/pnas.1019645108. PubMed DOI PMC

Flax, R. G. , Rosston P., Rocha C., et al. 2024. “Illumination of Understudied Ciliary Kinases.” Frontiers in Molecular Biosciences 11: 1352781. 10.3389/fmolb.2024.1352781. PubMed DOI PMC

Ford, M. J. , Yeyati P. L., Mali G. R., et al. 2018. “A Cell/Cilia Cycle Biosensor for Single‐Cell Kinetics Reveals Persistence of Cilia After G1/S Transition Is a General Property in Cells and Mice.” Developmental Cell 47, no. 4: 509–523. 10.1016/j.devcel.2018.10.027. PubMed DOI PMC

Gailey, C. D. , Wang E. J., Jin L., et al. 2021. “Phosphosite T674A Mutation in Kinesin Family Member 3A Fails to Reproduce Tissue and Ciliary Defects Characteristic of CILK1 Loss of Function.” Developmental Dynamics 250, no. 2: 263–273. 10.1002/dvdy.252. PubMed DOI PMC

Ganga, A. K. , Kennedy M. C., Oguchi M. E., et al. 2021. “Rab34 GTPase Mediates Ciliary Membrane Formation in the Intracellular Ciliogenesis Pathway.” Current Biology 31, no. 13: 2895–2905. 10.1016/j.cub.2021.04.075. PubMed DOI PMC

Garcia‐Gonzalo, F. R. , and Reiter J. F.. 2017. “Open Sesame: How Transition Fibers and the Transition Zone Control Ciliary Composition.” Cold Spring Harbor Perspectives in Biology 9, no. 2: a028134. 10.1101/cshperspect.a028134. PubMed DOI PMC

Goetz, S. C. , Liem K. F., and Anderson K. V.. 2012. “The Spinocerebellar Ataxia‐Associated Gene Tau Tubulin Kinase 2 Controls the Initiation of Ciliogenesis.” Cell 151, no. 4: 847–858. 10.1016/j.cell.2012.10.010. PubMed DOI PMC

Gopalakrishnan, J. , Feistel K., Friedrich B. M., et al. 2023. “Emerging Principles of Primary Cilia Dynamics in Controlling Tissue Organization and Function.” EMBO Journal 42, no. 21: e113891. 10.15252/embj.2023113891. PubMed DOI PMC

Guen, V. J. , Gamble C., Perez D. E., et al. 2016. “Star Syndrome‐Associated CDK10/Cyclin M Regulates Actin Network Architecture and Ciliogenesis.” Cell Cycle 15, no. 5: 678–688. 10.1080/15384101.2016.1147632. PubMed DOI PMC

Hilgendorf, K. I. , Myers B. R., and Reiter J. F.. 2024. “Emerging Mechanistic Understanding of Cilia Function in Cellular Signalling.” Nature Reviews Molecular Cell Biology 25, no. 7: 555–573. 10.1038/s41580-023-00698-5. PubMed DOI PMC

Hilton, L. K. , Gunawardane K., Kim J. W., Schwarz M. C., and Quarmby L. M.. 2013. “The Kinases LF4 and CNK2 Control Ciliary Length by Feedback Regulation of Assembly and Disassembly Rates.” Current Biology: CB 23, no. 22: 2208–2214. 10.1016/j.cub.2013.09.038. PubMed DOI

Iannotta, L. , Fasiczka R., Favetta G., et al. 2024. “PAK6 Rescues Pathogenic LRRK2‐Mediated Ciliogenesis and Centrosomal Cohesion Defects in a Mutation‐Specific Manner.” Cell Death & Disease 15, no. 10: 1–14. 10.1038/s41419-024-07124-4. PubMed DOI PMC

Inoko, A. , Matsuyama M., Goto H., et al. 2012. “Trichoplein and Aurora A Block Aberrant Primary Cilia Assembly in Proliferating Cells.” Journal of Cell Biology 197, no. 3: 391–405. 10.1083/jcb.201106101. PubMed DOI PMC

Ishikawa, H. , and Marshall W. F.. 2011. “Ciliogenesis: Building the Cell's Antenna.” Nature Reviews Molecular Cell Biology 12, no. 4: 222–234. 10.1038/nrm3085. PubMed DOI

Iyer, S. S. , Chen F., Ogunmolu F. E., et al. 2025. “Centriolar Cap Proteins CP110 and CPAP Control Slow Elongation of Microtubule Plus Ends.” Journal of Cell Biology 224, no. 3: e202406061. 10.1083/jcb.202406061. PubMed DOI PMC

Jacob, L. S. , Wu X., Dodge M. E., et al. 2011. “Genome‐Wide RNAi Screen Reveals Disease‐Associated Genes That Are Common to Hedgehog and Wnt Signaling.” Science Signaling 4, no. 157: 2001225. 10.1126/scisignal.2001225. PubMed DOI PMC

Janke, C. , and Magiera M. M.. 2020. “The Tubulin Code and Its Role in Controlling Microtubule Properties and Functions.” Nature Reviews. Molecular Cell Biology 21, no. 6: 307–326. 10.1038/s41580-020-0214-3. PubMed DOI

Jiang, X. , Shao W., Chai Y., et al. 2022. “DYF‐5/MAK‐Dependent Phosphorylation Promotes Ciliary Tubulin Unloading.” Proceedings of the National Academy of Sciences of the United States of America 119, no. 34: e2207134119. 10.1073/pnas.2207134119. PubMed DOI PMC

Johnson, J. L. , Yaron T. M., Huntsman E. M., et al. 2023. “An Atlas of Substrate Specificities for the Human Serine/Threonine Kinome.” Nature 613, no. 7945: 759–766. 10.1038/s41586-022-05575-3. PubMed DOI PMC

Kanie, T. , Liu B., Love J. F., Fisher S. D., Gustavsson A.‐K., and Jackson P. K.. 2025. “A Hierarchical Pathway for Assembly of the Distal Appendages That Organize Primary Cilia.” eLife 14: e85999. 10.7554/eLife.85999. PubMed DOI PMC

Kasahara, K. , Aoki H., Kiyono T., et al. 2018. “EGF Receptor Kinase Suppresses Ciliogenesis Through Activation of USP8 Deubiquitinase.” Nature Communications 9, no. 1: 758. 10.1038/s41467-018-03117-y. PubMed DOI PMC

Kiesel, P. , Alvarez Viar G., Tsoy N., et al. 2020. “The Molecular Structure of Mammalian Primary Cilia Revealed by Cryo‐Electron Tomography.” Nature Structural & Molecular Biology 27, no. 12: 1115–1124. 10.1038/s41594-020-0507-4. PubMed DOI PMC

Kim, J. , Jo H., Hong H., et al. 2015. “Actin Remodelling Factors Control Ciliogenesis by Regulating YAP/TAZ Activity and Vesicle Trafficking.” Nature Communications 6, no. 1: 6781. 10.1038/ncomms7781. PubMed DOI

Kim, J. , Lee J. E., Heynen‐Genel S., et al. 2010. “Functional Genomic Screen for Modulators of Ciliogenesis and Cilium Length.” Nature 464, no. 7291: 1048–1051. 10.1038/nature08895. PubMed DOI PMC

Kim, M. , Kim M., Lee M.‐S., Kim C.‐H., and Lim D.‐S.. 2014. “The MST1/2‐SAV1 Complex of the Hippo Pathway Promotes Ciliogenesis.” Nature Communications 5, no. 1: 5370. 10.1038/ncomms6370. PubMed DOI

Kim, S. , Lee K., Choi J.‐H., Ringstad N., and Dynlacht B. D.. 2015. “Nek2 Activation of Kif24 Ensures Cilium Disassembly During the Cell Cycle.” Nature Communications 6: 8087. 10.1038/ncomms9087. PubMed DOI PMC

Kong, D. , Farmer V., Shukla A., et al. 2014. “Centriole Maturation Requires Regulated Plk1 Activity During Two Consecutive Cell Cycles.” Journal of Cell Biology 206, no. 7: 855–865. 10.1083/jcb.201407087. PubMed DOI PMC

Kuhns, S. , Schmidt K. N., Reymann J., et al. 2013. “The Microtubule Affinity Regulating Kinase MARK4 Promotes Axoneme Extension During Early Ciliogenesis.” Journal of Cell Biology 200, no. 4: 505–522. 10.1083/jcb.201206013. PubMed DOI PMC

Kunova Bosakova, M. , Varecha M., Hampl M., et al. 2018. “Regulation of Ciliary Function by Fibroblast Growth Factor Signaling Identifies FGFR3‐Related Disorders Achondroplasia and Thanatophoric Dysplasia as Ciliopathies.” Human Molecular Genetics 27, no. 6: 1093–1105. 10.1093/hmg/ddy031. PubMed DOI PMC

Lacey, S. E. , and Pigino G.. 2024. “The Intraflagellar Transport Cycle.” Nature Reviews Molecular Cell Biology 26, no. 3: 1–18. 10.1038/s41580-024-00797-x. PubMed DOI

Lee, K. H. , Johmura Y., Yu L.‐R., et al. 2012. “Identification of a Novel Wnt5a‐CK1ɛ‐Dvl2‐Plk1‐Mediated Primary Cilia Disassembly Pathway.” EMBO Journal 31, no. 14: 3104–3117. 10.1038/emboj.2012.144. PubMed DOI PMC

Lin, I.‐H. , Li Y.‐R., Chang C.‐H., et al. 2024. “Regulation of Primary Cilia Disassembly Through HUWE1‐Mediated TTBK2 Degradation Plays a Crucial Role in Cerebellar Development and Medulloblastoma Growth.” Cell Death and Differentiation 31, no. 10: 1349–1361. 10.1038/s41418-024-01325-2. PubMed DOI PMC

Lizcano, J. M. , Göransson O., Toth R., et al. 2004. “LKB1 Is a Master Kinase That Activates 13 Kinases of the AMPK Subfamily, Including MARK/PAR‐1.” EMBO Journal 23, no. 4: 833–843. 10.1038/sj.emboj.7600110. PubMed DOI PMC

Lo, C.‐H. , Lin I.‐H., Yang T. T., et al. 2019. “Phosphorylation of CEP83 by TTBK2 Is Necessary for Cilia Initiation.” Journal of Cell Biology 218, no. 10: 3489–3505. 10.1083/jcb.201811142. PubMed DOI PMC

Loukil, A. , Barrington C., and Goetz S. C.. 2021. “A Complex of Distal Appendage‐Associated Kinases Linked to Human Disease Regulates Ciliary Trafficking and Stability.” Proceedings of the National Academy of Sciences of the United States of America 118, no. 16: e2018740118. 10.1073/pnas.2018740118. PubMed DOI PMC

Lu, Q. , Insinna C., Ott C., et al. 2015. “Early Steps in Primary Cilium Assembly Require EHD1/EHD3‐Dependent Ciliary Vesicle Formation.” Nature Cell Biology 17, no. 3: 228–240. 10.1038/ncb3109. PubMed DOI PMC

Łysyganicz, P. K. , Pooranachandran N., Liu X., et al. 2021. “Loss of Deacetylation Enzymes Hdac6 and Sirt2 Promotes Acetylation of Cytoplasmic Tubulin, but Suppresses Axonemal Acetylation in Zebrafish Cilia.” Frontiers in Cell and Developmental Biology 9: 676214. 10.3389/fcell.2021.676214. PubMed DOI PMC

Ma, D. , Wang F., Teng J., Huang N., and Chen J.. 2023. “Structure and Function of Distal and Subdistal Appendages of the Mother Centriole.” Journal of Cell Science 136, no. 3: jcs260560. 10.1242/jcs.260560. PubMed DOI

Maurya, A. K. , Rogers T., and Sengupta P.. 2019. “A CCRK and a MAK Kinase Modulate Cilia Branching and Length via Regulation of Axonemal Microtubule Dynamics in Caenorhabditis Elegans.” Current Biology: CB 29, no. 8: 1286–1300. 10.1016/j.cub.2019.02.062. PubMed DOI PMC

Mill, P. , Christensen S. T., and Pedersen L. B.. 2023. “Primary Cilia as Dynamic and Diverse Signalling Hubs in Development and Disease.” Nature Reviews. Genetics 24, no. 7: 421–441. 10.1038/s41576-023-00587-9. PubMed DOI PMC

Mirvis, M. , Siemers K. A., Nelson W. J., and Stearns T. P.. 2019. “Primary Cilium Loss in Mammalian Cells Occurs Predominantly by Whole‐Cilium Shedding.” PLoS Biology 17, no. 7: e3000381. 10.1371/journal.pbio.3000381. PubMed DOI PMC

Miyamoto, T. , Hosoba K., Ochiai H., et al. 2015. “The Microtubule‐Depolymerizing Activity of a Mitotic Kinesin Protein KIF2A Drives Primary Cilia Disassembly Coupled With Cell Proliferation.” Cell Reports 10: 664–673. 10.1016/j.celrep.2015.01.003. PubMed DOI PMC

Nager, A. R. , Goldstein J. S., Herranz‐Pérez V., et al. 2017. “An Actin Network Dispatches Ciliary GPCRs Into Extracellular Vesicles to Modulate Signaling.” Cell 168, no. 1–2: 252–263. 10.1016/j.cell.2016.11.036. PubMed DOI PMC

Nakamura, K. , Noguchi T., Takahara M., et al. 2020. “Anterograde Trafficking of Ciliary MAP Kinase‐Like ICK/CILK1 by the Intraflagellar Transport Machinery Is Required for Intraciliary Retrograde Protein Trafficking.” Journal of Biological Chemistry 295, no. 38: 13363–13376. 10.1074/jbc.RA120.014142. PubMed DOI PMC

Needham, E. J. , Parker B. L., Burykin T., James D. E., and Humphrey S. J.. 2019. “Illuminating the Dark Phosphoproteome.” Science Signaling 12, no. 565: eaau8645. 10.1126/scisignal.aau8645. PubMed DOI

Nguyen, A. , and Goetz S. C.. 2023. “TTBK2 Controls Cilium Stability by Regulating Distinct Modules of Centrosomal Proteins.” Molecular Biology of the Cell 34, no. 1: ar8. 10.1091/mbc.E22-08-0373. PubMed DOI PMC

Nigg, E. A. , Čajánek L., and Arquint C.. 2014. “The Centrosome Duplication Cycle in Health and Disease.” FEBS Letters 588, no. 15: 2366–2372. 10.1016/j.febslet.2014.06.030. PubMed DOI

Ott, C. M. , Constable S., Nguyen T. M., et al. 2024. “Permanent Deconstruction of Intracellular Primary Cilia in Differentiating Granule Cell Neurons.” Journal of Cell Biology 223, no. 10: e202404038. 10.1083/jcb.202404038. PubMed DOI PMC

Otto, E. A. , Trapp M. L., Schultheiss U. T., Helou J., Quarmby L. M., and Hildebrandt F.. 2008. “NEK8 Mutations Affect Ciliary and Centrosomal Localization and May Cause Nephronophthisis.” Journal of the American Society of Nephrology: JASN 19, no. 3: 587. 10.1681/ASN.2007040490. PubMed DOI PMC

Pan, J. , Wang Q., and Snell W. J.. 2004. “An Aurora Kinase Is Essential for Flagellar Disassembly in Chlamydomonas.” Developmental Cell 6, no. 3: 445–451. 10.1016/s1534-5807(04)00064-4. PubMed DOI

Park, K. , and Leroux M. R.. 2022. “Composition, Organization and Mechanisms of the Transition Zone, a Gate for the Cilium.” EMBO Reports 23, no. 12: e55420. 10.15252/embr.202255420. PubMed DOI PMC

Patel, H. , Li J., Herrero A., et al. 2020. “Novel Roles of PRK1 and PRK2 in Cilia and Cancer Biology.” Scientific Reports 10, no. 1: 3902. 10.1038/s41598-020-60604-3. PubMed DOI PMC

Pedersen, L. B. , and Rosenbaum J. L.. 2008. “Chapter Two Intraflagellar Transport (IFT): Role in Ciliary Assembly, Resorption and Signalling.” In Current Topics in Developmental Biology, vol. 85, 23–61. Academic Press. 10.1016/S0070-2153(08)00802-8. PubMed DOI

Phua, S. C. , Chiba S., Suzuki M., et al. 2017. “Dynamic Remodeling of Membrane Composition Drives Cell Cycle Through Primary Cilia Excision.” Cell 168, no. 1–2: 264–279. 10.1016/j.cell.2016.12.032. PubMed DOI PMC

Plotnikova, O. V. , Nikonova A. S., Loskutov Y. V., Kozyulina P. Y., Pugacheva E. N., and Golemis E. A.. 2012. “Calmodulin Activation of Aurora‐A Kinase (AURKA) is Required During Ciliary Disassembly and in Mitosis.” Molecular Biology of the Cell 23, no. 14: 2658–2670. 10.1091/mbc.e11-12-1056. PubMed DOI PMC

Poon, C. L. C. , Lin J. I., Zhang X., and Harvey K. F.. 2011. “The Sterile 20‐Like Kinase Tao‐1 Controls Tissue Growth by Regulating the Salvador‐Warts‐Hippo Pathway.” Developmental Cell 21, no. 5: 896–906. 10.1016/j.devcel.2011.09.012. PubMed DOI

Prasai, A. , Ivashchenko O., Maskova K., et al. 2024. “Bbsome‐Deficient Cells Activate Intraciliary CDC42 to Trigger Actin‐Dependent Ciliary Ectocytosis.” EMBO Reports 26, no. 1: 36–60. 10.1038/s44319-024-00326-z. PubMed DOI PMC

Pugacheva, E. N. , and Golemis E. A.. 2005. “The Focal Adhesion Scaffolding Protein HEF1 Regulates Activation of the Aurora‐A and Nek2 Kinases at the Centrosome.” Nature Cell Biology 7, no. 10: 937–946. 10.1038/ncb1309. PubMed DOI PMC

Pugacheva, E. N. , Jablonski S. A., Hartman T. R., Henske E. P., and Golemis E. A.. 2007. “HEF1‐Dependent Aurora A Activation Induces Disassembly of the Primary Cilium.” Cell 129, no. 7: 1351–1363. 10.1016/j.cell.2007.04.035. PubMed DOI PMC

Quarmby, L. M. 2004. “Cellular Deflagellation.” International Review of Cytology 233: 47–91. 10.1016/S0074-7696(04)33002-0. PubMed DOI

Quarmby, L. M. , and Mahjoub M. R.. 2005. “Caught Nek‐Ing: Cilia and Centrioles.” Journal of Cell Science 118, no. 22: 5161–5169. 10.1242/jcs.02681. PubMed DOI

Reilly, M. L. , and Benmerah A.. 2019. “Ciliary Kinesins Beyond IFT: Cilium Length, Disassembly, Cargo Transport and Signalling.” Biology of the Cell 111, no. 4: 79–94. 10.1111/boc.201800074. PubMed DOI

Reiter, J. F. , and Leroux M. R.. 2017. “Genes and Molecular Pathways Underpinning Ciliopathies.” Nature Reviews. Molecular Cell Biology 18, no. 9: 533–547. 10.1038/nrm.2017.60. PubMed DOI PMC

Sakaji, K. , Ebrahimiazar S., Harigae Y., et al. 2023. “MAST4 Promotes Primary Ciliary Resorption Through Phosphorylation of Tctex‐1.” Life Science Alliance 6, no. 11: e202301947. 10.26508/lsa.202301947. PubMed DOI PMC

Schmidt, T. I. , Kleylein‐Sohn J., Westendorf J., et al. 2009. “Control of Centriole Length by CPAP and CP110.” Current Biology: CB 19, no. 12: 1005–1011. 10.1016/j.cub.2009.05.016. PubMed DOI

Scholey, J. M. 2008. “Intraflagellar Transport Motors in Cilia: Moving Along the Cell's Antenna.” Journal of Cell Biology 180, no. 1: 23–29. 10.1083/jcb.200709133. PubMed DOI PMC

Seeley, E. S. , and Nachury M. V.. 2010. “The Perennial Organelle: Assembly and Disassembly of the Primary Cilium.” Journal of Cell Science 123, no. 4: 511–518. 10.1242/jcs.061093. PubMed DOI PMC

Seki, A. , Coppinger J. A., Jang C.‐Y., Yates J. R. III, and Fang G.. 2008. “Bora and Aurora A Cooperatively Activate Plk1 and Control the Entry Into Mitosis.” Science 320, no. 5883: 1655. 10.1126/science.1157425. PubMed DOI PMC

Shakya, S. , and Westlake C. J.. 2021. “Recent Advances in Understanding Assembly of the Primary Cilium Membrane.” Faculty Reviews 10: 16. 10.12703/r/10-16. PubMed DOI PMC

Silva, I. R. e. , Binó L., Johnson C. M., et al. 2022. “Molecular Mechanisms Underlying the Role of the Centriolar CEP164‐TTBK2 Complex in Ciliopathies.” Structure 30, no. 1: 114. 10.1016/j.str.2021.08.007. PubMed DOI PMC

Sobu, Y. , Wawro P. S., Dhekne H. S., Yeshaw W. M., and Pfeffer S. R.. 2021. “Pathogenic LRRK2 Regulates Ciliation Probability Upstream of Tau Tubulin Kinase 2 via Rab10 and RILPL1 Proteins.” Proceedings of the National Academy of Sciences 118, no. 10: e2005894118. 10.1073/pnas.2005894118. PubMed DOI PMC

Sorokin, S. 1962. “Centrioles and the Formation of Rudimentary Cilia by Fibroblasts and Smooth Muscle Cells.” Journal of Cell Biology 15: 363–377. PubMed PMC

Spalluto, C. , Wilson D. I., and Hearn T.. 2012. “Nek2 Localises to the Distal Portion of the Mother Centriole/Basal Body and Is Required for Timely Cilium Disassembly at the G2/M Transition.” European Journal of Cell Biology 91, no. 9: 675–686. 10.1016/j.ejcb.2012.03.009. PubMed DOI

Spektor, A. , Tsang W. Y., Khoo D., and Dynlacht B. D.. 2007. “Cep97 and CP110 Suppress a Cilia Assembly Program.” Cell 130, no. 4: 678–690. 10.1016/j.cell.2007.06.027. PubMed DOI

Steger, M. , Diez F., Dhekne H. S., et al. 2017. “Systematic Proteomic Analysis of LRRK2‐Mediated Rab GTPase Phosphorylation Establishes a Connection to Ciliogenesis.” eLife 6: e31012. 10.7554/eLife.31012. PubMed DOI PMC

Stoetzel, C. , Bär S., De Craene J.‐O., et al. 2016. “A Mutation in VPS15 (PIK3R4) Causes a Ciliopathy and Affects IFT20 Release From the Cis‐Golgi.” Nature Communications 7, no. 13: 586. 10.1038/ncomms13586. PubMed DOI PMC

Stuck, M. W. , Chong W. M., Liao J.‐C., and Pazour G. J.. 2021. “Rab34 Is Necessary for Early Stages of Intracellular Ciliogenesis.” Current Biology: CB 31, no. 13: 2887–2894. 10.1016/j.cub.2021.04.018. PubMed DOI PMC

Sun, S. , Fisher R. L., Bowser S. S., Pentecost B. T., and Sui H.. 2019. “Three‐Dimensional Architecture of Epithelial Primary Cilia.” Proceedings of the National Academy of Sciences of the United States of America 116, no. 19: 9370–9379. 10.1073/pnas.1821064116. PubMed DOI PMC

Tanos, B. E. , Yang H. J., Soni R., et al. 2013. “Centriole Distal Appendages Promote Membrane Docking, Leading to Cilia Initiation.” Genes & Development 27, no. 2: 163–168. 10.1101/gad.207043.112. PubMed DOI PMC

Taylor, L. M. , McMillan P. J., Kraemer B. C., and Liachko N. F.. 2019. “Tau Tubulin Kinases in Proteinopathy.” FEBS Journal 286, no. 13: 2434–2446. 10.1111/febs.14866. PubMed DOI PMC

Thiel, C. , Kessler K., Giessl A., et al. 2011. “NEK1 Mutations Cause Short‐Rib Polydactyly Syndrome Type Majewski.” American Journal of Human Genetics 88, no. 1: 106–114. 10.1016/j.ajhg.2010.12.004. PubMed DOI PMC

Upadhya, P. , Birkenmeier E. H., Birkenmeier C. S., and Barker J. E.. 2000. “Mutations in a NIMA‐Related Kinase Gene, Nek1, Cause Pleiotropic Effects Including a Progressive Polycystic Kidney Disease in Mice.” Proceedings of the National Academy of Sciences 97, no. 1: 217–221. 10.1073/pnas.97.1.217. PubMed DOI PMC

Viol, L. , Hata S., Pastor‐Peidro A., et al. 2020. “Nek2 Kinase Displaces Distal Appendages From the Mother Centriole Prior to Mitosis.” Journal of Cell Biology 219, no. 3: e201907136. 10.1083/jcb.201907136. PubMed DOI PMC

Vysloužil, B. D. , Bernatík O., Lánská E., et al. 2025. “Tau‐Tubulin Kinase 2 Restrains Microtubule‐Depolymerizer KIF2A to Support Primary Cilia Growth.” Cell Communication and Signaling 23, no. 1: 73. 10.1186/s12964-025-02072-8. PubMed DOI PMC

Walentek, P. , Quigley I. K., Sun D. I., Sajjan U. K., Kintner C., and Harland R. M.. 2016. “Ciliary Transcription Factors and miRNAs Precisely Regulate Cp110 Levels Required for Ciliary Adhesions and Ciliogenesis.” eLife 5: e17557. 10.7554/eLife.17557. PubMed DOI PMC

Wang, G. , Chen Q., Zhang X., et al. 2013. “PCM1 Recruits Plk1 to Pericentriolar Matrix to Promote Primary Cilia Disassembly Before Mitotic Entry.” Journal of Cell Science 126, no. 6: 1355–1365. 10.1242/jcs.114918. PubMed DOI

Watanabe, T. , Kakeno M., Matsui T., et al. 2015. “TTBK2 With EB1/3 Regulates Microtubule Dynamics in Migrating Cells Through KIF2A Phosphorylation.” Journal of Cell Biology 210, no. 5: 737–751. 10.1083/jcb.201412075. PubMed DOI PMC

Wells, C. M. , and Jones G. E.. 2010. “The Emerging Importance of Group II PAKs.” Biochemical Journal 425, no. 3: 465–473. 10.1042/BJ20091173. PubMed DOI

Wu, C.‐T. , Chen H.‐Y., and Tang T. K.. 2018. “Myosin‐Va Is Required for Preciliary Vesicle Transportation to the Mother Centriole During Ciliogenesis.” Nature Cell Biology 20, no. 2: 175–185. 10.1038/s41556-017-0018-7. PubMed DOI

Xu, Q. , Zhang Y., Wei Q., Huang Y., Hu J., and Ling K.. 2016. “Phosphatidylinositol Phosphate Kinase PIPKIγ and Phosphatase INPP5E Coordinate Initiation of Ciliogenesis.” Nature Communications 7: 10777. 10.1038/ncomms10777. PubMed DOI PMC

Yadav, S. P. , Sharma N. K., Liu C., Dong L., Li T., and Swaroop A.. 2016. “Centrosomal Protein CP110 Controls Maturation of the Mother Centriole During Cilia Biogenesis.” Development (Cambridge, England) 143, no. 9: 1491–1501. 10.1242/dev.130120. PubMed DOI PMC

Yi, P. , Xie C., and Ou G.. 2018. “The Kinases Male Germ Cell‐Associated Kinase and Cell Cycle‐Related Kinase Regulate Kinesin‐2 Motility in Neuronal Cilia.” Traffic 19, no. 7: 522–535. 10.1111/tra.12572. PubMed DOI

Yin, F. , Chen Q., Shi Y., et al. 2022. “Activation of EGFR‐Aurora A Induces Loss of Primary Cilia in Oral Squamous Cell Carcinoma.” Oral Diseases 28, no. 3: 621–630. 10.1111/odi.13791. PubMed DOI

Zhang, B. , Wang G., Xu X., et al. 2017. “DAZ‐Interacting Protein 1 (Dzip1) Phosphorylation by Polo‐Like Kinase 1 (Plk1) Regulates the Centriolar Satellite Localization of the BBSome Protein During the Cell Cycle.” Journal of Biological Chemistry 292, no. 4: 1351–1360. 10.1074/jbc.M116.765438. PubMed DOI PMC

Zhang, Y. , Kwon S., Yamaguchi T., et al. 2008. “Mice Lacking Histone Deacetylase 6 Have Hyperacetylated Tubulin but Are Viable and Develop Normally.” Molecular and Cellular Biology 28, no. 5: 1688–1701. 10.1128/MCB.01154-06. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...