Observation of super-Alfvénic slippage of reconnecting magnetic field lines on the Sun
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39866551
PubMed Central
PMC11757146
DOI
10.1038/s41550-024-02396-4
PII: 2396
Knihovny.cz E-zdroje
- Klíčová slova
- Astrophysical magnetic fields, Astrophysical plasmas, Solar physics,
- Publikační typ
- časopisecké články MeSH
Slipping motions of magnetic field lines are a distinct signature of three-dimensional magnetic reconnection, a fundamental process driving solar and stellar flares. While being a key prediction of numerical experiments, the rapid super-Alfvénic field line slippage driven by the 'slip-running' reconnection has remained elusive in previous observations. New frontiers into exploring transient flare phenomena were introduced by recently designed high cadence observing programs of the Interface Region Imaging Spectrograph (IRIS). By exploiting high temporal resolution imagery (~2 s) of IRIS, here we reveal slipping motions of flare kernels at speeds reaching thousands of kilometres per second. The fast kernel motions are direct evidence of slip-running reconnection in quasi-separatrix layers, regions where magnetic field strongly changes its connectivity. Our results provide observational proof of theoretical predictions unaddressed for nearly two decades and extend the range of magnetic field configurations where reconnection-related phenomena can occur.
Astronomical Institute of the Czech Academy of Sciences Ondřejov Czech Republic
Bay Area Environmental Research Institute NASA Research Park Moffett Field CA USA
Department of Physics Oregon State University Corvallis OR USA
Institute of Theoretical Astrophysics University of Oslo Blindern Norway
Lockheed Martin Solar and Astrophysics Laboratory Palo Alto CA USA
Rosseland Center for Solar Physics University of Oslo Blindern Norway
Zobrazit více v PubMed
Zweibel, E. G. & Yamada, M. Magnetic reconnection in astrophysical and laboratory plasmas. Annu. Rev. Astron. Astrophys.47, 291–332 (2009).
Nagai, F. & Emslie, A. G. Gas dynamics in the impulsive phase of solar flares. I Thick-target heating by nonthermal electrons. Astrophys. J.279, 896–908 (1984).
Warren, H. P. & Warshall, A. D. Ultraviolet flare ribbon brightenings and the onset of hard X-ray emission. Astrophys. J. Lett.560, L87–L90 (2001).
Acton, L. W. et al. Chromospheric evaporation in a well-observed compact flare. Astrophys. J.263, 409–422 (1982).
Asai, A. et al. Flare ribbon expansion and energy release rate. Astrophys. J.611, 557–567 (2004).
Qiu, J., Wang, H., Cheng, C. Z. & Gary, D. E. Magnetic reconnection and mass acceleration in flare-coronal mass ejection events. Astrophys. J.604, 900–905 (2004).
Fletcher, L., Pollock, J. A. & Potts, H. E. Tracking of TRACE ultraviolet flare footpoints. Solar Phys.222, 279–298 (2004).
Dudík, J. et al. Slipping magnetic reconnection during an X-class solar flare observed by SDO/AIA. Astrophys. J.784, 144 (2014).
Li, T. & Zhang, J. Quasi-periodic slipping magnetic reconnection during an X-class solar flare observed by the Solar Dynamics Observatory and Interface Region Imaging Spectrograph. Astrophys. J. Lett.804, L8 (2015).
Lörinčík, J., Aulanier, G., Dudík, J., Zemanová, A. & Dzifčáková, E. Velocities of flare kernels and the mapping norm of field line connectivity. Astrophys. J.881, 68 (2019).
Priest, E. R. & Forbes, T. G. Magnetic flipping: reconnection in three dimensions without null points. J. Geophys. Res.97, 1521–1531 (1992).
Aulanier, G., Pariat, E., Démoulin, P. & Devore, C. R. Slip-running reconnection in quasi-separatrix layers. Solar Phys.238, 347–376 (2006).
Aulanier, G. et al. Slipping magnetic reconnection in coronal loops. Science318, 1588–1591 (2007). PubMed
Sun, X. et al. Hot spine loops and the nature of a late-phase solar flare. Astrophys. J.778, 139 (2013).
Li, T. & Zhang, J. Slipping magnetic reconnection triggering a solar eruption of a triangle-shaped flag flux rope. Astrophys. J. Lett.791, L13 (2014).
Li, T., Yang, K., Hou, Y. & Zhang, J. Slipping magnetic reconnection of flux-rope structures as a precursor to an eruptive X-class solar flare. Astrophys. J.830, 152 (2016).
Pan, H., Gou, T. & Liu, R. Sigmoid formation through slippage of a single J-shaped coronal loop. Astrophys. J.937, 77 (2022).
Dudík, J. et al. Slipping magnetic reconnection, chromospheric evaporation, implosion, and precursors in the 2014 September 10 X1.6-class solar flare. Astrophys. J.823, 41 (2016).
Priest, E. R. & Démoulin, P. Three-dimensional magnetic reconnection without null points. 1. Basic theory of magnetic flipping. J. Geophys. Res.100, 23443–23464 (1995).
Demoulin, P., Henoux, J. C., Priest, E. R. & Mandrini, C. H. Quasi-separatrix layers in solar flares. I. Method. Astron. Astrophys.308, 643–655 (1996).
Pontin, D. I., Galsgaard, K., Hornig, G. & Priest, E. R. A fully magnetohydrodynamic simulation of three-dimensional non-null reconnection. Phys. Plasmas12, 052307 (2005).
Demoulin, P., Bagala, L. G., Mandrini, C. H., Henoux, J. C. & Rovira, M. G. Quasi-separatrix layers in solar flares. II. Observed magnetic configurations. Astron. Astrophys.325, 305–317 (1997).
Mandrini, C. H. et al. Evidence of magnetic reconnection from Hα, soft X-ray and photospheric magnetic field observations. Solar Phys.174, 229–240 (1997).
Schmieder, B. et al. What is the role of magnetic null points in large flares? Adv. Space Res.39, 1840–1846 (2007).
Lawrence, E. E. & Gekelman, W. Identification of a quasiseparatrix layer in a reconnecting laboratory magnetoplasma. Phys. Rev. Lett.103, 105002 (2009). PubMed
Savcheva, A. et al. The relation between solar eruption topologies and observed flare features. I. Flare ribbons. Astrophys. J.810, 96 (2015).
Zhao, J. et al. Hooked flare ribbons and flux-rope-related QSL footprints. Astrophys. J.823, 62 (2016).
Aulanier, G., Pariat, E. & Démoulin, P. Current sheet formation in quasi-separatrix layers and hyperbolic flux tubes. Astron. Astrophys.444, 961–976 (2005).
Aulanier, G., Janvier, M. & Schmieder, B. The standard flare model in three dimensions. I. Strong-to-weak shear transition in post-flare loops. Astron. Astrophys.543, A110 (2012).
Janvier, M., Aulanier, G., Pariat, E. & Démoulin, P. The standard flare model in three dimensions. III. Slip-running reconnection properties. Astron. Astrophys.555, A77 (2013).
Warmuth, A. & Mann, G. A model of the Alfvén speed in the solar corona. Astron. Astrophys.435, 1123–1135 (2005).
Carmichael, H. A process for flares. NASA Spec. Publ.50, 451 (1964).
Sturrock, P. A. Model of the high-energy phase of solar flares. Nature211, 695–697 (1966).
Hirayama, T. Theoretical model of flares and prominences. I: evaporating flare model. Solar Phys.34, 323–338 (1974).
Kopp, R. A. & Pneuman, G. W. Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys.50, 85–98 (1976).
Titov, V. S., Hornig, G. & Démoulin, P. Theory of magnetic connectivity in the solar corona. J. Geophys. Res.(Space Phys.)107, 1164 (2002).
De Pontieu, B. et al. The Interface Region Imaging Spectrograph (IRIS). Solar Phys.289, 2733–2779 (2014). PubMed PMC
Pesnell, W. D., Thompson, B. J. & Chamberlin, P. C. The Solar Dynamics Observatory (SDO). Solar Phys.275, 3–15 (2012).
Lemen, J. R. et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys.275, 17–40 (2012).
Scherrer, P. H. et al. The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys.275, 207–227 (2012). PubMed PMC
Testa, P. et al. Observing coronal nanoflares in active region moss. Astrophys. J. Lett.770, L1 (2013).
Courrier, H., Kankelborg, C., De Pontieu, B. & Wülser, J.-P. An on orbit determination of point spread functions for the Interface Region Imaging Spectrograph. Solar Phys.293, 125 (2018). PubMed PMC
SunPy Community. The SunPy project: open source development and status of the version 1.0 core package. Astrophys. J.890, 68 (2020).
O’Dwyer, B., Del Zanna, G., Mason, H. E., Weber, M. A. & Tripathi, D. SDO/AIA response to coronal hole, quiet Sun, active region, and flare plasma. Astron. Astrophys.521, A21 (2010).
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng.9, 90–95 (2007).
Lörinčík, J., Dudík, J., Aulanier, G., Schmieder, B. & Golub, L. Imaging evidence for solar wind outflows originating from a coronal mass ejection footpoint. Astrophys. J.906, 62 (2021).
Dudík, J., Zuccarello, F. P., Aulanier, G., Schmieder, B. & Démoulin, P. Expanding and contracting coronal loops as evidence of vortex flows induced by solar eruptions. Astrophys. J.844, 54 (2017).
Handy, B. N. et al. The transition region and coronal explorer. Solar Phys.187, 229–260 (1999).
Golub, L. et al. A new view of the solar corona from the transition region and coronal explorer (TRACE). Phys. Plasmas6, 2205–2216 (1999).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods17, 261–272 (2020). PubMed PMC
Bradski, G. The OpenCV library. Dr. Dobba’s J.120, 122–125 (2000).
Hannah, I. G. & Kontar, E. P. Multi-thermal dynamics and energetics of a coronal mass ejection in the low solar atmosphere. Astron. Astrophys.553, A10 (2013).
Pariat, E. & Démoulin, P. Estimation of the squashing degree within a three-dimensional domain. Astron. Astrophys.541, A78 (2012).