A DOF transcriptional repressor-gibberellin feedback loop plays a crucial role in modulating light-independent seed germination
Language English Country China Media print-electronic
Document type Journal Article
PubMed
39876558
PubMed Central
PMC12010397
DOI
10.1016/j.xplc.2025.101262
PII: S2590-3462(25)00024-0
Knihovny.cz E-resources
- Keywords
- Cardamine hirsuta, DOF AFFECTING GERMINATION1, gibberellins, light, seed germination,
- MeSH
- Arabidopsis genetics metabolism MeSH
- Cardamine * genetics metabolism physiology radiation effects growth & development MeSH
- Gibberellins * metabolism MeSH
- Germination * radiation effects genetics physiology MeSH
- Arabidopsis Proteins metabolism genetics MeSH
- Gene Expression Regulation, Plant MeSH
- Seeds * growth & development genetics radiation effects metabolism MeSH
- Light MeSH
- Transcription Factors metabolism genetics MeSH
- Feedback, Physiological MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Gibberellins * MeSH
- Arabidopsis Proteins MeSH
- Transcription Factors MeSH
Plants have evolved several strategies to cope with the ever-changing environment. One example of this is given by seed germination, which must occur when environmental conditions are suitable for plant life. In the model system Arabidopsis thaliana seed germination is induced by light; however, in nature, seeds of several plant species can germinate regardless of this stimulus. While the molecular mechanisms underlying light-induced seed germination are well understood, those governing germination in the dark are still vague, mostly due to the lack of suitable model systems. Here, we employ Cardamine hirsuta, a close relative of Arabidopsis, as a powerful model system to uncover the molecular mechanisms underlying light-independent germination. By comparing Cardamine and Arabidopsis, we show that maintenance of the pro-germination hormone gibberellin (GA) levels prompt Cardamine seeds to germinate under both dark and light conditions. Using genetic and molecular biology experiments, we show that the Cardamine DOF transcriptional repressor DOF AFFECTING GERMINATION 1 (ChDAG1), homologous to the Arabidopsis transcription factor DAG1, is involved in this process functioning to mitigate GA levels by negatively regulating GA biosynthetic genes ChGA3OX1 and ChGA3OX2, independently of light conditions. We also demonstrate that this mechanism is likely conserved in other Brassicaceae species capable of germinating in dark conditions, such as Lepidium sativum and Camelina sativa. Our data support Cardamine as a new model system suitable for studying light-independent germination studies. Exploiting this system, we have also resolved a long-standing question about the mechanisms controlling light-independent germination in plants, opening new frontiers for future research.
Department of Biology and Biotechnology Charles Darwin Sapienza via dei Sardi 70 00185 Rome Italy
Department of Biology University of Pisa via L Ghini 13 56126 Pisa Italy
See more in PubMed
Alvim Kamei C.L., Pieper B., Laurent S., Tsiantis M., Huijser P. CRISPR/Cas9-Mediated Mutagenesis of RCO in Cardamine hirsuta. Plants. 2020;9 PubMed PMC
Arana M.V., Sánchez-Lamas M., Strasser B., Ibarra S.E., Cerdán P.D., Botto J.F., Sánchez R.A. Functional diversity of phytochrome family in the control of light and gibberellin-mediated germination in Arabidopsis. Plant Cell Environ. 2014;37:2014–2023. PubMed
Baskin C.C., Baskin J.M. Elsevier; 1998. Seeds: Ecology, Biogeography, and, Evolution of Dormancy and Germination.
Baumgarten L., Pieper B., Song B., Mane S., Lempe J., Lamb J., Cooke E.L., Srivastava R., Strütt S., Žanko D., et al. Pan-European study of genotypes and phenotypes in the Arabidopsis relative Cardamine hirsuta reveals how adaptation, demography, and development shape diversity patterns. PLoS Biol. 2023;21 PubMed PMC
Bertolotti G., Unterholzner S.J., Scintu D., Salvi E., Svolacchia N., Di Mambro R., Ruta V., Linhares Scaglia F., Vittorioso P., Sabatini S., et al. A PHABULOSA-Controlled Genetic Pathway Regulates Ground Tissue Patterning in the Arabidopsis Root. Curr. Biol. 2021;31:420–426.e6. PubMed PMC
Bewley J.D. Seed Germination and Dormancy. Plant Cell. 1997;9:1055–1066. PubMed PMC
Boccaccini A., Santopolo S., Capauto D., Lorrai R., Minutello E., Serino G., Costantino P., Vittorioso P. The DOF protein DAG1 and the DELLA protein GAI cooperate in negatively regulating the AtGA3ox1 gene. Mol. Plant. 2014;7:1486–1489. PubMed
Boccaccini A., Lorrai R., Ruta V., Frey A., Mercey-Boutet S., Marion-Poll A., Tarkowská D., Strnad M., Costantino P., Vittorioso P. The DAG1 transcription factor negatively regulates the seed-to-seedling transition in Arabidopsis acting on ABA and GA levels. BMC Plant Biol. 2016;16:198. PubMed PMC
Borthwick H.A., Hendricks S.B., Parker M.W., Toole E.H., Toole V.K. A Reversible Photoreaction Controlling Seed Germination. Proc. Natl. Acad. Sci. USA. 1952;38:662–666. PubMed PMC
Borthwick H.A., Hendricks S.B., Toole E.H., Toole V.K. Action of Light on Lettuce-Seed Germination. Bot. Gaz. 1954;115:205–225.
Botto J.F., Sanchez R.A., Whitelam G.C., Casal J.J. Phytochrome A Mediates the Promotion of Seed Germination by Very Low Fluences of Light and Canopy Shade Light in Arabidopsis. Plant Physiol. 1996;110:439–444. PubMed PMC
Carta A., Skourti E., Mattana E., Vandelook F., Thanos C.A. Photoinhibition of seed germination: occurrence, ecology and phylogeny. Seed Sci. Res. 2017;27:131–153.
Casal J.J., Sánchez R.A., Botto J.F. Modes of action of phytochromes. J. Exp. Bot. 1998;49:127–138.
Chen F., Bradford K.J. Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiol. 2000;124:1265–1274. PubMed PMC
Clough S.J., Bent A.F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743. PubMed
Davière J.-M., Achard P. Gibberellin signaling in plants. Development. 2013;140:1147–1151. PubMed
Derkx M., Karssen C.M. Are Seasonal Dormancy Patterns in Arabidopsis thaliana Regulated by Changes in Seed Sensitivity to Light, Nitrate and Gibberellin? Ann. Bot. 1994;73:129–136.
Derkx M.P.M., Smidt W.J., Van der Plas L.H.W., Karssen C.M. Changes in dormancy of Sisymbrium officinaleseeds do not depend on changes in respiratory activity. Physiol. Plant. 1993;89:707–718.
Di Ruocco G., Bertolotti G., Pacifici E., Polverari L., Tsiantis M., Sabatini S., Costantino P., Dello Ioio R. Differential spatial distribution of miR165/6 determines variability in plant root anatomy. Development. 2018;145 PubMed
Gabriele S., Rizza A., Martone J., Circelli P., Costantino P., Vittorioso P. The Dof protein DAG1 mediates PIL5 activity on seed germination by negatively regulating GA biosynthetic gene AtGA3ox1. Plant J. 2010;61:312–323. PubMed
Gan X., Hay A., Kwantes M., Haberer G., Hallab A., Ioio R.D., Hofhuis H., Pieper B., Cartolano M., Neumann U., et al. The Cardamine hirsuta genome offers insight into the evolution of morphological diversity. Nat. Plants. 2016;2 PubMed PMC
García-Martinez J.L., Gil J. Light Regulation of Gibberellin Biosynthesis and Mode of Action. J. Plant Growth Regul. 2001;20:354–368. PubMed
Górski T., Górska K. Inhibitory effects of full daylight on the germination of Lactuca sativa L. Planta. 1979;144:121–124. PubMed
Gualberti G., Papi M., Bellucci L., Ricci I., Bouchez D., Camilleri C., Costantino P., Vittorioso P. Mutations in the Dof zinc finger genes DAG2 and DAG1 influence with opposite effects the germination of Arabidopsis seeds. Plant Cell. 2002;14:1253–1263. PubMed PMC
Hay A., Tsiantis M. The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nat. Genet. 2006;38:942–947. PubMed
Hay A.S., Pieper B., Cooke E., Mandáková T., Cartolano M., Tattersall A.D., Ioio R.D., McGowan S.J., Barkoulas M., Galinha C., et al. Cardamine hirsuta: a versatile genetic system for comparative studies. Plant J. 2014;78:1–15. PubMed
Hedden P. The genes of the Green Revolution. Trends Genet. 2003;19:5–9. PubMed
Hennig L., Stoddart W.M., Dieterle M., Whitelam G.C., Schäfer E. Phytochrome E controls light-induced germination of Arabidopsis. Plant Physiol. 2002;128:194–200. PubMed PMC
Hilhorst H.W., Karssen C.M. Dual Effect of Light on the Gibberellin- and Nitrate-Stimulated Seed Germination of Sisymbrium officinale and Arabidopsis thaliana. Plant Physiol. 1988;86:591–597. PubMed PMC
Hirano K., Nakajima M., Asano K., Nishiyama T., Sakakibara H., Kojima M., Katoh E., Xiang H., Tanahashi T., Hasebe M., et al. The GID1-mediated gibberellin perception mechanism is conserved in the Lycophyte Selaginella moellendorffii but not in the Bryophyte Physcomitrella patens. Plant Cell. 2007;19:3058–3079. PubMed PMC
Hofhuis H., Moulton D., Lessinnes T., Routier-Kierzkowska A.-L., Bomphrey R.J., Mosca G., Reinhardt H., Sarchet P., Gan X., Tsiantis M., et al. Morphomechanical Innovation Drives Explosive Seed Dispersal. Cell. 2016;166:222–233. PubMed PMC
Koornneef M., Bentsink L., Hilhorst H. Seed dormancy and germination. Curr. Opin. Plant Biol. 2002;5:33–36. PubMed
Longo C., Holness S., De Angelis V., Lepri A., Occhigrossi S., Ruta V., Vittorioso P. From the Outside to the Inside: New Insights on the Main Factors That Guide Seed Dormancy and Germination. Genes. 2020;12:52. PubMed PMC
Meng P.-H., Macquet A., Loudet O., Marion-Poll A., North H.M. Analysis of natural allelic variation controlling Arabidopsis thaliana seed germinability in response to cold and dark: identification of three major quantitative trait loci. Mol. Plant. 2008;1:145–154. PubMed
Mérai Z., Graeber K., Wilhelmsson P., Ullrich K.K., Arshad W., Grosche C., Tarkowská D., Turečková V., Strnad M., Rensing S.A., et al. Aethionema arabicum: a novel model plant to study the light control of seed germination. J. Exp. Bot. 2019;70:3313–3328. PubMed PMC
Mérai Z., Xu F., Musilek A., Ackerl F., Khalil S., Soto-Jiménez L.M., Lalatović K., Klose C., Tarkowská D., Turečková V., et al. Phytochromes mediate germination inhibition under red, far-red, and white light in Aethionema arabicum. Plant Physiol. 2023;192:1584–1602. PubMed PMC
Milberg P., Andersson L., Thompson K. Large-seeded spices are less dependent on light for germination than small-seeded ones. Seed Sci. Res. 2000;10:99–104.
Morris K., Linkies A., Müller K., Oracz K., Wang X., Lynn J.R., Leubner-Metzger G., Finch-Savage W.E. Regulation of seed germination in the close Arabidopsis relative Lepidium sativum: a global tissue-specific transcript analysis. Plant Physiol. 2011;155:1851–1870. PubMed PMC
Moubayidin L., Di Mambro R., Sozzani R., Pacifici E., Salvi E., Terpstra I., Bao D., van Dijken A., Dello Ioio R., Perilli S., et al. Spatial coordination between stem cell activity and cell differentiation in the root meristem. Dev. Cell. 2013;26:405–415. PubMed PMC
Nakaminami K., Sawada Y., Suzuki M., Kenmoku H., Kawaide H., Mitsuhashi W., Sassa T., Inoue Y., Kamiya Y., Toyomasu T. Deactivation of gibberellin by 2-oxidation during germination of photoblastic lettuce seeds. Biosci. Biotechnol. Biochem. 2003;67:1551–1558. PubMed
Née G., Kramer K., Nakabayashi K., Yuan B., Xiang Y., Miatton E., Finkemeier I., Soppe W.J.J. DELAY OF GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. Nat. Commun. 2017;8:72. PubMed PMC
Nishimura N., Yoshida T., Kitahata N., Asami T., Shinozaki K., Hirayama T. ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J. 2007;50:935–949. PubMed
Nishimura N., Tsuchiya W., Moresco J.J., Hayashi Y., Satoh K., Kaiwa N., Irisa T., Kinoshita T., Schroeder J.I., Yates J.R., et al. Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. Nat. Commun. 2018;9:2132. PubMed PMC
Ogawa M., Hanada A., Yamauchi Y., Kuwahara A., Kamiya Y., Yamaguchi S. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell. 2003;15:1591–1604. PubMed PMC
Oh E., Kim J., Park E., Kim J.-I., Kang C., Choi G. PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. Plant Cell. 2004;16:3045–3058. PubMed PMC
Oh E., Yamaguchi S., Kamiya Y., Bae G., Chung W.-I., Choi G. Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J. 2006;47:124–139. PubMed
Oh E., Yamaguchi S., Hu J., Yusuke J., Jung B., Paik I., Lee H.-S., Sun T.p., Kamiya Y., Choi G. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell. 2007;19:1192–1208. PubMed PMC
Oh E., Kang H., Yamaguchi S., Park J., Lee D., Kamiya Y., Choi G. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. Plant Cell. 2009;21:403–419. PubMed PMC
Okamoto M., Kuwahara A., Seo M., Kushiro T., Asami T., Hirai N., Kamiya Y., Koshiba T., Nambara E. CYP707A1 and CYP707A2, which encode abscisic acid 8’-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol. 2006;141:97–107. PubMed PMC
Papi M., Sabatini S., Bouchez D., Camilleri C., Costantino P., Vittorioso P. Identification and disruption of an Arabidopsis zinc finger gene controlling seed germination. Genes Dev. 2000;14:28–33. PubMed PMC
Penfield S., Graham S., Graham I.A. Storage reserve mobilization in germinating oilseeds: Arabidopsis as a model system. Biochem. Soc. Trans. 2005;33:380–383. PubMed
Pons T.L. CABI Advance; 2000. Seed responses to light. Access published 2000. DOI
Reed J.W., Nagpal P., Poole D.S., Furuya M., Chory J. Mutations in the Gene for the Red/Far-Red Light Receptor Phytochrome B Alter Cell Elongation and Physiological Responses throughout Arabidopsis Development. Plant Cell. 1993;5:147–157. PubMed PMC
Reed J.W., Nagatani A., Elich T.D., Fagan M., Chory J. Phytochrome a and Phytochrome B Have Overlapping but Distinct Functions in Arabidopsis Development. Plant Physiol. 1994;104:1139–1149. PubMed PMC
Rittenberg D., Foster G.L. A NEW PROCEDURE FOR QUANTITATIVE ANALYSIS BY ISOTOPE DILUTION, WITH APPLICATION TO THE DETERMINATION OF AMINO ACIDS AND FATTY ACIDS. J. Biol. Chem. 1940;133:737–744.
Ruta V., Longo C., Boccaccini A., Madia V.N., Saccoliti F., Tudino V., Di Santo R., Lorrai R., Dello Ioio R., Sabatini S., et al. Inhibition of Polycomb Repressive Complex 2 activity reduces trimethylation of H3K27 and affects development in Arabidopsis seedlings. BMC Plant Biol. 2019;19:429. PubMed PMC
Sajeev N., Koornneef M., Bentsink L. A commitment for life: Decades of unraveling the molecular mechanisms behind seed dormancy and germination. Plant Cell. 2024;36:1358–1376. doi: 10.1093/plcell/koad328. published January 2024. PubMed DOI PMC
Sawada Y., Aoki M., Nakaminami K., Mitsuhashi W., Tatematsu K., Kushiro T., Koshiba T., Kamiya Y., Inoue Y., Nambara E., Toyomasu T. Phytochrome- and gibberellin-mediated regulation of abscisic acid metabolism during germination of photoblastic lettuce seeds. Plant Physiol. 2008;146:1386–1396. PubMed PMC
Schiml S., Fauser F., Puchta H. In: Plants: Methods and Protocols. Murata M., editor. Springer New York; New York, NY: 2016. CRISPR/Cas-Mediated Site-Specific Mutagenesis in Arabidopsis thaliana Using Cas9 Nucleases and Paired Nickases BT - Chromosome and Genomic Engineering; pp. 111–122. PubMed
Schwechheimer C., Willige B.C. Shedding light on gibberellic acid signalling. Curr. Opin. Plant Biol. 2009;12:57–62. PubMed
Seo M., Hanada A., Kuwahara A., Endo A., Okamoto M., Yamauchi Y., North H., Marion-Poll A., Sun T.P., Koshiba T., et al. Regulation of hormone metabolism in Arabidopsis seeds: Phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J. 2006;48:354–366. PubMed
Shinomura T., Nagatani A., Chory J., Furuya M. The Induction of Seed Germination in Arabidopsis thaliana Is Regulated Principally by Phytochrome B and Secondarily by Phytochrome A. Plant Physiol. 1994;104:363–371. PubMed PMC
Shinomura T., Hanzawa H., Schäfer E., Furuya M. Mode of phytochrome B action in the photoregulation of seed germination in Arabidopsis thaliana. Plant J. 1998;13:583–590. PubMed
Shropshire W., JR., Klein W.H., Elstad V.B. Action spectra of photomorphogenic induction and photoinactivation of germination in arabidopsis thaliana. Plant Cell Physiol. 1961;2:63–69.
Sinclair S.A., Larue C., Bonk L., Khan A., Castillo-Michel H., Stein R.J., Grolimund D., Begerow D., Neumann U., Haydon M.J., Krämer U. Etiolated Seedling Development Requires Repression of Photomorphogenesis by a Small Cell-Wall-Derived Dark Signal. Curr. Biol. 2017;27:3403–3418.e7. PubMed
Sun T.P., Gubler F. Molecular mechanism of gibberellin signaling in plants. Annu. Rev. Plant Biol. 2004;55:197–223. PubMed
Thomas S.G., Phillips A.L., Hedden P. Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc. Natl. Acad. Sci. USA. 1999;96:4698–4703. PubMed PMC
Tognacca R.S., Botto J.F. Post-transcriptional regulation of seed dormancy and germination: Current understanding and future directions. Plant Commun. 2021;2 PubMed PMC
Toyomasu T., Yamane H., Murofushi N., Inoue Y. Effects of exogenously applied gibberellin and red light on the endogenous levels of abscisic acid in photoblastic lettuce seeds. Plant Cell Physiol. 1994;35:127–129.
Toyomasu T., Kawaide H., Mitsuhashi W., Inoue Y., Kamiya Y. Phytochrome regulates gibberellin biosynthesis during germination of photoblastic lettuce seeds. Plant Physiol. 1998;118:1517–1523. PubMed PMC
Toyomasu T., Niida R., Kenmoku H., Kanno Y., Miura S., Nakano C., Shiono Y., Mitsuhashi W., Toshima H., Oikawa H., et al. Identification of diterpene biosynthetic gene clusters and functional analysis of labdane-related diterpene cyclases in Phomopsis amygdali. Biosci. Biotechnol. Biochem. 2008;72:1038–1047. PubMed
Turecková V., Novák O., Strnad M. Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Talanta. 2009;80:390–399. PubMed
Urbanová T., Tarkowská D., Novák O., Hedden P., Strnad M. Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry. Talanta. 2013;112:85–94. PubMed
Vlad D., Kierzkowski D., Rast M.I., Vuolo F., Dello Ioio R., Galinha C., Gan X., Hajheidari M., Hay A., Smith R.S., et al. Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science. 2014;343:780–783. PubMed
Xu H., Lantzouni O., Bruggink T., Benjamins R., Lanfermeijer F., Denby K., Schwechheimer C., Bassel G.W. A Molecular Signal Integration Network Underpinning Arabidopsis Seed Germination. Curr. Biol. 2020;30:3703–3712.e4. PubMed PMC
Yamaguchi S., Kamiya Y. Gibberellin biosynthesis: its regulation by endogenous and environmental signals. Plant Cell Physiol. 2000;41:251–257. PubMed
Yamaguchi S., Smith M.W., Brown R.G., Kamiya Y., Sun T. Phytochrome regulation and differential expression of gibberellin 3beta-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell. 1998;10:2115–2126. PubMed PMC
Yamauchi Y., Takeda-Kamiya N., Hanada A., Ogawa M., Kuwahara A., Seo M., Kamiya Y., Yamaguchi S. Contribution of gibberellin deactivation by AtGA2ox2 to the suppression of germination of dark-imbibed Arabidopsis thaliana seeds. Plant Cell Physiol. 2007;48:555–561. PubMed
Yanagisawa S. The transcriptional activation domain of the plant-specific Dof1 factor functions in plant, animal, and yeast cells. Plant Cell Physiol. 2001;42:813–822. PubMed
Yang Y.Y., Nagatani A., Zhao Y.J., Kang B.J., Kendrick R.E., Kamiya Y. Effects of gibberellins on seed germination of phytochrome-deficient mutants of Arabidopsis thaliana. Plant Cell Physiol. 1995;36:1205–1211. PubMed
Yang L., Liu S., Lin R. The role of light in regulating seed dormancy and germination. J. Integr. Plant Biol. 2020;62:1310–1326. PubMed
Yasumura Y., Crumpton-Taylor M., Fuentes S., Harberd N.P. Step-by-Step Acquisition of the Gibberellin-DELLA Growth-Regulatory Mechanism during Land-Plant Evolution. Curr. Biol. 2007;17:1225–1230. PubMed
Yoshida T., Nishimura N., Kitahata N., Kuromori T., Ito T., Asami T., Shinozaki K., Hirayama T. ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol. 2006;140:115–126. PubMed PMC
Yu L.-H., Wu J., Zhang Z.-S., Miao Z.-Q., Zhao P.-X., Wang Z., Xiang C.-B. Arabidopsis MADS-Box Transcription Factor AGL21 Acts as Environmental Surveillance of Seed Germination by Regulating ABI5 Expression. Mol. Plant. 2017;10:834–845. PubMed
Zhang X., Henriques R., Lin S.-S., Niu Q.-W., Chua N.-H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 2006;1:641–646. PubMed