• This record comes from PubMed

Risk factors associated with higher WHO grade in meningiomas: a multicentric study of 552 skull base meningiomas

. 2025 Jan 29 ; 15 (1) : 3715. [epub] 20250129

Language English Country England, Great Britain Media electronic

Document type Journal Article, Multicenter Study, Research Support, Non-U.S. Gov't

Grant support
NW25J-08-00088 Agentura Pro Zdravotnický Výzkum České Republiky
NW25J-08-00088 Agentura Pro Zdravotnický Výzkum České Republiky
NW25J-08-00088 Agentura Pro Zdravotnický Výzkum České Republiky
NW25J-08-00088 Agentura Pro Zdravotnický Výzkum České Republiky
NW25J-08-00088 Agentura Pro Zdravotnický Výzkum České Republiky

Links

PubMed 39880897
PubMed Central PMC11779799
DOI 10.1038/s41598-025-87882-z
PII: 10.1038/s41598-025-87882-z
Knihovny.cz E-resources

The histological grade is crucial for therapeutic management, and its reliable preoperative detection can significantly influence treatment approach. Lacking established risk factors, this study identifies preoperative predictors of high-grade skull base meningiomas and discusses the implications of non-invasive detection. A multicentric study was conducted on 552 patients with skull base meningiomas who underwent primary surgical resection between 2014 and 2019. Data were gathered from clinical, surgical and pathology records and radiological diagnostics. The predictive factors of higher WHO grade were analysed in univariate analysis and multivariate stepwise selection logistic regression analysis. Histological analysis revealed 511 grade 1 (92.6%) and 41 grade 2 (7.4%) meningiomas. A prognostic model predicting the probability of WHO grade 2 skull base meningioma (AUC 0.79; SE 0.04; 95% Wald Confidence Limits (0.71; 0.86)) based on meningioma diameter, presence of an arachnoid plane and cranial nerve palsy was built. Accurate preoperative detection of WHO grade in skull base meningiomas is essential for effective treatment planning. Our logistic regression model, based on diameter, cranial nerve palsy, and arachnoid plane, is tailored for detecting WHO grade 2 skull base meningiomas, even in outpatient settings.

See more in PubMed

Ostrom, Q. T. et al. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-Oncol.16, iv1–iv63. 10.1093/neuonc/nou223 (2014). PubMed PMC

Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro-Oncology23, 1231–1251. 10.1093/neuonc/noab106 (2021). PubMed PMC

Strassner, C., Buhl, R. & Mehdorn, H. M. Recurrence of intracranial meningiomas: Did better methods of diagnosis and surgical treatment change the outcome in the last 30 years? Neurol. Res.31, 478–482. 10.1179/174313208X338043 (2009). PubMed

Mawrin, C. & Perry, A. Pathological classification and molecular genetics of meningiomas. J. Neurooncol.99, 379–391. 10.1007/s11060-010-0342-2 (2010). PubMed

Jääskeläinen, J., Haltia, M. & Servo, A. Atypical and anaplastic meningiomas: Radiology, surgery, radiotherapy, and outcome. Surg. Neurol.25, 233–242. 10.1016/0090-3019(86)90233-8 (1986). PubMed

Palma, L., Celli, P., Franco, C., Cervoni, L. & Cantore, G. Long-term prognosis for atypical and malignant meningiomas: A study of 71 surgical cases. J. Neurosurg.86, 793–800. 10.3171/jns.1997.86.5.0793 (1997). PubMed

Cornelius, J. F. et al. Malignant potential of skull base versus non-skull base meningiomas: Clinical series of 1,663 cases. Acta Neurochir. (Wien)155, 407–413. 10.1007/s00701-012-1611-y (2013). PubMed

Jiang, S., Zhou, P., Ma, W., Yin, S. & Li, Y. Three risk factors for WHO grade II and III meningiomas: A study of 1737 cases from a single center. Neurol. India61, 40. 10.4103/0028-3886.107928 (2013). PubMed

Kane, A. J. et al. Anatomic location is a risk factor for atypical and malignant meningiomas. Cancer117, 1272–1278. 10.1002/cncr.25591 (2011). PubMed PMC

Magill, S. T. et al. Relationship between tumor location, size, and WHO grade in meningioma. Neurosurg. Focus44, E4. 10.3171/2018.1.FOCUS17752 (2018). PubMed

Maiuri, F. et al. WHO grade, proliferation index, and progesterone receptor expression are different according to the location of meningioma. Acta Neurochir. (Wien)161, 2553–2561. 10.1007/s00701-019-04084-z (2019). PubMed

Mansouri, A. et al. Surgically resected skull base meningiomas demonstrate a divergent postoperative recurrence pattern compared with non–skull base meningiomas. J. Neurosurg.125, 431–440. 10.3171/2015.7.JNS15546 (2016). PubMed

Hale, A. T., Wang, L., Strother, M. K. & Chambless, L. B. Differentiating meningioma grade by imaging features on magnetic resonance imaging. J. Clin. Neurosci. Off J. Neurosurg. Soc. Australas.48, 71–75. 10.1016/j.jocn.2017.11.013 (2018). PubMed

Varlotto, J. et al. Distinguishing grade I meningioma from higher grade meningiomas without biopsy. Oncotarget6, 38421–38428. 10.18632/oncotarget.5376 (2015). PubMed PMC

Simpson, D. The recurrence of intracranial meningiomas after surgical treatment. J. Neurol. Neurosurg. Psychiatry20, 22–39. 10.1136/jnnp.20.1.22 (1957). PubMed PMC

Louis, D. N. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. (Berl)114, 97–109. 10.1007/s00401-007-0243-4 (2007). PubMed PMC

Louis, D. N. et al. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. (Berl). 131, 803–820. 10.1007/s00401-016-1545-1 (2016). PubMed

May, M. et al. Role of risk factors, scoring systems, and prognostic models in predicting the functional outcome in meningioma surgery: Multicentric study of 552 skull base meningiomas. Neurosurg. Rev.46, 124. 10.1007/s10143-023-02004-5 (2023). PubMed PMC

Durand, A. et al. WHO grade II and III meningiomas: A study of prognostic factors. J. Neurooncol.95, 367–375. 10.1007/s11060-009-9934-0 (2009). PubMed

Goyal, L. K. et al. Local control and overall survival in atypical meningioma: A retrospective study. Int. J. Radiat. Oncol. Biol. Phys.46, 57–61. 10.1016/s0360-3016(99)00349-1 (2000). PubMed

Yang, S-Y. et al. Atypical and anaplastic meningiomas: Prognostic implications of clinicopathological features. J. Neurol. Neurosurg. Psychiatry79, 574–580. 10.1136/jnnp.2007.121582 (2008). PubMed

Aizer, A. A. et al. Extent of resection and overall survival for patients with atypical and malignant meningioma. Cancer121, 4376–4381. 10.1002/cncr.29639 (2015). PubMed

Khayat Kashani, H. R., Azhari, S., Nayebaghayee, H., Salimi, S. & Mohammadi, H. R. Prediction value of preoperative findings on meningioma grading using artificial neural network. Clin. Neurol. Neurosurg.196, 105947. 10.1016/j.clineuro.2020.105947 (2020). PubMed

Park, J-S., Sade, B., Oya, S., Kim, C. G. & Lee, J. H. The influence of age on the histological grading of meningiomas. Neurosurg. Rev.37, 425–429. 10.1007/s10143-014-0537-7 (2014). PubMed

Slot, K. M. et al. Prediction of meningioma WHO Grade using PET findings: A systematic review and meta-analysis. J. Neuroimaging31, 6–19. 10.1111/jon.12795 (2021). PubMed PMC

Wang, S. et al. Correlation between 99mTc-HYNIC-octreotide SPECT/CT somatostatin receptor scintigraphy and pathological grading of meningioma. J. Neurooncol.113, 519–526. 10.1007/s11060-013-1146-y (2013). PubMed

Ressel, A., Fichte, S., Brodhun, M., Rosahl, S. K. & Gerlach, R. WHO grade of intracranial meningiomas differs with respect to patient’s age, location, tumor size and peritumoral edema. J. Neurooncol.145, 277–286. 10.1007/s11060-019-03293-x (2019). PubMed

Soon, W. C. et al. Correlation of volumetric growth and histological grade in 50 meningiomas. Acta Neurochir. (Wien)159, 2169–2177. 10.1007/s00701-017-3277-y (2017). PubMed

Ranabhat, K. et al. Role of MR morphology and diffusion-weighted imaging in the evaluation of meningiomas: Radio-pathologic correlation. J. Nepal Med. Assoc.5710.31729/jnma.3968 (2019). PubMed PMC

Lin, B-J. et al. Correlation between magnetic resonance imaging grading and pathological grading in meningioma. J. Neurosurg.121, 1201–1208. 10.3171/2014.7.JNS132359 (2014). PubMed

Enokizono, M. et al. The Rim Pattern of Meningioma on 3D FLAIR imaging: Correlation with tumor-brain adhesion and histological grading. Magn. Reson. Med. Sci.13, 251–260. 10.2463/mrms.2013-0132 (2014). PubMed

Spille, D. C. et al. Predicting the risk of postoperative recurrence and high-grade histology in patients with intracranial meningiomas using routine preoperative MRI. Neurosurg. Rev.44, 1109–1117. 10.1007/s10143-020-01301-7 (2021). PubMed PMC

Lin, L. et al. Comparative analysis of diffusional kurtosis imaging, diffusion tensor imaging, and diffusion-weighted imaging in grading and assessing cellular proliferation of meningiomas. Am. J. Neuroradiol.39, 1032–1038. 10.3174/ajnr.A5662 (2018). PubMed PMC

Zikou, A. et al. The role of diffusion tensor imaging and dynamic susceptibility perfusion MRI in the evaluation of meningioma grade and subtype. Clin. Neurol. Neurosurg.146, 109–115. 10.1016/j.clineuro.2016.05.005 (2016). PubMed

Utomo, S. A., Bajamal, A. H., Yueniwati, Y., Sanjaya, I. D. & Fauziah, D. Apparent diffusion coefficient values and dynamic contrast-enhanced magnetic resonance perfusion are potential predictors for grading meningiomas. Int. J. Med. Sci.19, 1364–1376. 10.7150/ijms.75092 (2022). PubMed PMC

Lin, M-C. et al. Preoperative grading of intracranial meningioma by magnetic resonance spectroscopy (1H-MRS). PLOS One13, e0207612. 10.1371/journal.pone.0207612 (2018). PubMed PMC

Hu, J. et al. Machine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRI. Eur. J. Radiol.131, 109251. 10.1016/j.ejrad.2020.109251 (2020). PubMed

Zhang, H. et al. Deep learning model for the automated detection and histopathological prediction of meningioma. Neuroinformatics19, 393–402. 10.1007/s12021-020-09492-6 (2021). PubMed

Jääskeläinen, J., Haltia, M., Laasonen, E., Wahlström, T. & Valtonen, S. The growth rate of intracranial meningiomas and its relation to histology. An analysis of 43 patients. Surg. Neurol.24, 165–172. 10.1016/0090-3019(85)90180-6 (1985). PubMed

Simonetti, G. et al. Long term follow up in 183 high grade meningioma: A single institutional experience. Clin. Neurol. Neurosurg.207, 106808. 10.1016/j.clineuro.2021.106808 (2021). PubMed

Gagliardi, F. et al. Efficacy of radiotherapy and stereotactic radiosurgery as adjuvant or salvage treatment in atypical and anaplastic (WHO grade II and III) meningiomas: A systematic review and meta-analysis. Neurosurg. Rev.46, 71. 10.1007/s10143-023-01969-7 (2023). PubMed

Soni, P. et al. Extent of resection and survival outcomes in World Health Organization grade II meningiomas. J. Neurooncol.151, 173–179. 10.1007/s11060-020-03632-3 (2021). PubMed

Sughrue, M. E. et al. Outcome and survival following primary and repeat surgery for World Health Organization Grade III meningiomas: Clinical article. J. Neurosurg.113, 202–209. 10.3171/2010.1.JNS091114 (2010). PubMed

Sanai, N. et al. Risk profile associated with convexity meningioma resection in the modern neurosurgical era. J. Neurosurg.112, 913–919. 10.3171/2009.6.JNS081490 (2010). PubMed

Giordano, M. et al. Can intraoperative magnetic resonance imaging be helpful in the Surgical resection of Parasellar meningiomas? A case series. World Neurosurg.132, e577–e584. 10.1016/j.wneu.2019.08.070 (2019). PubMed

Turcotte, E. L. et al. The utility of 5-aminolevulinic acid for microsurgical resection of meningiomas. World Neurosurg.139, 343. 10.1016/j.wneu.2020.03.178 (2020). PubMed

Lavé, A., Meling, T. R., Schaller, K. & Corniola, M. V. Augmented reality in intracranial meningioma surgery: Report of a case and systematic review. J. Neurosurg. Sci.6410.23736/S0390-5616.20.04945-0 (2020). PubMed

Goldbrunner, R. et al. EANO guideline on the diagnosis and management of meningiomas. Neuro-Oncology23, 1821–1834. 10.1093/neuonc/noab150 (2021). PubMed PMC

Dziuk, T. W. et al. Malignant meningioma: un indication for initial aggressive surgery and adjuvant radiotherapy. J. Neurooncol.37, 177–188. 10.1023/a:1005853720926 (1998). PubMed

Rydzewski, N. R. et al. Gross total resection and adjuvant radiotherapy most significant predictors of improved survival in patients with atypical meningioma: Resection and RT for atypical meningioma. Cancer124, 734–742. 10.1002/cncr.31088 (2018). PubMed

Rogers, C. L. et al. High-risk Meningioma: Initial outcomes from NRG Oncology/RTOG 0539. Int. J. Radiat. Oncol.106, 790–799. 10.1016/j.ijrobp.2019.11.028 (2020). PubMed PMC

Rogers, L. et al. Intermediate-risk meningioma: Initial outcomes from NRG oncology RTOG 0539. J. Neurosurg.129, 35–47. 10.3171/2016.11.JNS161170 (2018). PubMed PMC

Weber, D. C. et al. Adjuvant postoperative high-dose radiotherapy for atypical and malignant meningioma: A phase-II parallel non-randomized and observation study (EORTC 22042–26042). Radiother Oncol.128, 260–265. 10.1016/j.radonc.2018.06.018 (2018). PubMed

Jenkinson, M. D. et al. The ROAM/EORTC-1308 trial: Radiation versus Observation following surgical resection of atypical meningioma: Study protocol for a randomised controlled trial. Trials16, 519. 10.1186/s13063-015-1040-3 (2015). PubMed PMC

Kim, J. W. et al. Radiosurgery for atypical and anaplastic meningiomas: Histopathological predictors of local tumor control. Stereotact. Funct. Neurosurg.90, 316–324. 10.1159/000338253 (2012). PubMed

Shepard, M. J. et al. Stereotactic radiosurgery for atypical (World Health Organization II) and anaplastic (World Health Organization III) meningiomas: Results from a multicenter, international cohort study. Neurosurgery88, 980–988. 10.1093/neuros/nyaa553 (2021). PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...