Risk factors associated with higher WHO grade in meningiomas: a multicentric study of 552 skull base meningiomas
Language English Country England, Great Britain Media electronic
Document type Journal Article, Multicenter Study, Research Support, Non-U.S. Gov't
Grant support
NW25J-08-00088
Agentura Pro Zdravotnický Výzkum České Republiky
NW25J-08-00088
Agentura Pro Zdravotnický Výzkum České Republiky
NW25J-08-00088
Agentura Pro Zdravotnický Výzkum České Republiky
NW25J-08-00088
Agentura Pro Zdravotnický Výzkum České Republiky
NW25J-08-00088
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
39880897
PubMed Central
PMC11779799
DOI
10.1038/s41598-025-87882-z
PII: 10.1038/s41598-025-87882-z
Knihovny.cz E-resources
- Keywords
- Case series, Meningioma, Risk factors, Skull base, Surgery, Tumor grading,
- MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Meningeal Neoplasms * pathology surgery diagnostic imaging MeSH
- Meningioma * pathology surgery diagnostic imaging MeSH
- Young Adult MeSH
- Skull Base Neoplasms * pathology surgery diagnostic imaging MeSH
- Prognosis MeSH
- Retrospective Studies MeSH
- Risk Factors MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Neoplasm Grading * MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
The histological grade is crucial for therapeutic management, and its reliable preoperative detection can significantly influence treatment approach. Lacking established risk factors, this study identifies preoperative predictors of high-grade skull base meningiomas and discusses the implications of non-invasive detection. A multicentric study was conducted on 552 patients with skull base meningiomas who underwent primary surgical resection between 2014 and 2019. Data were gathered from clinical, surgical and pathology records and radiological diagnostics. The predictive factors of higher WHO grade were analysed in univariate analysis and multivariate stepwise selection logistic regression analysis. Histological analysis revealed 511 grade 1 (92.6%) and 41 grade 2 (7.4%) meningiomas. A prognostic model predicting the probability of WHO grade 2 skull base meningioma (AUC 0.79; SE 0.04; 95% Wald Confidence Limits (0.71; 0.86)) based on meningioma diameter, presence of an arachnoid plane and cranial nerve palsy was built. Accurate preoperative detection of WHO grade in skull base meningiomas is essential for effective treatment planning. Our logistic regression model, based on diameter, cranial nerve palsy, and arachnoid plane, is tailored for detecting WHO grade 2 skull base meningiomas, even in outpatient settings.
1st Faculty of Medicine Charles University Prague Prague Czech Republic
Department of Neurosurgery Ceske Budejovice Hospital Ceske Budejovice Czech Republic
Department of Neurosurgery Liberec Hospital Liberec Czech Republic
Department of Neurosurgery Pilsen University Hospital Pilsen Czech Republic
Department of Neurosurgery The University Hospital Brno Brno Czech Republic
Department of Neurosurgery University Hospital Olomouc Olomouc Czech Republic
Department of Neurosurgery University Hospital Ostrava Ostrava Czech Republic
Department of Radiodiagnostics Military University Hospital Prague Czech Republic
Institute of Computer Science The Czech Academy of Sciences Prague Czech Republic
See more in PubMed
Ostrom, Q. T. et al. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-Oncol.16, iv1–iv63. 10.1093/neuonc/nou223 (2014). PubMed PMC
Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro-Oncology23, 1231–1251. 10.1093/neuonc/noab106 (2021). PubMed PMC
Strassner, C., Buhl, R. & Mehdorn, H. M. Recurrence of intracranial meningiomas: Did better methods of diagnosis and surgical treatment change the outcome in the last 30 years? Neurol. Res.31, 478–482. 10.1179/174313208X338043 (2009). PubMed
Mawrin, C. & Perry, A. Pathological classification and molecular genetics of meningiomas. J. Neurooncol.99, 379–391. 10.1007/s11060-010-0342-2 (2010). PubMed
Jääskeläinen, J., Haltia, M. & Servo, A. Atypical and anaplastic meningiomas: Radiology, surgery, radiotherapy, and outcome. Surg. Neurol.25, 233–242. 10.1016/0090-3019(86)90233-8 (1986). PubMed
Palma, L., Celli, P., Franco, C., Cervoni, L. & Cantore, G. Long-term prognosis for atypical and malignant meningiomas: A study of 71 surgical cases. J. Neurosurg.86, 793–800. 10.3171/jns.1997.86.5.0793 (1997). PubMed
Cornelius, J. F. et al. Malignant potential of skull base versus non-skull base meningiomas: Clinical series of 1,663 cases. Acta Neurochir. (Wien)155, 407–413. 10.1007/s00701-012-1611-y (2013). PubMed
Jiang, S., Zhou, P., Ma, W., Yin, S. & Li, Y. Three risk factors for WHO grade II and III meningiomas: A study of 1737 cases from a single center. Neurol. India61, 40. 10.4103/0028-3886.107928 (2013). PubMed
Kane, A. J. et al. Anatomic location is a risk factor for atypical and malignant meningiomas. Cancer117, 1272–1278. 10.1002/cncr.25591 (2011). PubMed PMC
Magill, S. T. et al. Relationship between tumor location, size, and WHO grade in meningioma. Neurosurg. Focus44, E4. 10.3171/2018.1.FOCUS17752 (2018). PubMed
Maiuri, F. et al. WHO grade, proliferation index, and progesterone receptor expression are different according to the location of meningioma. Acta Neurochir. (Wien)161, 2553–2561. 10.1007/s00701-019-04084-z (2019). PubMed
Mansouri, A. et al. Surgically resected skull base meningiomas demonstrate a divergent postoperative recurrence pattern compared with non–skull base meningiomas. J. Neurosurg.125, 431–440. 10.3171/2015.7.JNS15546 (2016). PubMed
Hale, A. T., Wang, L., Strother, M. K. & Chambless, L. B. Differentiating meningioma grade by imaging features on magnetic resonance imaging. J. Clin. Neurosci. Off J. Neurosurg. Soc. Australas.48, 71–75. 10.1016/j.jocn.2017.11.013 (2018). PubMed
Varlotto, J. et al. Distinguishing grade I meningioma from higher grade meningiomas without biopsy. Oncotarget6, 38421–38428. 10.18632/oncotarget.5376 (2015). PubMed PMC
Simpson, D. The recurrence of intracranial meningiomas after surgical treatment. J. Neurol. Neurosurg. Psychiatry20, 22–39. 10.1136/jnnp.20.1.22 (1957). PubMed PMC
Louis, D. N. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. (Berl)114, 97–109. 10.1007/s00401-007-0243-4 (2007). PubMed PMC
Louis, D. N. et al. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. (Berl). 131, 803–820. 10.1007/s00401-016-1545-1 (2016). PubMed
May, M. et al. Role of risk factors, scoring systems, and prognostic models in predicting the functional outcome in meningioma surgery: Multicentric study of 552 skull base meningiomas. Neurosurg. Rev.46, 124. 10.1007/s10143-023-02004-5 (2023). PubMed PMC
Durand, A. et al. WHO grade II and III meningiomas: A study of prognostic factors. J. Neurooncol.95, 367–375. 10.1007/s11060-009-9934-0 (2009). PubMed
Goyal, L. K. et al. Local control and overall survival in atypical meningioma: A retrospective study. Int. J. Radiat. Oncol. Biol. Phys.46, 57–61. 10.1016/s0360-3016(99)00349-1 (2000). PubMed
Yang, S-Y. et al. Atypical and anaplastic meningiomas: Prognostic implications of clinicopathological features. J. Neurol. Neurosurg. Psychiatry79, 574–580. 10.1136/jnnp.2007.121582 (2008). PubMed
Aizer, A. A. et al. Extent of resection and overall survival for patients with atypical and malignant meningioma. Cancer121, 4376–4381. 10.1002/cncr.29639 (2015). PubMed
Khayat Kashani, H. R., Azhari, S., Nayebaghayee, H., Salimi, S. & Mohammadi, H. R. Prediction value of preoperative findings on meningioma grading using artificial neural network. Clin. Neurol. Neurosurg.196, 105947. 10.1016/j.clineuro.2020.105947 (2020). PubMed
Park, J-S., Sade, B., Oya, S., Kim, C. G. & Lee, J. H. The influence of age on the histological grading of meningiomas. Neurosurg. Rev.37, 425–429. 10.1007/s10143-014-0537-7 (2014). PubMed
Slot, K. M. et al. Prediction of meningioma WHO Grade using PET findings: A systematic review and meta-analysis. J. Neuroimaging31, 6–19. 10.1111/jon.12795 (2021). PubMed PMC
Wang, S. et al. Correlation between 99mTc-HYNIC-octreotide SPECT/CT somatostatin receptor scintigraphy and pathological grading of meningioma. J. Neurooncol.113, 519–526. 10.1007/s11060-013-1146-y (2013). PubMed
Ressel, A., Fichte, S., Brodhun, M., Rosahl, S. K. & Gerlach, R. WHO grade of intracranial meningiomas differs with respect to patient’s age, location, tumor size and peritumoral edema. J. Neurooncol.145, 277–286. 10.1007/s11060-019-03293-x (2019). PubMed
Soon, W. C. et al. Correlation of volumetric growth and histological grade in 50 meningiomas. Acta Neurochir. (Wien)159, 2169–2177. 10.1007/s00701-017-3277-y (2017). PubMed
Ranabhat, K. et al. Role of MR morphology and diffusion-weighted imaging in the evaluation of meningiomas: Radio-pathologic correlation. J. Nepal Med. Assoc.5710.31729/jnma.3968 (2019). PubMed PMC
Lin, B-J. et al. Correlation between magnetic resonance imaging grading and pathological grading in meningioma. J. Neurosurg.121, 1201–1208. 10.3171/2014.7.JNS132359 (2014). PubMed
Enokizono, M. et al. The Rim Pattern of Meningioma on 3D FLAIR imaging: Correlation with tumor-brain adhesion and histological grading. Magn. Reson. Med. Sci.13, 251–260. 10.2463/mrms.2013-0132 (2014). PubMed
Spille, D. C. et al. Predicting the risk of postoperative recurrence and high-grade histology in patients with intracranial meningiomas using routine preoperative MRI. Neurosurg. Rev.44, 1109–1117. 10.1007/s10143-020-01301-7 (2021). PubMed PMC
Lin, L. et al. Comparative analysis of diffusional kurtosis imaging, diffusion tensor imaging, and diffusion-weighted imaging in grading and assessing cellular proliferation of meningiomas. Am. J. Neuroradiol.39, 1032–1038. 10.3174/ajnr.A5662 (2018). PubMed PMC
Zikou, A. et al. The role of diffusion tensor imaging and dynamic susceptibility perfusion MRI in the evaluation of meningioma grade and subtype. Clin. Neurol. Neurosurg.146, 109–115. 10.1016/j.clineuro.2016.05.005 (2016). PubMed
Utomo, S. A., Bajamal, A. H., Yueniwati, Y., Sanjaya, I. D. & Fauziah, D. Apparent diffusion coefficient values and dynamic contrast-enhanced magnetic resonance perfusion are potential predictors for grading meningiomas. Int. J. Med. Sci.19, 1364–1376. 10.7150/ijms.75092 (2022). PubMed PMC
Lin, M-C. et al. Preoperative grading of intracranial meningioma by magnetic resonance spectroscopy (1H-MRS). PLOS One13, e0207612. 10.1371/journal.pone.0207612 (2018). PubMed PMC
Hu, J. et al. Machine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRI. Eur. J. Radiol.131, 109251. 10.1016/j.ejrad.2020.109251 (2020). PubMed
Zhang, H. et al. Deep learning model for the automated detection and histopathological prediction of meningioma. Neuroinformatics19, 393–402. 10.1007/s12021-020-09492-6 (2021). PubMed
Jääskeläinen, J., Haltia, M., Laasonen, E., Wahlström, T. & Valtonen, S. The growth rate of intracranial meningiomas and its relation to histology. An analysis of 43 patients. Surg. Neurol.24, 165–172. 10.1016/0090-3019(85)90180-6 (1985). PubMed
Simonetti, G. et al. Long term follow up in 183 high grade meningioma: A single institutional experience. Clin. Neurol. Neurosurg.207, 106808. 10.1016/j.clineuro.2021.106808 (2021). PubMed
Gagliardi, F. et al. Efficacy of radiotherapy and stereotactic radiosurgery as adjuvant or salvage treatment in atypical and anaplastic (WHO grade II and III) meningiomas: A systematic review and meta-analysis. Neurosurg. Rev.46, 71. 10.1007/s10143-023-01969-7 (2023). PubMed
Soni, P. et al. Extent of resection and survival outcomes in World Health Organization grade II meningiomas. J. Neurooncol.151, 173–179. 10.1007/s11060-020-03632-3 (2021). PubMed
Sughrue, M. E. et al. Outcome and survival following primary and repeat surgery for World Health Organization Grade III meningiomas: Clinical article. J. Neurosurg.113, 202–209. 10.3171/2010.1.JNS091114 (2010). PubMed
Sanai, N. et al. Risk profile associated with convexity meningioma resection in the modern neurosurgical era. J. Neurosurg.112, 913–919. 10.3171/2009.6.JNS081490 (2010). PubMed
Giordano, M. et al. Can intraoperative magnetic resonance imaging be helpful in the Surgical resection of Parasellar meningiomas? A case series. World Neurosurg.132, e577–e584. 10.1016/j.wneu.2019.08.070 (2019). PubMed
Turcotte, E. L. et al. The utility of 5-aminolevulinic acid for microsurgical resection of meningiomas. World Neurosurg.139, 343. 10.1016/j.wneu.2020.03.178 (2020). PubMed
Lavé, A., Meling, T. R., Schaller, K. & Corniola, M. V. Augmented reality in intracranial meningioma surgery: Report of a case and systematic review. J. Neurosurg. Sci.6410.23736/S0390-5616.20.04945-0 (2020). PubMed
Goldbrunner, R. et al. EANO guideline on the diagnosis and management of meningiomas. Neuro-Oncology23, 1821–1834. 10.1093/neuonc/noab150 (2021). PubMed PMC
Dziuk, T. W. et al. Malignant meningioma: un indication for initial aggressive surgery and adjuvant radiotherapy. J. Neurooncol.37, 177–188. 10.1023/a:1005853720926 (1998). PubMed
Rydzewski, N. R. et al. Gross total resection and adjuvant radiotherapy most significant predictors of improved survival in patients with atypical meningioma: Resection and RT for atypical meningioma. Cancer124, 734–742. 10.1002/cncr.31088 (2018). PubMed
Rogers, C. L. et al. High-risk Meningioma: Initial outcomes from NRG Oncology/RTOG 0539. Int. J. Radiat. Oncol.106, 790–799. 10.1016/j.ijrobp.2019.11.028 (2020). PubMed PMC
Rogers, L. et al. Intermediate-risk meningioma: Initial outcomes from NRG oncology RTOG 0539. J. Neurosurg.129, 35–47. 10.3171/2016.11.JNS161170 (2018). PubMed PMC
Weber, D. C. et al. Adjuvant postoperative high-dose radiotherapy for atypical and malignant meningioma: A phase-II parallel non-randomized and observation study (EORTC 22042–26042). Radiother Oncol.128, 260–265. 10.1016/j.radonc.2018.06.018 (2018). PubMed
Jenkinson, M. D. et al. The ROAM/EORTC-1308 trial: Radiation versus Observation following surgical resection of atypical meningioma: Study protocol for a randomised controlled trial. Trials16, 519. 10.1186/s13063-015-1040-3 (2015). PubMed PMC
Kim, J. W. et al. Radiosurgery for atypical and anaplastic meningiomas: Histopathological predictors of local tumor control. Stereotact. Funct. Neurosurg.90, 316–324. 10.1159/000338253 (2012). PubMed
Shepard, M. J. et al. Stereotactic radiosurgery for atypical (World Health Organization II) and anaplastic (World Health Organization III) meningiomas: Results from a multicenter, international cohort study. Neurosurgery88, 980–988. 10.1093/neuros/nyaa553 (2021). PubMed