Associations between subjective and objective measures of stress and load: an insight from 45-week prospective study in 189 elite athletes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39906197
PubMed Central
PMC11791750
DOI
10.3389/fpsyg.2024.1521290
Knihovny.cz E-zdroje
- Klíčová slova
- academic load, cortisol, stress, subjective perception, training load, weekly athlete monitoring,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: The aim of this study was to investigate the associations between subjective and objective measures of stress and load in elite male handball players at both the group and individual levels. METHODS: In this 45-week prospective cohort study, 189 elite male handball players weekly reported their perceived stress and load across training, competition, academic, and work domains. Blood samples were collected five times during the 2022/23 season to measure cortisol and the free testosterone to cortisol ratio (FTCR). We derived a "load" variable as the sum of training, competition, academic and work hours and calculated acute, chronic, and acute-to-chronic ratio variables for both load and stress. Associations between subjective and objective measures were analyzed using Spearman's rank correlation. RESULTS: Weak to moderate positive associations were found between load and perceived stress (r = 0.19 to 0.46, p < 0.001), and between perceived stress and cortisol (r = 0.10, p = 0.023). Weak negative associations were found between perceived stress and FTCR (r = -0.18 to -0.20, p < 0.001) and between load and FTCR (r = -0.13, p = 0.003). A total of 86% of athletes had positive associations between stress and load (47% weak, 34% moderate, 5% high); 78% between stress and cortisol (27% weak, 22% moderate, 29% high); and 63% demonstrated negative associations between FTCR and load (18% weak, 32% moderate, 13% high). CONCLUSION: This study highlights the complexity between subjective and objective measures of stress and load in athletes. Understanding the link between these measures may help coaches and sports scientists streamline athlete monitoring. In cases where moderate to strong associations exist, subjective measures might serve as a reliable substitute for objective ones, making the monitoring process more time- and cost-efficient.
Faculty of Pharmacy University of Ljubljana Ljubljana Slovenia
Faculty of Sport University of Ljubljana Ljubljana Slovenia
Faculty of Sports Studies Masaryk University Brno Czechia
Norwegian National Unit for Sensory Loss and Mental Health Oslo University Hospital Oslo Norway
Oslo Sports Trauma Research Center Norwegian School of Sport Sciences Oslo Norway
Zobrazit více v PubMed
Adlercreutz H., Härkönen M., Kuoppasalmi K., Näveri H., Huhtaniemi I., Tikkanen H., et al. (1986). Effect of training on plasma anabolic and catabolic steroid hormones and their response during physical exercise. Int. J. Sports Med. 7 (Suppl. 1), 27–28. 10.1055/s-2008-1025798 PubMed DOI
Armbruster D., Mueller A., Strobel A., Lesch K.-P., Brocke B., Kirschbaum C. (2012). Children under stress – COMT genotype and stressful life events predict cortisol increase in an acute social stress paradigm. Int. J. Neuropsychopharmacol. 15 1229–1239. 10.1017/S1461145711001763 PubMed DOI
Arnsten A. F. T. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci. 10 410–422. 10.1038/nrn2648 PubMed DOI PMC
Berjot S., Deschamps F., Lesage F.-X. (2011). Inter-judge reliability of stress measurement using a visual analogue scale. Psychol. Trav. Organ. 17 85–90.
Bok D., Jukiæ N., Foster C. (2022). Validation of session ratings of perceived exertion for quantifying training load in karate kata sessions. Biol. Sport 39 849–855. 10.5114/biolsport.2022.109458 PubMed DOI PMC
Brenner J. S., Watson A. (2024). Overuse injuries, overtraining, and burnout in young athletes. Pediatrics 153:e2023065129. 10.1542/peds.2023-065129 PubMed DOI
Cappola A. R., Auchus R. J., El-Hajj Fuleihan G., Handelsman D. J., Kalyani R. R., McClung M., et al. (2023). Hormones and aging: an endocrine society scientific statement. J. Clin. Endocrinol. Metab. 108 1835–1874. 10.1210/clinem/dgad225 PubMed DOI PMC
Chen J., Lipska B. K., Halim N., Ma Q. D., Matsumoto M., Melhem S., et al. (2004). Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am. J. Hum. Genet. 75 807–821. 10.1086/425589 PubMed DOI PMC
Cohen S., Wills T. A. (1985). Stress, social support, and the buffering hypothesis. Psychol. Bull. 98 310–357. 10.1037/0033-2909.98.2.310 PubMed DOI
Cohen S., Kamarck T., Mermelstein R. (1983). A global measure of perceived stress. J. Health Soc. Behav. 24 385–396. 10.2307/2136404 PubMed DOI
Cotman C. W., Berchtold N. C. (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25 295–301. 10.1016/s0166-2236(02)02143-4 PubMed DOI
Cox J. M., Davison A. (2005). The visual analogue scale as a tool for self-reporting of subjective phenomena in the medical radiation sciences. J. Med. Radiat. Sci. 52 22–24. 10.1002/j.2051-3909.2005.tb00026.x DOI
Cuschieri S. (2019). The STROBE guidelines. Saudi J. Anaesth. 13 (Suppl. 1), S31–S34. 10.4103/sja.SJA_543_18 PubMed DOI PMC
de Almondes K. M., Marín Agudelo H. A., Jiménez-Correa U. (2021). Impact of sleep deprivation on emotional regulation and the immune system of healthcare workers as a risk factor for COVID 19: practical recommendations from a task force of the Latin American association of sleep psychology. Front. Psychol. 12:564227. 10.3389/fpsyg.2021.564227 PubMed DOI PMC
Drole K., Paravlic A., Steffen K., Doupona M. (2023). Effects of physical, psychosocial and dual-career loads on injuries and illnesses among elite handball players: protocol of prospective cohort study. BMJ Open 13:e069104. 10.1136/bmjopen-2022-069104 PubMed DOI PMC
Drole K., Pori P., Jerin A., Kren A., Paravlic A. (2024). Anabolic/catabolic hormone imbalance but still jumping further? Negative association of free testosterone with jumping performance in elite handball players following a preparatory period. Res. Q. Exerc. Sport 95 938–944. 10.1080/02701367.2024.2353715 PubMed DOI
Ferré S. (2008). An update on the mechanisms of the psychostimulant effects of caffeine. J. Neurochem. 105 1067–1079. 10.1111/j.1471-4159.2007.05196.x PubMed DOI
Foster C. (1998). Monitoring training in athletes with reference to overtraining syndrome. Med. Sci. Sports Exerc. 30 1164–1168. 10.1097/00005768-199807000-00023 PubMed DOI
Fry R. W., Morton A. R., Keast D. (1991). Overtraining in athletes. An update. Sports Med. 12 32–65. 10.2165/00007256-199112010-00004 PubMed DOI
Fullagar H. H. K., Govus A., Hanisch J., Murray A. (2017). The time course of perceptual recovery markers after match play in division I-A college American football. Int. J. Sports Physiol. Perform. 12 1264–1266. 10.1123/ijspp.2016-0550 PubMed DOI
Gabbett T. J., Hulin B. T., Blanch P., Whiteley R. (2016). High training workloads alone do not cause sports injuries: how you get there is the real issue. Br. J. Sports Med. 50 444–445. 10.1136/bjsports-2015-095567 PubMed DOI
Garvican-Lewis L. A., Vuong V. L., Govus A. D., Peeling P., Jung G., Nemeth E., et al. (2018). Intravenous iron does not augment the hemoglobin mass response to simulated hypoxia. Med. Sci. Sport Exerc. 50 1669–1678. 10.1249/MSS.0000000000001608 PubMed DOI
Gearity B. T., Murray M. A. (2011). Athletes’ experiences of the psychological effects of poor coaching. Psychol. Sport Exerc. 12 213–221. 10.1016/j.psychsport.2010.11.004 DOI
Guest N. S., VanDusseldorp T. A., Nelson M. T., Grgic J., Schoenfeld B. J., Jenkins N. D. M., et al. (2021). International society of sports nutrition position stand: caffeine and exercise performance. J. Int. Soc. Sports Nutr. 18:1. 10.1186/s12970-020-00383-4 PubMed DOI PMC
Häkkinen K., Pakarinen A. (1993). Acute hormonal responses to two different fatiguing heavy-resistance protocols in male athletes. J. Appl. Physiol. 74 882–887. 10.1152/jappl.1993.74.2.882 PubMed DOI
Halson S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports Med. 44 Suppl. 2(Suppl. 2) S139–S147. 10.1007/s40279-014-0253-z PubMed DOI PMC
Hamlin M. J., Wilkes D., Elliot C. A., Lizamore C. A., Kathiravel Y. (2019). Monitoring training loads and perceived stress in young elite university athletes. Front. Physiol. 10:34. 10.3389/fphys.2019.00034 PubMed DOI PMC
Hanton S., Fletcher D., Coughlan G. (2005). Stress in elite sport performers: a comparative study of competitive and organizational stressors. J. Sports Sci. 23 1129–1141. 10.1080/02640410500131480 PubMed DOI
Hoogeveen A. R., Zonderland M. L. (1996). Relationships between testosterone, cortisol and performance in professional cyclists. Int. J. Sports Med. 17 423–428. 10.1055/s-2007-972872 PubMed DOI
Immanuel S., Teferra M. N., Baumert M., Bidargaddi N. (2023). Heart rate variability for evaluating psychological stress changes in healthy adults: a scoping review. Neuropsychobiology 82 187–202. 10.1159/000530376 PubMed DOI PMC
Isoard-Gautheur S., Guillet-Descas E., Lemyre P.-N. (2012). A prospective study of the influence of perceived coaching style on burnout propensity in high level young athletes: using a self-determination theory perspective. Sport Psychol. 26 282–298.
Jeffreys I. (2005). A multidimensional approach to enhancing recovery. Strength Cond. J. 27 78–85. 10.1519/00126548-200510000-00014 PubMed DOI
Jürimäe J., Mäestu J., Purge P., Jürimäe T. (2004). Changes in stress and recovery after heavy training in rowers. J. Sci. Med. Sport 7 335–339. 10.1016/S1440-2440(04)80028-8 PubMed DOI
Kang J. I., Kim S. J., Song Y. Y., Namkoong K., An S. K. (2013). Genetic influence of COMT and BDNF gene polymorphisms on resilience in healthy college students. Neuropsychobiology. 68 174–180. 10.1159/000353257 PubMed DOI
Kim S. J., Cho S.-J., Jang H. M., Shin J., Park P. W., Lee Y. J., et al. (2010). Interaction between brain-derived neurotrophic factor Val66Met polymorphism and recent negative stressor in harm avoidance. Neuropsychobiology 61 19–26. 10.1159/000258639 PubMed DOI
Kimball A., Freysinger V. J. (2003). Leisure, stress, and coping: the sport participation of collegiate student-athletes. Leis Sci. 25 115–141. 10.1080/01490400306569 DOI
Kraemer W. J., Ratamess N. A. (2005). Hormonal responses and adaptations to resistance exercise and training. Sports Med. 35 339–361. 10.2165/00007256-200535040-00004 PubMed DOI
Kraemer W. J., Fleck S. J., Dziados J. E., Harman E. A., Marchitelli L. J., Gordon S. E., et al. (1993). Changes in hormonal concentrations after different heavy-resistance exercise protocols in women. J. Appl. Physiol. 75 594–604. 10.1152/jappl.1993.75.2.594 PubMed DOI
Lesage F. X., Berjot S. (2011). Validity of occupational stress assessment using a visual analogue scale. Occup. Med. (Lond). 61 434–436. 10.1093/occmed/kqr037 PubMed DOI
Lesage F. X., Berjot S., Deschamps F. (2012). Clinical stress assessment using a visual analogue scale. Occup. Med. (Chic Ill). 62 600–605. 10.1093/occmed/kqs140 PubMed DOI
Lo Martire V., Berteotti C., Zoccoli G., Bastianini S. (2024). Improving sleep to improve stress resilience. Curr. Sleep Med. Reports 10 23–33. 10.1007/s40675-024-00274-z DOI
Lopes Dos Santos M., Uftring M., Stahl C. A., Lockie R. G., Alvar B., Mann J. B., et al. (2020). Stress in academic and athletic performance in collegiate athletes: a narrative review of sources and monitoring strategies. Front. Sport Act Living 2:42. 10.3389/fspor.2020.00042 PubMed DOI PMC
Lorist M. M., Tops M. (2003). Caffeine, fatigue, and cognition. Brain Cogn. 53 82–94. 10.1016/s0278-2626(03)00206-9 PubMed DOI
Main L. C., Dawson B., Grove J. R., Landers G. J., Goodman C. (2009). Impact of training on changes in perceived stress and cytokine production. Res. Sports Med. 17 121–132. 10.1080/15438620802689757 PubMed DOI
Malone S., Owen A., Newton M., Mendes B., Tiernan L., Hughes B., et al. (2018). Wellbeing perception and the impact on external training output among elite soccer players. J. Sci. Med. Sport 21 29–34. 10.1016/j.jsams.2017.03.019 PubMed DOI
Mann J. B., Bryant K. R., Johnstone B., Ivey P. A., Sayers S. P. (2016). Effect of physical and academic stress on illness and injury in division 1 college football players. J. Strength Cond. Res. 30 20–25. 10.1519/JSC.0000000000001055 PubMed DOI
Mansournia M. A., Collins G. S., Nielsen R. O., Nazemipour M., Jewell N. P., Altman D. G., et al. (2021). A CHecklist for statistical Assessment of Medical Papers (the CHAMP statement): explanation and elaboration. Br. J. Sports Med. 55 1009–1017. 10.1136/bjsports-2020-103652 PubMed DOI PMC
Maso F., Lac G., Filaire E., Michaux O., Robert A. (2004). Salivary testosterone and cortisol in rugby players: correlation with psychological overtraining items. Br. J. Sports Med. 38 260–263. 10.1136/bjsm.2002.000254 PubMed DOI PMC
McKay A. K. A., Stellingwerff T., Smith E. S., Martin D. T., Mujika I., Goosey-Tolfrey V. L., et al. (2022). Defining training and performance caliber: a participant classification framework. Int. J. Sports Physiol. Perform. 17 317–331. 10.1123/ijspp.2021-0451 PubMed DOI
Meerlo P., Sgoifo A., Suchecki D. (2008). Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med. Rev. 12 197–210. 10.1016/j.smrv.2007.07.007 PubMed DOI
Mellalieu S. D., Neil R., Hanton S., Fletcher D. (2009). Competition stress in sport performers: stressors experienced in the competition environment. J. Sports Sci. 27 729–744. 10.1080/02640410902889834 PubMed DOI
Mitchell A. M., Crane P. A., Kim Y. (2008). Perceived stress in survivors of suicide: psychometric properties of the Perceived Stress Scale. Res. Nurs. Health 31 576–585. 10.1002/nur.20284 PubMed DOI
Miyatsu T., Smith B. M., Koutnik A. P., Pirolli P., Broderick T. J. (2022). Resting-state heart rate variability after stressful events as a measure of stress tolerance among elite performers. Front. Physiol. 13:1070285. 10.3389/fphys.2022.1070285 PubMed DOI PMC
Murray N. B., Gabbett T. J., Townshend A. D., Blanch P. (2017). Calculating acute: chronic workload ratios using exponentially weighted moving averages provides a more sensitive indicator of injury likelihood than rolling averages. Br. J. Sports Med. 51 749–754. 10.1136/bjsports-2016-097152 PubMed DOI
Nehlig A. (2016). Effects of coffee/caffeine on brain health and disease: what should I tell my patients? Pract. Neurol. 16 89–95. 10.1136/practneurol-2015-001162 PubMed DOI
Nehlig A., Daval J. L., Debry G. (1992). Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res. Brain Res. Rev. 17 139–170. 10.1016/0165-0173(92)90012-b PubMed DOI
Nobari H., Aquino R., Clemente F. M., Khalafi M., Adsuar J. C., Pérez-Gómez J. (2020). Description of acute and chronic load, training monotony and strain over a season and its relationships with well-being status: a study in elite under-16 soccer players. Physiol. Behav. 225:113117. 10.1016/j.physbeh.2020.113117 PubMed DOI
Nobari H., Badicu G., Akyildiz Z., Clemente F. M. (2023). Relationships between training load and wellbeing measures across a full season: a study of Turkish national youth wrestlers. Biol. Sport 40 399–408. 10.5114/biolsport.2023.116009 PubMed DOI PMC
Palamarchuk I. S., Vaillancourt T. (2021). Mental resilience and coping with stress: a comprehensive, multi-level model of cognitive processing, decision making, and behavior. Front. Behav. Neurosci. 15:719674. 10.3389/fnbeh.2021.719674 PubMed DOI PMC
Pensgaard A. M., Roberts G. C. (2000). The relationship between motivational climate, perceived ability and sources of distress among elite athletes. J. Sports Sci. 18 191–200. 10.1080/026404100365090 PubMed DOI
Pimenta R. M., Hespanhol L., Lopes A. D. (2021). Brazilian version of the OSTRC Questionnaire on health problems (OSTRC-BR): translation, cross-cultural adaptation and measurement properties. Braz. J. Phys. Ther. 25 785–793. 10.1016/j.bjpt.2021.06.010 PubMed DOI PMC
Rossi A., Perri E., Pappalardo L., Cintia P., Iaia F. M. (2019). Relationship between external and internal workloads in elite soccer players: comparison between rate of perceived exertion and training load. Appl. Sci. 9:5174. 10.3390/app9235174 DOI
Russell G., Lightman S. (2019). The human stress response. Nat. Rev. Endocrinol. 15 525–534. 10.1038/s41574-019-0228-0 PubMed DOI
Saw A. E., Main L. C., Gastin P. B. (2016). Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br. J. Sports Med. 50 281–291. 10.1136/bjsports-2015-094758 PubMed DOI PMC
Schwellnus M., Soligard T., Alonso J.-M., Bahr R., Clarsen B., Dijkstra H. P., et al. (2016). How much is too much? (Part 2) International Olympic Committee consensus statement on load in sport and risk of illness. Br. J. Sports Med. 50 1043–1052. 10.1136/bjsports-2016-096572 PubMed DOI PMC
Shalev I., Lerer E., Israel S., Uzefovsky F., Gritsenko I., Mankuta D., et al. (2009). BDNF Val66Met polymorphism is associated with HPA axis reactivity to psychological stress characterized by genotype and gender interactions. Psychoneuroendocrinology 34 382–388. 10.1016/j.psyneuen.2008.09.017 PubMed DOI
Soligard T., Schwellnus M., Alonso J. M., Bahr R., Clarsen B., Dijkstra H. P., et al. (2016). How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br. J. Sports Med. 50 1030–1041. 10.1136/bjsports-2016-096581 PubMed DOI
Taylor R. (1990). Interpretation of the correlation coefficient: a basic review. J. Diagn. Med. Sonogr. 6 35–39.
Umeda T., Suzukawa K., Takahashi I., Yamamoto Y., Tanabe M., Kojima A., et al. (2008). Effects of intense exercise on the physiological and mental condition of female university judoists during a training camp. J. Sports Sci. 26 897–904. 10.1080/02640410801885917 PubMed DOI
Van Laethem M., Beckers D. G. J., Kompier M. A. J., Kecklund G., van den Bossche S. N. J., Geurts S. A. E. (2015). Bidirectional relations between work-related stress, sleep quality and perseverative cognition. J. Psychosom. Res. 79 391–398. 10.1016/j.jpsychores.2015.08.011 PubMed DOI
Vermeulen A., Verdonck L., Kaufman J. M. (1999). A critical evaluation of simple methods for the estimation of free testosterone in serum. J. Clin. Endocrinol. Metab. 84 3666–3672. 10.1210/jcem.84.10.6079 PubMed DOI
Vervoorn C., Quist A. M., Vermulst L. J. M., Erich W. B., de Vries W. R., Thijssen J. H. (1991). The behaviour of the plasma free testosterone / cortisol ratio during a season of elite rowing training. Int. J. Sports Med. 12 257–263. PubMed
Wang J., Liu W., Zhang Y., Xie S., Yang B. (2021). Perceived stress among chinese medical students engaging in online learning in light of COVID-19. Psychol. Res. Behav. Manag. 14 549–562. 10.2147/PRBM.S308497 PubMed DOI PMC
West S. W., Clubb J., Torres-Ronda L., Howells D., Leng E., Vescovi J. D., et al. (2021). More than a metric: how training load is used in elite sport for athlete management. Int. J. Sports Med. 42 300–306. 10.1055/a-1268-8791 PubMed DOI
Yalcin-Siedentopf N., Pichler T., Welte A. S., Hoertnagl C. M., Klasen C. C., Kemmler G., et al. (2021). Sex matters: stress perception and the relevance of resilience and perceived social support in emerging adults. Arch. Womens Ment. Health 24 403–411. 10.1007/s00737-020-01076-2 PubMed DOI PMC