Associations between subjective and objective measures of stress and load: an insight from 45-week prospective study in 189 elite athletes

. 2024 ; 15 () : 1521290. [epub] 20250121

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39906197

INTRODUCTION: The aim of this study was to investigate the associations between subjective and objective measures of stress and load in elite male handball players at both the group and individual levels. METHODS: In this 45-week prospective cohort study, 189 elite male handball players weekly reported their perceived stress and load across training, competition, academic, and work domains. Blood samples were collected five times during the 2022/23 season to measure cortisol and the free testosterone to cortisol ratio (FTCR). We derived a "load" variable as the sum of training, competition, academic and work hours and calculated acute, chronic, and acute-to-chronic ratio variables for both load and stress. Associations between subjective and objective measures were analyzed using Spearman's rank correlation. RESULTS: Weak to moderate positive associations were found between load and perceived stress (r = 0.19 to 0.46, p < 0.001), and between perceived stress and cortisol (r = 0.10, p = 0.023). Weak negative associations were found between perceived stress and FTCR (r = -0.18 to -0.20, p < 0.001) and between load and FTCR (r = -0.13, p = 0.003). A total of 86% of athletes had positive associations between stress and load (47% weak, 34% moderate, 5% high); 78% between stress and cortisol (27% weak, 22% moderate, 29% high); and 63% demonstrated negative associations between FTCR and load (18% weak, 32% moderate, 13% high). CONCLUSION: This study highlights the complexity between subjective and objective measures of stress and load in athletes. Understanding the link between these measures may help coaches and sports scientists streamline athlete monitoring. In cases where moderate to strong associations exist, subjective measures might serve as a reliable substitute for objective ones, making the monitoring process more time- and cost-efficient.

Zobrazit více v PubMed

Adlercreutz H., Härkönen M., Kuoppasalmi K., Näveri H., Huhtaniemi I., Tikkanen H., et al. (1986). Effect of training on plasma anabolic and catabolic steroid hormones and their response during physical exercise. Int. J. Sports Med. 7 (Suppl. 1), 27–28. 10.1055/s-2008-1025798 PubMed DOI

Armbruster D., Mueller A., Strobel A., Lesch K.-P., Brocke B., Kirschbaum C. (2012). Children under stress – COMT genotype and stressful life events predict cortisol increase in an acute social stress paradigm. Int. J. Neuropsychopharmacol. 15 1229–1239. 10.1017/S1461145711001763 PubMed DOI

Arnsten A. F. T. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci. 10 410–422. 10.1038/nrn2648 PubMed DOI PMC

Berjot S., Deschamps F., Lesage F.-X. (2011). Inter-judge reliability of stress measurement using a visual analogue scale. Psychol. Trav. Organ. 17 85–90.

Bok D., Jukiæ N., Foster C. (2022). Validation of session ratings of perceived exertion for quantifying training load in karate kata sessions. Biol. Sport 39 849–855. 10.5114/biolsport.2022.109458 PubMed DOI PMC

Brenner J. S., Watson A. (2024). Overuse injuries, overtraining, and burnout in young athletes. Pediatrics 153:e2023065129. 10.1542/peds.2023-065129 PubMed DOI

Cappola A. R., Auchus R. J., El-Hajj Fuleihan G., Handelsman D. J., Kalyani R. R., McClung M., et al. (2023). Hormones and aging: an endocrine society scientific statement. J. Clin. Endocrinol. Metab. 108 1835–1874. 10.1210/clinem/dgad225 PubMed DOI PMC

Chen J., Lipska B. K., Halim N., Ma Q. D., Matsumoto M., Melhem S., et al. (2004). Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am. J. Hum. Genet. 75 807–821. 10.1086/425589 PubMed DOI PMC

Cohen S., Wills T. A. (1985). Stress, social support, and the buffering hypothesis. Psychol. Bull. 98 310–357. 10.1037/0033-2909.98.2.310 PubMed DOI

Cohen S., Kamarck T., Mermelstein R. (1983). A global measure of perceived stress. J. Health Soc. Behav. 24 385–396. 10.2307/2136404 PubMed DOI

Cotman C. W., Berchtold N. C. (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25 295–301. 10.1016/s0166-2236(02)02143-4 PubMed DOI

Cox J. M., Davison A. (2005). The visual analogue scale as a tool for self-reporting of subjective phenomena in the medical radiation sciences. J. Med. Radiat. Sci. 52 22–24. 10.1002/j.2051-3909.2005.tb00026.x DOI

Cuschieri S. (2019). The STROBE guidelines. Saudi J. Anaesth. 13 (Suppl. 1), S31–S34. 10.4103/sja.SJA_543_18 PubMed DOI PMC

de Almondes K. M., Marín Agudelo H. A., Jiménez-Correa U. (2021). Impact of sleep deprivation on emotional regulation and the immune system of healthcare workers as a risk factor for COVID 19: practical recommendations from a task force of the Latin American association of sleep psychology. Front. Psychol. 12:564227. 10.3389/fpsyg.2021.564227 PubMed DOI PMC

Drole K., Paravlic A., Steffen K., Doupona M. (2023). Effects of physical, psychosocial and dual-career loads on injuries and illnesses among elite handball players: protocol of prospective cohort study. BMJ Open 13:e069104. 10.1136/bmjopen-2022-069104 PubMed DOI PMC

Drole K., Pori P., Jerin A., Kren A., Paravlic A. (2024). Anabolic/catabolic hormone imbalance but still jumping further? Negative association of free testosterone with jumping performance in elite handball players following a preparatory period. Res. Q. Exerc. Sport 95 938–944. 10.1080/02701367.2024.2353715 PubMed DOI

Ferré S. (2008). An update on the mechanisms of the psychostimulant effects of caffeine. J. Neurochem. 105 1067–1079. 10.1111/j.1471-4159.2007.05196.x PubMed DOI

Foster C. (1998). Monitoring training in athletes with reference to overtraining syndrome. Med. Sci. Sports Exerc. 30 1164–1168. 10.1097/00005768-199807000-00023 PubMed DOI

Fry R. W., Morton A. R., Keast D. (1991). Overtraining in athletes. An update. Sports Med. 12 32–65. 10.2165/00007256-199112010-00004 PubMed DOI

Fullagar H. H. K., Govus A., Hanisch J., Murray A. (2017). The time course of perceptual recovery markers after match play in division I-A college American football. Int. J. Sports Physiol. Perform. 12 1264–1266. 10.1123/ijspp.2016-0550 PubMed DOI

Gabbett T. J., Hulin B. T., Blanch P., Whiteley R. (2016). High training workloads alone do not cause sports injuries: how you get there is the real issue. Br. J. Sports Med. 50 444–445. 10.1136/bjsports-2015-095567 PubMed DOI

Garvican-Lewis L. A., Vuong V. L., Govus A. D., Peeling P., Jung G., Nemeth E., et al. (2018). Intravenous iron does not augment the hemoglobin mass response to simulated hypoxia. Med. Sci. Sport Exerc. 50 1669–1678. 10.1249/MSS.0000000000001608 PubMed DOI

Gearity B. T., Murray M. A. (2011). Athletes’ experiences of the psychological effects of poor coaching. Psychol. Sport Exerc. 12 213–221. 10.1016/j.psychsport.2010.11.004 DOI

Guest N. S., VanDusseldorp T. A., Nelson M. T., Grgic J., Schoenfeld B. J., Jenkins N. D. M., et al. (2021). International society of sports nutrition position stand: caffeine and exercise performance. J. Int. Soc. Sports Nutr. 18:1. 10.1186/s12970-020-00383-4 PubMed DOI PMC

Häkkinen K., Pakarinen A. (1993). Acute hormonal responses to two different fatiguing heavy-resistance protocols in male athletes. J. Appl. Physiol. 74 882–887. 10.1152/jappl.1993.74.2.882 PubMed DOI

Halson S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports Med. 44 Suppl. 2(Suppl. 2) S139–S147. 10.1007/s40279-014-0253-z PubMed DOI PMC

Hamlin M. J., Wilkes D., Elliot C. A., Lizamore C. A., Kathiravel Y. (2019). Monitoring training loads and perceived stress in young elite university athletes. Front. Physiol. 10:34. 10.3389/fphys.2019.00034 PubMed DOI PMC

Hanton S., Fletcher D., Coughlan G. (2005). Stress in elite sport performers: a comparative study of competitive and organizational stressors. J. Sports Sci. 23 1129–1141. 10.1080/02640410500131480 PubMed DOI

Hoogeveen A. R., Zonderland M. L. (1996). Relationships between testosterone, cortisol and performance in professional cyclists. Int. J. Sports Med. 17 423–428. 10.1055/s-2007-972872 PubMed DOI

Immanuel S., Teferra M. N., Baumert M., Bidargaddi N. (2023). Heart rate variability for evaluating psychological stress changes in healthy adults: a scoping review. Neuropsychobiology 82 187–202. 10.1159/000530376 PubMed DOI PMC

Isoard-Gautheur S., Guillet-Descas E., Lemyre P.-N. (2012). A prospective study of the influence of perceived coaching style on burnout propensity in high level young athletes: using a self-determination theory perspective. Sport Psychol. 26 282–298.

Jeffreys I. (2005). A multidimensional approach to enhancing recovery. Strength Cond. J. 27 78–85. 10.1519/00126548-200510000-00014 PubMed DOI

Jürimäe J., Mäestu J., Purge P., Jürimäe T. (2004). Changes in stress and recovery after heavy training in rowers. J. Sci. Med. Sport 7 335–339. 10.1016/S1440-2440(04)80028-8 PubMed DOI

Kang J. I., Kim S. J., Song Y. Y., Namkoong K., An S. K. (2013). Genetic influence of COMT and BDNF gene polymorphisms on resilience in healthy college students. Neuropsychobiology. 68 174–180. 10.1159/000353257 PubMed DOI

Kim S. J., Cho S.-J., Jang H. M., Shin J., Park P. W., Lee Y. J., et al. (2010). Interaction between brain-derived neurotrophic factor Val66Met polymorphism and recent negative stressor in harm avoidance. Neuropsychobiology 61 19–26. 10.1159/000258639 PubMed DOI

Kimball A., Freysinger V. J. (2003). Leisure, stress, and coping: the sport participation of collegiate student-athletes. Leis Sci. 25 115–141. 10.1080/01490400306569 DOI

Kraemer W. J., Ratamess N. A. (2005). Hormonal responses and adaptations to resistance exercise and training. Sports Med. 35 339–361. 10.2165/00007256-200535040-00004 PubMed DOI

Kraemer W. J., Fleck S. J., Dziados J. E., Harman E. A., Marchitelli L. J., Gordon S. E., et al. (1993). Changes in hormonal concentrations after different heavy-resistance exercise protocols in women. J. Appl. Physiol. 75 594–604. 10.1152/jappl.1993.75.2.594 PubMed DOI

Lesage F. X., Berjot S. (2011). Validity of occupational stress assessment using a visual analogue scale. Occup. Med. (Lond). 61 434–436. 10.1093/occmed/kqr037 PubMed DOI

Lesage F. X., Berjot S., Deschamps F. (2012). Clinical stress assessment using a visual analogue scale. Occup. Med. (Chic Ill). 62 600–605. 10.1093/occmed/kqs140 PubMed DOI

Lo Martire V., Berteotti C., Zoccoli G., Bastianini S. (2024). Improving sleep to improve stress resilience. Curr. Sleep Med. Reports 10 23–33. 10.1007/s40675-024-00274-z DOI

Lopes Dos Santos M., Uftring M., Stahl C. A., Lockie R. G., Alvar B., Mann J. B., et al. (2020). Stress in academic and athletic performance in collegiate athletes: a narrative review of sources and monitoring strategies. Front. Sport Act Living 2:42. 10.3389/fspor.2020.00042 PubMed DOI PMC

Lorist M. M., Tops M. (2003). Caffeine, fatigue, and cognition. Brain Cogn. 53 82–94. 10.1016/s0278-2626(03)00206-9 PubMed DOI

Main L. C., Dawson B., Grove J. R., Landers G. J., Goodman C. (2009). Impact of training on changes in perceived stress and cytokine production. Res. Sports Med. 17 121–132. 10.1080/15438620802689757 PubMed DOI

Malone S., Owen A., Newton M., Mendes B., Tiernan L., Hughes B., et al. (2018). Wellbeing perception and the impact on external training output among elite soccer players. J. Sci. Med. Sport 21 29–34. 10.1016/j.jsams.2017.03.019 PubMed DOI

Mann J. B., Bryant K. R., Johnstone B., Ivey P. A., Sayers S. P. (2016). Effect of physical and academic stress on illness and injury in division 1 college football players. J. Strength Cond. Res. 30 20–25. 10.1519/JSC.0000000000001055 PubMed DOI

Mansournia M. A., Collins G. S., Nielsen R. O., Nazemipour M., Jewell N. P., Altman D. G., et al. (2021). A CHecklist for statistical Assessment of Medical Papers (the CHAMP statement): explanation and elaboration. Br. J. Sports Med. 55 1009–1017. 10.1136/bjsports-2020-103652 PubMed DOI PMC

Maso F., Lac G., Filaire E., Michaux O., Robert A. (2004). Salivary testosterone and cortisol in rugby players: correlation with psychological overtraining items. Br. J. Sports Med. 38 260–263. 10.1136/bjsm.2002.000254 PubMed DOI PMC

McKay A. K. A., Stellingwerff T., Smith E. S., Martin D. T., Mujika I., Goosey-Tolfrey V. L., et al. (2022). Defining training and performance caliber: a participant classification framework. Int. J. Sports Physiol. Perform. 17 317–331. 10.1123/ijspp.2021-0451 PubMed DOI

Meerlo P., Sgoifo A., Suchecki D. (2008). Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med. Rev. 12 197–210. 10.1016/j.smrv.2007.07.007 PubMed DOI

Mellalieu S. D., Neil R., Hanton S., Fletcher D. (2009). Competition stress in sport performers: stressors experienced in the competition environment. J. Sports Sci. 27 729–744. 10.1080/02640410902889834 PubMed DOI

Mitchell A. M., Crane P. A., Kim Y. (2008). Perceived stress in survivors of suicide: psychometric properties of the Perceived Stress Scale. Res. Nurs. Health 31 576–585. 10.1002/nur.20284 PubMed DOI

Miyatsu T., Smith B. M., Koutnik A. P., Pirolli P., Broderick T. J. (2022). Resting-state heart rate variability after stressful events as a measure of stress tolerance among elite performers. Front. Physiol. 13:1070285. 10.3389/fphys.2022.1070285 PubMed DOI PMC

Murray N. B., Gabbett T. J., Townshend A. D., Blanch P. (2017). Calculating acute: chronic workload ratios using exponentially weighted moving averages provides a more sensitive indicator of injury likelihood than rolling averages. Br. J. Sports Med. 51 749–754. 10.1136/bjsports-2016-097152 PubMed DOI

Nehlig A. (2016). Effects of coffee/caffeine on brain health and disease: what should I tell my patients? Pract. Neurol. 16 89–95. 10.1136/practneurol-2015-001162 PubMed DOI

Nehlig A., Daval J. L., Debry G. (1992). Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res. Brain Res. Rev. 17 139–170. 10.1016/0165-0173(92)90012-b PubMed DOI

Nobari H., Aquino R., Clemente F. M., Khalafi M., Adsuar J. C., Pérez-Gómez J. (2020). Description of acute and chronic load, training monotony and strain over a season and its relationships with well-being status: a study in elite under-16 soccer players. Physiol. Behav. 225:113117. 10.1016/j.physbeh.2020.113117 PubMed DOI

Nobari H., Badicu G., Akyildiz Z., Clemente F. M. (2023). Relationships between training load and wellbeing measures across a full season: a study of Turkish national youth wrestlers. Biol. Sport 40 399–408. 10.5114/biolsport.2023.116009 PubMed DOI PMC

Palamarchuk I. S., Vaillancourt T. (2021). Mental resilience and coping with stress: a comprehensive, multi-level model of cognitive processing, decision making, and behavior. Front. Behav. Neurosci. 15:719674. 10.3389/fnbeh.2021.719674 PubMed DOI PMC

Pensgaard A. M., Roberts G. C. (2000). The relationship between motivational climate, perceived ability and sources of distress among elite athletes. J. Sports Sci. 18 191–200. 10.1080/026404100365090 PubMed DOI

Pimenta R. M., Hespanhol L., Lopes A. D. (2021). Brazilian version of the OSTRC Questionnaire on health problems (OSTRC-BR): translation, cross-cultural adaptation and measurement properties. Braz. J. Phys. Ther. 25 785–793. 10.1016/j.bjpt.2021.06.010 PubMed DOI PMC

Rossi A., Perri E., Pappalardo L., Cintia P., Iaia F. M. (2019). Relationship between external and internal workloads in elite soccer players: comparison between rate of perceived exertion and training load. Appl. Sci. 9:5174. 10.3390/app9235174 DOI

Russell G., Lightman S. (2019). The human stress response. Nat. Rev. Endocrinol. 15 525–534. 10.1038/s41574-019-0228-0 PubMed DOI

Saw A. E., Main L. C., Gastin P. B. (2016). Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br. J. Sports Med. 50 281–291. 10.1136/bjsports-2015-094758 PubMed DOI PMC

Schwellnus M., Soligard T., Alonso J.-M., Bahr R., Clarsen B., Dijkstra H. P., et al. (2016). How much is too much? (Part 2) International Olympic Committee consensus statement on load in sport and risk of illness. Br. J. Sports Med. 50 1043–1052. 10.1136/bjsports-2016-096572 PubMed DOI PMC

Shalev I., Lerer E., Israel S., Uzefovsky F., Gritsenko I., Mankuta D., et al. (2009). BDNF Val66Met polymorphism is associated with HPA axis reactivity to psychological stress characterized by genotype and gender interactions. Psychoneuroendocrinology 34 382–388. 10.1016/j.psyneuen.2008.09.017 PubMed DOI

Soligard T., Schwellnus M., Alonso J. M., Bahr R., Clarsen B., Dijkstra H. P., et al. (2016). How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br. J. Sports Med. 50 1030–1041. 10.1136/bjsports-2016-096581 PubMed DOI

Taylor R. (1990). Interpretation of the correlation coefficient: a basic review. J. Diagn. Med. Sonogr. 6 35–39.

Umeda T., Suzukawa K., Takahashi I., Yamamoto Y., Tanabe M., Kojima A., et al. (2008). Effects of intense exercise on the physiological and mental condition of female university judoists during a training camp. J. Sports Sci. 26 897–904. 10.1080/02640410801885917 PubMed DOI

Van Laethem M., Beckers D. G. J., Kompier M. A. J., Kecklund G., van den Bossche S. N. J., Geurts S. A. E. (2015). Bidirectional relations between work-related stress, sleep quality and perseverative cognition. J. Psychosom. Res. 79 391–398. 10.1016/j.jpsychores.2015.08.011 PubMed DOI

Vermeulen A., Verdonck L., Kaufman J. M. (1999). A critical evaluation of simple methods for the estimation of free testosterone in serum. J. Clin. Endocrinol. Metab. 84 3666–3672. 10.1210/jcem.84.10.6079 PubMed DOI

Vervoorn C., Quist A. M., Vermulst L. J. M., Erich W. B., de Vries W. R., Thijssen J. H. (1991). The behaviour of the plasma free testosterone / cortisol ratio during a season of elite rowing training. Int. J. Sports Med. 12 257–263. PubMed

Wang J., Liu W., Zhang Y., Xie S., Yang B. (2021). Perceived stress among chinese medical students engaging in online learning in light of COVID-19. Psychol. Res. Behav. Manag. 14 549–562. 10.2147/PRBM.S308497 PubMed DOI PMC

West S. W., Clubb J., Torres-Ronda L., Howells D., Leng E., Vescovi J. D., et al. (2021). More than a metric: how training load is used in elite sport for athlete management. Int. J. Sports Med. 42 300–306. 10.1055/a-1268-8791 PubMed DOI

Yalcin-Siedentopf N., Pichler T., Welte A. S., Hoertnagl C. M., Klasen C. C., Kemmler G., et al. (2021). Sex matters: stress perception and the relevance of resilience and perceived social support in emerging adults. Arch. Womens Ment. Health 24 403–411. 10.1007/s00737-020-01076-2 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...