• Je něco špatně v tomto záznamu ?

Classification of Ataxic Gait

O. Vyšata, O. Ťupa, A. Procházka, R. Doležal, P. Cejnar, AM. Bhorkar, O. Dostál, M. Vališ

. 2021 ; 21 (16) : . [pub] 20210819

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21025107

Grantová podpora
FN HK 00179906 Ministerstvo Zdravotnictví Ceské Republiky
PROGRES Q40 Charles University in Prague, Czech Republic
CZ.02.1.01-0.0-0.0-17 048-0007441 Charles University in Prague, Czech Republic

Gait disorders accompany a number of neurological and musculoskeletal disorders that significantly reduce the quality of life. Motion sensors enable high-quality modelling of gait stereotypes. However, they produce large volumes of data, the evaluation of which is a challenge. In this publication, we compare different data reduction methods and classification of reduced data for use in clinical practice. The best accuracy achieved between a group of healthy individuals and patients with ataxic gait extracted from the records of 43 participants (23 ataxic, 20 healthy), forming 418 segments of straight gait pattern, is 98% by random forest classifier preprocessed by t-distributed stochastic neighbour embedding.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21025107
003      
CZ-PrNML
005      
20240418085555.0
007      
ta
008      
211013s2021 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/s21165576 $2 doi
035    __
$a (PubMed)34451018
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Vyšata, Oldřich $u Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic
245    10
$a Classification of Ataxic Gait / $c O. Vyšata, O. Ťupa, A. Procházka, R. Doležal, P. Cejnar, AM. Bhorkar, O. Dostál, M. Vališ
520    9_
$a Gait disorders accompany a number of neurological and musculoskeletal disorders that significantly reduce the quality of life. Motion sensors enable high-quality modelling of gait stereotypes. However, they produce large volumes of data, the evaluation of which is a challenge. In this publication, we compare different data reduction methods and classification of reduced data for use in clinical practice. The best accuracy achieved between a group of healthy individuals and patients with ataxic gait extracted from the records of 43 participants (23 ataxic, 20 healthy), forming 418 segments of straight gait pattern, is 98% by random forest classifier preprocessed by t-distributed stochastic neighbour embedding.
650    _2
$a ataxie $x diagnóza $7 D001259
650    _2
$a chůze (způsob) $7 D005684
650    12
$a neurologické poruchy chůze $7 D020233
650    _2
$a lidé $7 D006801
650    12
$a kvalita života $7 D011788
655    _2
$a časopisecké články $7 D016428
700    1_
$a Ťupa, Ondřej $u Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, 166 28 Praha 6, Czech Republic
700    1_
$a Procházka, Aleš $u Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, 166 28 Praha 6, Czech Republic $u Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, 160 00 Prague 6, Czech Republic
700    1_
$a Doležal, Rafael $u Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
700    1_
$a Cejnar, Pavel $u Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, 166 28 Praha 6, Czech Republic
700    1_
$a Bhorkar, Aprajita Milind $u Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic
700    1_
$a Dostál, Ondřej $u Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic $7 xx0316377
700    1_
$a Vališ, Martin $u Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic
773    0_
$w MED00008309 $t Sensors $x 1424-8220 $g Roč. 21, č. 16 (2021)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34451018 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20211013 $b ABA008
991    __
$a 20240418085549 $b ABA008
999    __
$a ok $b bmc $g 1714244 $s 1145614
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 21 $c 16 $e 20210819 $i 1424-8220 $m Sensors $n Sensors Basel $x MED00008309
GRA    __
$a FN HK 00179906 $p Ministerstvo Zdravotnictví Ceské Republiky
GRA    __
$a PROGRES Q40 $p Charles University in Prague, Czech Republic
GRA    __
$a CZ.02.1.01-0.0-0.0-17 048-0007441 $p Charles University in Prague, Czech Republic
LZP    __
$a Pubmed-20211013

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...