-
Je něco špatně v tomto záznamu ?
Classification of Ataxic Gait
O. Vyšata, O. Ťupa, A. Procházka, R. Doležal, P. Cejnar, AM. Bhorkar, O. Dostál, M. Vališ
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
Grantová podpora
FN HK 00179906
Ministerstvo Zdravotnictví Ceské Republiky
PROGRES Q40
Charles University in Prague, Czech Republic
CZ.02.1.01-0.0-0.0-17 048-0007441
Charles University in Prague, Czech Republic
NLK
Directory of Open Access Journals
od 2001
PubMed Central
od 2003
Europe PubMed Central
od 2003
ProQuest Central
od 2001-01-01
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2003-01-01
Health & Medicine (ProQuest)
od 2001-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2001
PubMed
34451018
DOI
10.3390/s21165576
Knihovny.cz E-zdroje
- MeSH
- ataxie diagnóza MeSH
- chůze (způsob) MeSH
- kvalita života * MeSH
- lidé MeSH
- neurologické poruchy chůze * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Gait disorders accompany a number of neurological and musculoskeletal disorders that significantly reduce the quality of life. Motion sensors enable high-quality modelling of gait stereotypes. However, they produce large volumes of data, the evaluation of which is a challenge. In this publication, we compare different data reduction methods and classification of reduced data for use in clinical practice. The best accuracy achieved between a group of healthy individuals and patients with ataxic gait extracted from the records of 43 participants (23 ataxic, 20 healthy), forming 418 segments of straight gait pattern, is 98% by random forest classifier preprocessed by t-distributed stochastic neighbour embedding.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21025107
- 003
- CZ-PrNML
- 005
- 20240418085555.0
- 007
- ta
- 008
- 211013s2021 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/s21165576 $2 doi
- 035 __
- $a (PubMed)34451018
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Vyšata, Oldřich $u Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic
- 245 10
- $a Classification of Ataxic Gait / $c O. Vyšata, O. Ťupa, A. Procházka, R. Doležal, P. Cejnar, AM. Bhorkar, O. Dostál, M. Vališ
- 520 9_
- $a Gait disorders accompany a number of neurological and musculoskeletal disorders that significantly reduce the quality of life. Motion sensors enable high-quality modelling of gait stereotypes. However, they produce large volumes of data, the evaluation of which is a challenge. In this publication, we compare different data reduction methods and classification of reduced data for use in clinical practice. The best accuracy achieved between a group of healthy individuals and patients with ataxic gait extracted from the records of 43 participants (23 ataxic, 20 healthy), forming 418 segments of straight gait pattern, is 98% by random forest classifier preprocessed by t-distributed stochastic neighbour embedding.
- 650 _2
- $a ataxie $x diagnóza $7 D001259
- 650 _2
- $a chůze (způsob) $7 D005684
- 650 12
- $a neurologické poruchy chůze $7 D020233
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a kvalita života $7 D011788
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Ťupa, Ondřej $u Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, 166 28 Praha 6, Czech Republic
- 700 1_
- $a Procházka, Aleš $u Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, 166 28 Praha 6, Czech Republic $u Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, 160 00 Prague 6, Czech Republic
- 700 1_
- $a Doležal, Rafael $u Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
- 700 1_
- $a Cejnar, Pavel $u Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, 166 28 Praha 6, Czech Republic
- 700 1_
- $a Bhorkar, Aprajita Milind $u Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic
- 700 1_
- $a Dostál, Ondřej $u Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic $7 xx0316377
- 700 1_
- $a Vališ, Martin $u Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic
- 773 0_
- $w MED00008309 $t Sensors $x 1424-8220 $g Roč. 21, č. 16 (2021)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34451018 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20240418085549 $b ABA008
- 999 __
- $a ok $b bmc $g 1714244 $s 1145614
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 21 $c 16 $e 20210819 $i 1424-8220 $m Sensors $n Sensors Basel $x MED00008309
- GRA __
- $a FN HK 00179906 $p Ministerstvo Zdravotnictví Ceské Republiky
- GRA __
- $a PROGRES Q40 $p Charles University in Prague, Czech Republic
- GRA __
- $a CZ.02.1.01-0.0-0.0-17 048-0007441 $p Charles University in Prague, Czech Republic
- LZP __
- $a Pubmed-20211013