Classification of Ataxic Gait
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
FN HK 00179906
Ministerstvo Zdravotnictví Ceské Republiky
PROGRES Q40
Charles University in Prague, Czech Republic
CZ.02.1.01-0.0-0.0-17 048-0007441
Charles University in Prague, Czech Republic
PubMed
34451018
PubMed Central
PMC8402252
DOI
10.3390/s21165576
PII: s21165576
Knihovny.cz E-resources
- Keywords
- SARA, ataxia, classification, gait, machine learning,
- MeSH
- Ataxia diagnosis MeSH
- Gait MeSH
- Quality of Life * MeSH
- Humans MeSH
- Gait Disorders, Neurologic * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Gait disorders accompany a number of neurological and musculoskeletal disorders that significantly reduce the quality of life. Motion sensors enable high-quality modelling of gait stereotypes. However, they produce large volumes of data, the evaluation of which is a challenge. In this publication, we compare different data reduction methods and classification of reduced data for use in clinical practice. The best accuracy achieved between a group of healthy individuals and patients with ataxic gait extracted from the records of 43 participants (23 ataxic, 20 healthy), forming 418 segments of straight gait pattern, is 98% by random forest classifier preprocessed by t-distributed stochastic neighbour embedding.
See more in PubMed
Houlden H., Charlton P., Singh D. Neurology and orthopaedics. J. Neurol. Neurosurg. Psychiatry. 2007;78:224–232. doi: 10.1136/jnnp.2006.092072. PubMed DOI PMC
Möhwald K., Pradhan C., Wuehr M., Dieterich M., Brandt T., Jahn K., Schniepp R. EP 52. PREGAIT study–Pattern recognition and differential diagnosis of neurological gait disorders in instrumental and clinical gait analysis. Clin. Neurophysiol. 2016;127:e260. doi: 10.1016/j.clinph.2016.05.106. DOI
Buckley C., Alcock L., McArdle R., Rehman R.Z.U., Del Din S., Mazzà C., Yarnall A.J., Rochester L. The role of movement analysis in diagnosing and monitoring neurodegenerative conditions: Insights from gait and postural control. Brain Sci. 2019;9:34. doi: 10.3390/brainsci9020034. PubMed DOI PMC
Lim C.H., Vats E., Chan C.S. Fuzzy human motion analysis: A review. Pattern Recognit. 2015;48:1773–1796. doi: 10.1016/j.patcog.2014.11.016. DOI
Terayama K., Sakakibara R., Ogawa A. Wearable gait sensors to measure ataxia due to spinocerebellar degeneration. Neurol. Clin. Neurosci. 2018;6:9–12. doi: 10.1111/ncn3.12174. DOI
Arcuria G., Marcotulli C., Amuso R., Dattilo G., Galasso C., Pierelli F., Casali C. Developing a smartphone application, triaxial accelerometer-based, to quantify static and dynamic balance deficits in patients with cerebellar ataxias. J. Neurol. 2020;267:625–639. doi: 10.1007/s00415-019-09570-z. PubMed DOI
Takayanagi N., Sudo M., Yamashiro Y., Lee S., Kobayashi Y., Niki Y., Shimada H. Relationship between daily and in-laboratory gait speed among healthy community-dwelling older adults. Sci. Rep. 2019;9:3496. doi: 10.1038/s41598-019-39695-0. PubMed DOI PMC
Charvátová H., Procházka A., Vyšata O. Motion Assessment for Accelerometric and Heart Rate Cycling Data Analysis. Sensors. 2020;20:1523. doi: 10.3390/s20051523. PubMed DOI PMC
Procházka A., Vaseghi S., Yadollahi M., Ťupa O., Mareš J., Vyšata O. Remote physiological and GPS data processing in evaluation of physical activities. Med. Biol. Eng. Comput. 2014;52:301–308. doi: 10.1007/s11517-013-1134-6. PubMed DOI
Jarchi D., Pope J., Lee T.K., Tamjidi L., Mirzaei A., Sanei S. A review on accelerometry-based gait analysis and emerging clinical applications. IEEE Rev. Biomed. Eng. 2018;11:177–194. doi: 10.1109/RBME.2018.2807182. PubMed DOI
Hickey A., Gunn E., Alcock L., Del Din S., Godfrey A., Rochester L., Galna B. Validity of a wearable accelerometer to quantify gait in spinocerebellar ataxia type 6. Physiol. Meas. 2016;37:N105. doi: 10.1088/0967-3334/37/11/N105. PubMed DOI
Ahmad N., Ghazilla R.A.R., Khairi N.M., Kasi V. Reviews on various inertial measurement unit (IMU) sensor applications. Int. J. Signal Process. Syst. 2013;1:256–262. doi: 10.12720/ijsps.1.2.256-262. DOI
Sers R., Forrester S., Moss E., Ward S., Ma J., Zecca M. Validity of the Perception Neuron inertial motion capture system for upper body motion analysis. Measurement. 2020;149:107024. doi: 10.1016/j.measurement.2019.107024. DOI
Taylor C.R., von Konsky B.R., Kirtley C. Polynomial approximations of gait for human motion analysis and visualization; Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No. 98CH36286); Hong Kong, China. 1 November 1998; pp. 2490–2493.
Karahoca A., Nurullahoglu M. WSEAS International Conference, Proceedings of the Mathematics and Computers in Science and Engineering, Heraklion Greece, 23–25 July 2008. Volume 7 World Scientific and Engineering Academy and Society; Singapore: 2008. Human motion analysis and action recognition.
Lewandowski M. Ph.D. Thesis. Kingston University; London, UK: 2011. Advanced Nonlinear Dimensionality Reduction Methods for Multidimensional Time Series Application to Human Motion Analysis.
Mandery C., Plappert M., Borras J., Asfour T. Dimensionality reduction for whole-body human motion recognition; Proceedings of the 2016 19th International Conference on Information Fusion (FUSION); Heidelberg, Germany. 5–8 July 2016; pp. 355–362.
Potluri S., Ravuri S., Diedrich C., Schega L. Deep Learning based Gait Abnormality Detection using Wearable Sensor System; Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Berlin, Germany. 23–27 July 2019; pp. 3613–3619. PubMed
Phinyomark A., Petri G., Ibáñez-Marcelo E., Osis S.T., Ferber R. Analysis of big data in gait biomechanics: Current trends and future directions. J. Med. Biol. Eng. 2018;38:244–260. doi: 10.1007/s40846-017-0297-2. PubMed DOI PMC
Shirai S., Yabe I., Matsushima M., Ito Y.M., Yoneyama M., Sasaki H. Quantitative evaluation of gait ataxia by accelerometers. J. Neurol. Sci. 2015;358:253–258. doi: 10.1016/j.jns.2015.09.004. PubMed DOI
Fazio P., Granieri G., Casetta I., Cesnik E., Mazzacane S., Caliandro P., Pedrielli F., Granieri E. Gait measures with a triaxial accelerometer among patients with neurological impairment. Neurol. Sci. 2013;34:435–440. doi: 10.1007/s10072-012-1017-x. PubMed DOI
LeMoyne R., Heerinckx F., Aranca T., De Jager R., Zesiewicz T., Saal H.J. Wearable body and wireless inertial sensors for machine learning classification of gait for people with Friedreich’s ataxia; Proceedings of the 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN); San Francisco, CA, USA. 14–17 June 2016; pp. 147–151.
Mannini A., Martinez-Manzanera O., Lawerman T.F., Trojaniello D., Della Croce U., Sival D.A., Maurits N.M., Sabatini A.M. Automatic classification of gait in children with early-onset ataxia or developmental coordination disorder and controls using inertial sensors. Gait Posture. 2017;52:287–292. doi: 10.1016/j.gaitpost.2016.12.002. PubMed DOI
Matsushima A., Yoshida K., Genno H., Ikeda S.I. Principal component analysis for ataxic gait using a triaxial accelerometer. J. Neuroeng. Rehabil. 2017;14:37. doi: 10.1186/s12984-017-0249-7. PubMed DOI PMC
Dostál O., Procházka A., Vyšata O., Ťupa O., Cejnar P., Vališ M. Recognition of motion patterns using accelerometers for ataxic gait assessment. Neural Comput. Appl. 2020;33:2207–2215. doi: 10.1007/s00521-020-05103-2. DOI
Matsushima A., Yoshida K., Genno H., Murata A., Matsuzawa S., Nakamura K., Nakamura A., Ikeda S. Clinical assessment of standing and gait in ataxic patients using a triaxial accelerometer. Cerebellum Ataxias. 2015;2:1–7. doi: 10.1186/s40673-015-0028-9. PubMed DOI PMC
Caliandro P., Conte C., Iacovelli C., Tatarelli A., Castiglia S.F., Reale G., Serrao M. Exploring risk of falls and dynamic unbalance in cerebellar ataxia by inertial sensor assessment. Sensors. 2019;19:5571. doi: 10.3390/s19245571. PubMed DOI PMC
Procházka A., Vyšata O., Charvátová H., Vališ M. Motion Symmetry Evaluation Using Accelerometers and Energy Distribution. Symmetry. 2019;11:871. doi: 10.3390/sym11070871. DOI
Wold S., Esbensen K., Geladi P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987;2:37–52. doi: 10.1016/0169-7439(87)80084-9. DOI
Maaten L.V.D., Hinton G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008;9:2579–2605.
McInnes L., Healy J., Melville J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv. 20181802.03426
Hosmer D.W., Jr., Lemeshow S., Sturdivant R.X. Applied Logistic Regression. Volume 398 John Wiley & Sons; Hoboken, NJ, USA: 2013.
Suykens J.A., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999;9:293–300. doi: 10.1023/A:1018628609742. DOI
Howley T., Madden M.G. The genetic kernel support vector machine: Description and evaluation. Artif. Intell. Rev. 2005;24:379–395. doi: 10.1007/s10462-005-9009-3. DOI
Rish I. An empirical study of the naive Bayes classifier; Proceedings of the IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence; Seattle, WA, USA. 4–6 August 2001; pp. 41–46.
Thomaz C.E., Gillies D.F., Feitosa R.Q. International Workshop on Biometric Authentication. Springer; Berlin/Heidelberg, Germany: 2002. A new quadratic classifier applied to biometric recognition; pp. 186–196.
Seidl T., Kriegel H.P. Optimal multi-step k-nearest neighbor search; Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data; Seattle, WA, USA. 2–4 June 1998; pp. 154–165.
Vens C., Struyf J., Schietgat L., Džeroski S., Blockeel H. Decision trees for hierarchical multi-label classification. Mach. Learn. 2008;73:185. doi: 10.1007/s10994-008-5077-3. DOI
Liaw A., Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22.
Lippmann R.P. Pattern classification using neural networks. IEEE Commun. Mag. 1989;27:47–50. doi: 10.1109/35.41401. DOI
Hastie T., Rosset S., Zhu J., Zou H. Multi-class adaboost. Stat. Interface. 2009;2:349–360. doi: 10.4310/SII.2009.v2.n3.a8. DOI
Figueiredo J., Santos C.P., Moreno J.C. Automatic recognition of gait patterns in human motor disorders using machine learning: A review. Med. Eng. Phys. 2018;53:1–12. doi: 10.1016/j.medengphy.2017.12.006. PubMed DOI
McGinnis R.S., Mahadevan N., Moon Y., Seagers K., Sheth N., Wright J.A., Jr., DiCristofaro S., Silva I., Jortberg E., Ceruolo M., et al. A machine learning approach for gait speed estimation using skin-mounted wearable sensors: From healthy controls to individuals with multiple sclerosis. PLoS ONE. 2017;12:e0178366. doi: 10.1371/journal.pone.0178366. PubMed DOI PMC
Alotaibi M., Mahmood A. Improved gait recognition based on specialized deep convolutional neural network. Comput. Vis. Image Underst. 2017;164:103–110. doi: 10.1016/j.cviu.2017.10.004. DOI
Phan D., Nguyen N., Pathirana P.N., Horne M., Power L., Szmulewicz D. A random forest approach for quantifying gait ataxia with truncal and peripheral measurements using multiple wearable sensors. IEEE Sens. J. 2019;20:723–734. doi: 10.1109/JSEN.2019.2943879. DOI
Reynard F., Terrier P. Determinants of gait stability while walking on a treadmill: A machine learning approach. J. Biomech. 2017;65:212–215. doi: 10.1016/j.jbiomech.2017.10.020. PubMed DOI