Motion Assessment for Accelerometric and Heart Rate Cycling Data Analysis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32164235
PubMed Central
PMC7085619
DOI
10.3390/s20051523
PII: s20051523
Knihovny.cz E-zdroje
- Klíčová slova
- accelerometers, classification, computational intelligence, machine learning, motion monitoring, multimodal signal analysis,
- MeSH
- akcelerometrie metody MeSH
- algoritmy MeSH
- Bayesova věta MeSH
- cvičení MeSH
- cyklistika * MeSH
- fitness náramky * MeSH
- lidé MeSH
- mobilní telefon přístrojové vybavení MeSH
- neuronové sítě (počítačové) MeSH
- počítačové zpracování signálu MeSH
- pohyb těles MeSH
- reprodukovatelnost výsledků MeSH
- rozpoznávání automatizované MeSH
- software MeSH
- srdeční frekvence * MeSH
- statistické modely MeSH
- support vector machine MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Motion analysis is an important topic in the monitoring of physical activities and recognition of neurological disorders. The present paper is devoted to motion assessment using accelerometers inside mobile phones located at selected body positions and the records of changes in the heart rate during cycling, under different body loads. Acquired data include 1293 signal segments recorded by the mobile phone and the Garmin device for uphill and downhill cycling. The proposed method is based upon digital processing of the heart rate and the mean power in different frequency bands of accelerometric data. The classification of the resulting features was performed by the support vector machine, Bayesian methods, k-nearest neighbor method, and neural networks. The proposed criterion is then used to find the best positions for the sensors with the highest discrimination abilities. The results suggest the sensors be positioned on the spine for the classification of uphill and downhill cycling, yielding an accuracy of 96.5% and a cross-validation error of 0.04 evaluated by a two-layer neural network system for features based on the mean power in the frequency bands 〈 3 , 8 〉 and 〈 8 , 15 〉 Hz. This paper shows the possibility of increasing this accuracy to 98.3% by the use of more features and the influence of appropriate sensor positioning for motion monitoring and classification.
Zobrazit více v PubMed
Wannenburg J., Malekian R. Physical Activity Recognition From Smartphone Accelerometer Data for User Context Awareness Sensing. IEEE Trans. Syst. Man Cybern. Syst. 2017;47:3142–3149. doi: 10.1109/TSMC.2016.2562509. DOI
Slim S., Atia A., Elfattah M., Mostafa M. Survey on Human Activity Recognition based on Acceleration Data. Intl. J. Adv. Comput. Sci. Appl. 2019;10:84–98. doi: 10.14569/IJACSA.2019.0100311. DOI
Della Mea V., Quattrin O., Parpinel M. A feasibility study on smartphone accelerometer-based recognition of household activities and influence of smartphone position. Inform. Health Soc. Care. 2017;42:321–334. doi: 10.1080/17538157.2016.1255214. PubMed DOI
Procházka A., Vyšata O., Charvátová H., Vališ M. Motion Symmetry Evaluation Using Accelerometers and Energy Distribution. Symmetry. 2019;11:871. doi: 10.3390/sym11070871. DOI
Li R., Kling S., Salata M., Cupp S., Sheehan J., Voos J. Wearable Performance Devices in Sports Medicine. Sports Health. 2016;8:74–78. doi: 10.1177/1941738115616917. PubMed DOI PMC
Rosenberger M., Haskell W., Albinali F., Mota S., Nawyn J., Intille S. Estimating activity and sedentary behavior from an accelerometer on the hip or wrist. Med. Sci. Sports Exerc. 2013;45:964–975. doi: 10.1249/MSS.0b013e31827f0d9c. PubMed DOI PMC
Monkaresi H., Calvo R.A., Yan H. A Machine Learning Approach to Improve Contactless Heart Rate Monitoring Using a Webcam. IEEE J. Biomed. Health Informat. 2014;18:1153–1160. doi: 10.1109/JBHI.2013.2291900. PubMed DOI
Garde A., Karlen W., Ansermino J.M., Dumont G.A. Estimating Respiratory and Heart Rates from the Correntropy Spectral Density of the Photoplethysmogram. PLoS ONE. 2014;9:e86427. doi: 10.1371/journal.pone.0086427. PubMed DOI PMC
Procházka A., Charvátová H., Vyšata O., Kopal J., Chambers J. Breathing Analysis Using Thermal and Depth Imaging Camera Video Records. Sensors. 2017;17:1408. doi: 10.3390/s17061408. PubMed DOI PMC
Zang K., Shen J., Huang H., Wan M., Shi J. Assessing and Mapping of Road Surface Roughness based on GPS and Accelerometer Sensors on Bicycle-Mounted Smartphones. Sensors. 2018;18:914. doi: 10.3390/s18030914. PubMed DOI PMC
Ridgel A., Abdar H., Alberts J., Discenzo F., Loparo K. Variability in cadence during forced cycling predicts motor improvement in individuals with Parkinson’s disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2013;21:481–489. doi: 10.1109/TNSRE.2012.2225448. PubMed DOI PMC
Procházka A., Vaseghi S., Yadollahi M., Ťupa O., Mareš J., Vyšata O. Remote Physiological and GPS Data Processing in Evaluation of Physical Activities. Med. Biol. Eng. Comput. 2014;52:301–308. doi: 10.1007/s11517-013-1134-6. PubMed DOI
Charvátová H., Procházka A., Vaseghi S., Vyšata O., Vališ M. GPS-based Analysis of Physical Activities Using Positioning and Heart Rate Cycling Data. Signal Image Video Process. 2017;11:251–258. doi: 10.1007/s11760-016-0928-z. DOI
Procházka A., Vaseghi S., Charvátová H., Ťupa O., Vyšata O. Cycling Segments Multimodal Analysis and Classification Using Neural Networks. Appl. Sci. 2017;7:581. doi: 10.3390/app7060581. DOI
Zhang J., Macfarlane D., Sobko T. Feasibility of a Chest-worn accelerometer for physical activity measurement. J. Sci. Med. Sport. 2016;19:1015–1019. doi: 10.1016/j.jsams.2016.03.004. PubMed DOI
Espinilla M., Medina J., Salguero A., Irvine N., Donnelly M., Cleland I., Nugent C. Human Activity Recognition from the Acceleration Data of a Wearable Device. Which Features Are More Relevant by Activities? Proceedings. 2018;2:1242. doi: 10.3390/proceedings2191242. DOI
Alkali A., Saatchi R., Elphick H., Burke D. Thermal image processing for real-time non-contact respiration rate monitoring. IET Circ. Devices Syst. 2017;11:142–148. doi: 10.1049/iet-cds.2016.0143. DOI
Ambrosanio M., Franceschini S., Grassini G., Baselice F. A Multi-Channel Ultrasound System for Non-Contact Heart Rate Monitoring. IEEE Sens. J. 2020;20:2064–2074. doi: 10.1109/JSEN.2019.2949435. DOI
Ruminski J. Analysis of the parameters of respiration patterns extracted from thermal image sequences. Biocybern. Biomed. Eng. 2016;36:731–741. doi: 10.1016/j.bbe.2016.07.006. PubMed DOI PMC
Colyer S., Evans M., Cosker D., Salo A. A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods Towards Developing a Markerless System. Sport. Med. 2018;4:24.1–24.15. doi: 10.1186/s40798-018-0139-y. PubMed DOI PMC
Silsupadol P., Teja K., Lugade V. Reliability and validity of a smartphone-based assessment of gait parameters across walking speed and smartphone locations: Body, bag, belt, hand, and pocket. Gait Posture. 2017;58:516–522. doi: 10.1016/j.gaitpost.2017.09.030. PubMed DOI
Procházka A., Vyšata O., Vališ M., Ťupa O., Schatz M., Mařík V. Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect. Digit. Signal Prog. 2015;47:169–177. doi: 10.1016/j.dsp.2015.05.011. DOI
Loprinzi P., Smith B. Comparison between wrist-worn and waist-worn accelerometry. J. Phys. Act. Health. 2017;14:539–545. doi: 10.1123/jpah.2016-0211. PubMed DOI
Mackintosh K., Montoye A., Pfeiffer K., McNarry M. Investigating optimal accelerometer placement for energy expenditure prediction in children using a machine learning approach. Physiol. Meas. 2016;37:1728–1740. doi: 10.1088/0967-3334/37/10/1728. PubMed DOI
Cooke A., Daskalopoulou S., Dasgupta K. The impact of accelerometer wear location on the relationship between step counts and arterial stiffness in adults treated for hypertension and diabetes. J. Sci. Med. Sport. 2018;21:398–403. doi: 10.1016/j.jsams.2017.08.011. PubMed DOI
Rucco R., Sorriso A., Liparoti M., Ferraioli G., Sorrentino P., Ambrosanio M., Baselice F. Type and location of wearable sensors for monitoring falls during static and dynamic tasks in healthy elderly: A review. Sensors. 2018;18:1613. doi: 10.3390/s18051613. PubMed DOI PMC
Cvetkovic B., Szeklicki R., Janko V., Lutomski P., Luštrek M. Real-time activity monitoring with a wristband and a smartphone. Inf. Fusion. 2018;43:77–93. doi: 10.1016/j.inffus.2017.05.004. DOI
Mannini A., Rosenberger M., Haskell W., Sabatini A., Intille S. Activity recognition in youth using single accelerometer placed at wrist or ankle. Med. Sci. Sports Exerc. 2017;49:801–812. doi: 10.1249/MSS.0000000000001144. PubMed DOI PMC
Cleland I., Kikhia B., Nugent C., Boytsov A., Hallberg J., Synnes K., McClean S., Finlay D. Optimal placement of accelerometers for the detection of everyday activities. Sensors. 2013;13:9183–9200. doi: 10.3390/s130709183. PubMed DOI PMC
Mannini A., Intille S., Rosenberger M., Sabatini A., Haskell W. Activity recognition using a single accelerometer placed at the wrist or ankle. Med. Sci. Sports Exerc. 2013;45:2193–2203. doi: 10.1249/MSS.0b013e31829736d6. PubMed DOI PMC
Howie E., McVeigh J., Straker L. Comparison of compliance and intervention outcomes between hip- and wrist-Worn accelerometers during a randomized crossover trial of an active video games intervention in children. J. Phys. Act. Health. 2016;13:964–969. doi: 10.1123/jpah.2015-0470. PubMed DOI
Bertolotti G., Cristiani A., Colagiorgio P., Romano F., Bassani E., Caramia N., Ramat S. A Wearable and Modular Inertial Unit for Measuring Limb Movements and Balance Control Abilities. IEEE Sens. J. 2016;16:790–797. doi: 10.1109/JSEN.2015.2489381. DOI
Lucas A., Hermiz J., Labuzetta J., Arabadzhi Y., Karanjia N., Gilja V. Use of Accelerometry for Long Term Monitoring of Stroke Patients. IEEE J. Transl. Eng. Health Med. 2019;7:1–10. doi: 10.1109/JTEHM.2019.2897306. PubMed DOI PMC
Crouter S., Flynn J., Bassett D. Estimating physical activity in youth using a wrist accelerometer. Med. Sci. Sports Exerc. 2015;47:944–951. doi: 10.1249/MSS.0000000000000502. PubMed DOI PMC
Crouter S., Oody J., Bassett D. Estimating physical activity in youth using an ankle accelerometer. J. Sports Sci. 2018;36:2265–2271. doi: 10.1080/02640414.2018.1449091. PubMed DOI PMC
Montoye A., Pivarnik J., Mudd L., Biswas S., Pfeiffer K. Comparison of Activity Type Classification Accuracy from Accelerometers Worn on the Hip, Wrists, and Thigh in Young, Apparently Healthy Adults. Meas. Phys. Educ. Exerc. Sci. 2016;20:173–183. doi: 10.1080/1091367X.2016.1192038. DOI
Dutta A., Ma O., Toledo M., Pregonero A., Ainsworth B., Buman M., Bliss D. Identifying free-living physical activities using lab-based models with wearable accelerometers. Sensors. 2018;18:3893. doi: 10.3390/s18113893. PubMed DOI PMC
Ganea R., Paraschiv-Lonescu A., Aminian K. Detection and classification of postural transitions in real-world conditions. IEEE Trans. Neural Syst. Rehabil. Eng. 2012;20:688–696. doi: 10.1109/TNSRE.2012.2202691. PubMed DOI
Procházka A., Schätz M., Centonze F., Kuchyňka J., Vyšata O., Vališ M. Extraction of Breathing Features Using MS Kinect for Sleep Stage Detection. Signal Image Video Process. 2016;10:1278–1286. doi: 10.1007/s11760-016-0897-2. DOI
Procházka A., Kuchyňka J., Vyšata O., Schatz M., Yadollahi M., Sanei S., Vališ M. Sleep Scoring Using Polysomnography Data Features. Signal Image Video Process. 2018;12:1043–1051. doi: 10.1007/s11760-018-1252-6. DOI
Allahbakhshi H., Conrow L., Naimi B., Weibe R. Using Accelerometer and GPS Data for Real-Life Physical Activity Type Detection. Sensors. 2020;20:588. doi: 10.3390/s20030588. PubMed DOI PMC
Guiry J., van de Ven P., Nelson J., Warmerdam L., Ripe H. Activity recognition with smartphone support. Med. Eng. Phys. 2014;36:670–675. doi: 10.1016/j.medengphy.2014.02.009. PubMed DOI
Bayat A., Pomplun M., Tran D. A Study on Human Activity Recognition Using Accelerometer Data from Smartphones. Procedia Comput. Sci. 2014;34:450–457. doi: 10.1016/j.procs.2014.07.009. DOI
Shoaib M., Scholten H., Havinga P. Towards physical activity recognition using smartphone sensors; Proceedings of the 2013 IEEE 10th International Conference on Ubiquitous Intelligence and Computing and 2013 IEEE 10th International Conference on Autonomic and Trusted Computing; Vietri sul Mere, Italy. 18–21 December 2013; pp. 80–87.
Gajda R., Biernacka E.K., Drygas W. Are heart rate monitors valuable tools for diagnosing arrhythmias in endurance athletes? Scand. J. Med. 2018;28:496–516. doi: 10.1111/sms.12917. PubMed DOI
Collins T., Woolley S., Oniani S., Pires I., Garcia N., Ledger S., Pandyan A. Version reporting and assessment approaches for new and updated activity and heart rate monitors. Sensors. 2019;19:1705. doi: 10.3390/s19071705. PubMed DOI PMC
Yoshua B., Aaron C., Pascal V. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013;35:1798–1828. PubMed
Goodfellow I., Bengio Y., Courville A. Deep Learning. MIT Press; Cambridge, MA, USA: 2016.
Antoniades A., Spyrou L., Martin-Lopez D., Valentin A., Alarcon G., Sanei S., Took C. Detection of Interictal Discharges with Convolutional Neural Networks Using Discrete Ordered Multichannel Intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2017;25:2285–2294. doi: 10.1109/TNSRE.2017.2755770. PubMed DOI
Mishra C., Gupta D.L. Deep Machine Learning and Neural Networks: An Overview. IJHIT. 2016;9:401–414. doi: 10.14257/ijhit.2016.9.11.34. DOI
He K., Zhang X., Ren S., Sun J. Deep Residual Learning for Image Recognition; Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition; Las Vegas, NV, USA. 27–30 June 2016; pp. 770–778.
Ar I., Akgul Y. A Computerized Recognition System for the Home-Based Physiotherapy Exercises Using an RGBD Camera. IEEE Trans. Neural Syst. Rehabil. Eng. 2014;22:1160–1171. doi: 10.1109/TNSRE.2014.2326254. PubMed DOI
Chauvin R., Hamel M., Briere S., Ferland F., Grondin F., Letourneau D., Tousignant M., Michaud F. Contact-Free Respiration Rate Monitoring Using a Pan-Tilt Thermal Camera for Stationary Bike Telerehabilitation Sessions. IEEE Syst. J. 2016;10:1046–1055. doi: 10.1109/JSYST.2014.2336372. DOI
Procházka A., Charvátová H., Vaseghi S., Vyšata O. Machine Learning in Rehabilitation Assesment for Thermal and Heart Rate Data Processing. IEEE Trans. Neural Syst. Rehabil. Eng. 2018;26:1209–12141. doi: 10.1109/TNSRE.2018.2831444. PubMed DOI
Ou G., Murphey Y. Multi-class pattern classification using neural networks. Pattern Recognit. 2007;40:4–8. doi: 10.1016/j.patcog.2006.04.041. DOI
Shakhnarovich M., Darrell T., Indyk P. Nearest-neighbor Methods in Learning and Vision: Theory and Practice. MIT Press; Cambridge, MA, USA: 2005.
Theodoridis S., Koutroumbas K. Pattern Recognition. Elsevier Science & Technology; Amsterdam, The Netherlands: 2008.
Prashar P. Neural Networks in Machine Learning. Int. J. Comput. Appl. Technol. 2014;105:1–3.
Procházka A., Vyšata O., Ťupa O., Mareš J., Vališ M. Discrimination of Axonal Neuropathy Using Sensitivity and Specificity Statistical Measures. SPRINGER: Neural Comput. Appl. 2014;25:1349–1358. doi: 10.1007/s00521-014-1622-0. DOI
Fushiki T. Estimation of prediction error by using K-fold cross-validation. Stat. Comput. 2011;21:137–146. doi: 10.1007/s11222-009-9153-8. DOI