Microflow LC-MS Bottom-Up Proteomics Using 1.5 mm Internal Diameter Columns

. 2025 Feb 04 ; 10 (4) : 4094-4101. [epub] 20250124

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39926544

Microbore columns with a 1.0 mm inner diameter (i.d.) have gained popularity in microflow liquid chromatography-mass spectrometry (LC-MS) workflows for exploratory proteomics applications due to their high throughput, robustness, and reproducibility. However, obtaining highly efficient separation using these columns remains unachievable, primarily due to significant radial flow heterogeneity caused by uneven particle packing density across the column cross-section. In this study, we evaluated the integration of a 1.5 mm i.d. column, which offers greater packing uniformity and reduced radial flow dispersion, into a microflow LC-MS setup for bottom-up proteomics analysis. The performance of the 1.5 mm i.d. column was compared with that of the 1.0 mm i.d. column using protein samples of varying complexity. The results demonstrate that 1.5 mm i.d. columns provide superior chromatographic separation and better compatibility with conventional-flow LC systems, yielding higher reproducibility and comparable protein and peptide identifications to the 1.0 mm i.d. columns at higher sample amounts. These findings suggest that 1.5 mm i.d. columns could be a suitable alternative to 1.0 mm i.d. columns for microflow LC-MS/MS proteomic analysis, particularly in laboratories with only conventional-flow LC systems.

Zobrazit více v PubMed

Lenčo J.; Jadeja S.; Naplekov D. K.; Krokhin O. V.; Khalikova M. A.; Chocholous P.; Urban J.; Broeckhoven K.; Novakova L.; Svec F. Reversed-Phase Liquid Chromatography of Peptides for Bottom-Up Proteomics: A Tutorial. J. Proteome Res. 2022, 21 (12), 2846–2892. 10.1021/acs.jproteome.2c00407. PubMed DOI

Shan L.; Jones B. R. Nano-LC: An updated review. Biomed. Chromatogr. 2022, 36 (5), e531710.1002/bmc.5317. PubMed DOI

Wilson S. R.; Vehus T.; Berg H. S.; Lundanes E. Nano-LC in proteomics: recent advances and approaches. Bioanalysis 2015, 7 (14), 1799–1815. 10.4155/bio.15.92. PubMed DOI

Lenčo J.; Vajrychová M.; Pimková K.; Prokšová M.; Benková M.; Klimentová J.; Tambor V.; Soukup O. Conventional-Flow Liquid Chromatography–Mass Spectrometry for Exploratory Bottom-Up Proteomic Analyses. Anal. Chem. 2018, 90 (8), 5381–5389. 10.1021/acs.analchem.8b00525. PubMed DOI

Bian Y.; Gao C.; Kuster B. On the potential of micro-flow LC-MS/MS in proteomics. Expert Rev. Proteomics 2022, 19 (3), 153–164. 10.1080/14789450.2022.2134780. PubMed DOI

Reising A. E.; Schlabach S.; Baranau V.; Stoeckel D.; Tallarek U. Analysis of packing microstructure and wall effects in a narrow-bore ultrahigh pressure liquid chromatography column using focused ion-beam scanning electron microscopy. J. Chromatogr. A 2017, 1513, 172–182. 10.1016/j.chroma.2017.07.049. PubMed DOI

Gritti F. A stochastic view on column efficiency. J. Chromatogr. A 2018, 1540, 55–67. 10.1016/j.chroma.2018.02.005. PubMed DOI

Buckenmaier S.; Miller C. A.; van de Goor T.; Dittmann M. M. Instrument contributions to resolution and sensitivity in ultra high performance liquid chromatography using small bore columns: comparison of diode array and triple quadrupole mass spectrometry detection. J. Chromatogr. A 2015, 1377, 64–74. 10.1016/j.chroma.2014.11.086. PubMed DOI

Wu N.; Bradley A. C.; Welch C. J.; Zhang L. Effect of extra-column volume on practical chromatographic parameters of sub-2-μm particle-packed columns in ultra-high pressure liquid chromatography. J. Sep. Sci. 2012, 35 (16), 2018–2025. 10.1002/jssc.201200074. PubMed DOI

Fekete S.; Kohler I.; Rudaz S.; Guillarme D. Importance of instrumentation for fast liquid chromatography in pharmaceutical analysis. J. Pharm. Biomed. Anal. 2014, 87, 105–119. 10.1016/j.jpba.2013.03.012. PubMed DOI

González Fernández-Niño S. M.; Smith-Moritz A. M.; Chan L. J.; Adams P. D.; Heazlewood J. L.; Petzold C. J. Standard flow liquid chromatography for shotgun proteomics in bioenergy research. Front. Bioeng. Biotechnol. 2015, 3, 44.10.3389/fbioe.2015.00044. PubMed DOI PMC

Orsburn B. C.; Miller S. D.; Jenkins C. J.. Standard Flow Multiplexed Proteomics (SFloMPro)-An Accessible Alternative to NanoFlow Based Shotgun Proteomics. Proteomes 2022, 10 ( (1), 3.10.3390/proteomes10010003. PubMed DOI PMC

Messner C. B.; Demichev V.; Wendisch D.; Michalick L.; White M.; Freiwald A.; Textoris-Taube K.; Vernardis S. I.; Egger A. S.; Kreidl M.; et al. Ultra-High-Throughput Clinical Proteomics Reveals Classifiers of COVID-19 Infection. Cell Syst. 2020, 11 (1), 11–24 e14. 10.1016/j.cels.2020.05.012. PubMed DOI PMC

Messner C. B.; Demichev V.; Bloomfield N.; Yu J. S. L.; White M.; Kreidl M.; Egger A. S.; Freiwald A.; Ivosev G.; Wasim F.; et al. Ultra-fast proteomics with Scanning SWATH. Nat. Biotechnol. 2021, 39 (7), 846–854. 10.1038/s41587-021-00860-4. PubMed DOI PMC

Fekete S.; Murisier A.; Losacco G. L.; Lawhorn J.; Godinho J. M.; Ritchie H.; Boyes B. E.; Guillarme D. Using 1.5 mm internal diameter columns for optimal compatibility with current liquid chromatographic systems. J. Chromatogr. A 2021, 1650, 46225810.1016/j.chroma.2021.462258. PubMed DOI

Libert B. P.; Godinho J. M.; Foster S. W.; Grinias J. P.; Boyes B. E. Implementing 1.5 mm internal diameter columns into analytical workflows. J. Chromatogr. A 2022, 1676, 46320710.1016/j.chroma.2022.463207. PubMed DOI

Escher C.; Reiter L.; MacLean B.; Ossola R.; Herzog F.; Chilton J.; MacCoss M. J.; Rinner O. Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 2012, 12 (8), 1111–1121. 10.1002/pmic.201100463. PubMed DOI PMC

Gritti F.; Guiochon G. Accurate measurements of the true column efficiency and of the instrument band broadening contributions in the presence of a chromatographic column. J. Chromatogr. A 2014, 1327, 49–56. 10.1016/j.chroma.2013.12.003. PubMed DOI

Vizcaíno J. A.; Deutsch E. W.; Wang R.; Csordas A.; Reisinger F.; Rios D.; Dianes J. A.; Sun Z.; Farrah T.; Bandeira N.; et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 2014, 32 (3), 223–226. 10.1038/nbt.2839. PubMed DOI PMC

Stejskal K.; Potesil D.; Zdrahal Z. Suppression of peptide sample losses in autosampler vials. J. Proteome Res. 2013, 12 (6), 3057–3062. 10.1021/pr400183v. PubMed DOI

Bian Y.; Zheng R.; Bayer F. P.; Wong C.; Chang Y. C.; Meng C.; Zolg D. P.; Reinecke M.; Zecha J.; Wiechmann S.; et al. Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC-MS/MS. Nat. Commun. 2020, 11 (1), 15710.1038/s41467-019-13973-x. PubMed DOI PMC

Hahne H.; Pachl F.; Ruprecht B.; Maier S. K.; Klaeger S.; Helm D.; Medard G.; Wilm M.; Lemeer S.; Kuster B. DMSO enhances electrospray response, boosting sensitivity of proteomic experiments. Nat. Methods 2013, 10 (10), 989–991. 10.1038/nmeth.2610. PubMed DOI

Yu P.; Hahne H.; Wilhelm M.; Kuster B. Ethylene glycol improves electrospray ionization efficiency in bottom-up proteomics. Anal. Bioanal. Chem. 2017, 409 (4), 1049–1057. 10.1007/s00216-016-0023-x. PubMed DOI

Battellino T.; Ogata K.; Spicer V.; Ishihama Y.; Krokhin O. Acetic Acid Ion Pairing Additive for Reversed-Phase HPLC Improves Detection Sensitivity in Bottom-up Proteomics Compared to Formic Acid. J. Proteome Res. 2023, 22 (1), 272–278. 10.1021/acs.jproteome.2c00388. PubMed DOI

Wang S.; Xing T.; Liu A. P.; He Z.; Yan Y.; Daly T. J.; Li N. Simple Approach for Improved LC–MS Analysis of Protein Biopharmaceuticals via Modification of Desolvation Gas. Anal. Chem. 2019, 91 (4), 3156–3162. 10.1021/acs.analchem.8b05846. PubMed DOI

Savitski M. M.; Sweetman G.; Askenazi M.; Marto J. A.; Lang M.; Zinn N.; Bantscheff M. Delayed Fragmentation and Optimized Isolation Width Settings for Improvement of Protein Identification and Accuracy of Isobaric Mass Tag Quantification on Orbitrap-Type Mass Spectrometers. Anal. Chem. 2011, 83 (23), 8959–8967. 10.1021/ac201760x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...