Microflow LC-MS Bottom-Up Proteomics Using 1.5 mm Internal Diameter Columns
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39926544
PubMed Central
PMC11800007
DOI
10.1021/acsomega.4c10591
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Microbore columns with a 1.0 mm inner diameter (i.d.) have gained popularity in microflow liquid chromatography-mass spectrometry (LC-MS) workflows for exploratory proteomics applications due to their high throughput, robustness, and reproducibility. However, obtaining highly efficient separation using these columns remains unachievable, primarily due to significant radial flow heterogeneity caused by uneven particle packing density across the column cross-section. In this study, we evaluated the integration of a 1.5 mm i.d. column, which offers greater packing uniformity and reduced radial flow dispersion, into a microflow LC-MS setup for bottom-up proteomics analysis. The performance of the 1.5 mm i.d. column was compared with that of the 1.0 mm i.d. column using protein samples of varying complexity. The results demonstrate that 1.5 mm i.d. columns provide superior chromatographic separation and better compatibility with conventional-flow LC systems, yielding higher reproducibility and comparable protein and peptide identifications to the 1.0 mm i.d. columns at higher sample amounts. These findings suggest that 1.5 mm i.d. columns could be a suitable alternative to 1.0 mm i.d. columns for microflow LC-MS/MS proteomic analysis, particularly in laboratories with only conventional-flow LC systems.
Advanced Materials Technology 3521 Silverside Road Suite 1 K Wilmington Delaware 19810 United States
Zobrazit více v PubMed
Lenčo J.; Jadeja S.; Naplekov D. K.; Krokhin O. V.; Khalikova M. A.; Chocholous P.; Urban J.; Broeckhoven K.; Novakova L.; Svec F. Reversed-Phase Liquid Chromatography of Peptides for Bottom-Up Proteomics: A Tutorial. J. Proteome Res. 2022, 21 (12), 2846–2892. 10.1021/acs.jproteome.2c00407. PubMed DOI
Shan L.; Jones B. R. Nano-LC: An updated review. Biomed. Chromatogr. 2022, 36 (5), e531710.1002/bmc.5317. PubMed DOI
Wilson S. R.; Vehus T.; Berg H. S.; Lundanes E. Nano-LC in proteomics: recent advances and approaches. Bioanalysis 2015, 7 (14), 1799–1815. 10.4155/bio.15.92. PubMed DOI
Lenčo J.; Vajrychová M.; Pimková K.; Prokšová M.; Benková M.; Klimentová J.; Tambor V.; Soukup O. Conventional-Flow Liquid Chromatography–Mass Spectrometry for Exploratory Bottom-Up Proteomic Analyses. Anal. Chem. 2018, 90 (8), 5381–5389. 10.1021/acs.analchem.8b00525. PubMed DOI
Bian Y.; Gao C.; Kuster B. On the potential of micro-flow LC-MS/MS in proteomics. Expert Rev. Proteomics 2022, 19 (3), 153–164. 10.1080/14789450.2022.2134780. PubMed DOI
Reising A. E.; Schlabach S.; Baranau V.; Stoeckel D.; Tallarek U. Analysis of packing microstructure and wall effects in a narrow-bore ultrahigh pressure liquid chromatography column using focused ion-beam scanning electron microscopy. J. Chromatogr. A 2017, 1513, 172–182. 10.1016/j.chroma.2017.07.049. PubMed DOI
Gritti F. A stochastic view on column efficiency. J. Chromatogr. A 2018, 1540, 55–67. 10.1016/j.chroma.2018.02.005. PubMed DOI
Buckenmaier S.; Miller C. A.; van de Goor T.; Dittmann M. M. Instrument contributions to resolution and sensitivity in ultra high performance liquid chromatography using small bore columns: comparison of diode array and triple quadrupole mass spectrometry detection. J. Chromatogr. A 2015, 1377, 64–74. 10.1016/j.chroma.2014.11.086. PubMed DOI
Wu N.; Bradley A. C.; Welch C. J.; Zhang L. Effect of extra-column volume on practical chromatographic parameters of sub-2-μm particle-packed columns in ultra-high pressure liquid chromatography. J. Sep. Sci. 2012, 35 (16), 2018–2025. 10.1002/jssc.201200074. PubMed DOI
Fekete S.; Kohler I.; Rudaz S.; Guillarme D. Importance of instrumentation for fast liquid chromatography in pharmaceutical analysis. J. Pharm. Biomed. Anal. 2014, 87, 105–119. 10.1016/j.jpba.2013.03.012. PubMed DOI
González Fernández-Niño S. M.; Smith-Moritz A. M.; Chan L. J.; Adams P. D.; Heazlewood J. L.; Petzold C. J. Standard flow liquid chromatography for shotgun proteomics in bioenergy research. Front. Bioeng. Biotechnol. 2015, 3, 44.10.3389/fbioe.2015.00044. PubMed DOI PMC
Orsburn B. C.; Miller S. D.; Jenkins C. J.. Standard Flow Multiplexed Proteomics (SFloMPro)-An Accessible Alternative to NanoFlow Based Shotgun Proteomics. Proteomes 2022, 10 ( (1), 3.10.3390/proteomes10010003. PubMed DOI PMC
Messner C. B.; Demichev V.; Wendisch D.; Michalick L.; White M.; Freiwald A.; Textoris-Taube K.; Vernardis S. I.; Egger A. S.; Kreidl M.; et al. Ultra-High-Throughput Clinical Proteomics Reveals Classifiers of COVID-19 Infection. Cell Syst. 2020, 11 (1), 11–24 e14. 10.1016/j.cels.2020.05.012. PubMed DOI PMC
Messner C. B.; Demichev V.; Bloomfield N.; Yu J. S. L.; White M.; Kreidl M.; Egger A. S.; Freiwald A.; Ivosev G.; Wasim F.; et al. Ultra-fast proteomics with Scanning SWATH. Nat. Biotechnol. 2021, 39 (7), 846–854. 10.1038/s41587-021-00860-4. PubMed DOI PMC
Fekete S.; Murisier A.; Losacco G. L.; Lawhorn J.; Godinho J. M.; Ritchie H.; Boyes B. E.; Guillarme D. Using 1.5 mm internal diameter columns for optimal compatibility with current liquid chromatographic systems. J. Chromatogr. A 2021, 1650, 46225810.1016/j.chroma.2021.462258. PubMed DOI
Libert B. P.; Godinho J. M.; Foster S. W.; Grinias J. P.; Boyes B. E. Implementing 1.5 mm internal diameter columns into analytical workflows. J. Chromatogr. A 2022, 1676, 46320710.1016/j.chroma.2022.463207. PubMed DOI
Escher C.; Reiter L.; MacLean B.; Ossola R.; Herzog F.; Chilton J.; MacCoss M. J.; Rinner O. Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 2012, 12 (8), 1111–1121. 10.1002/pmic.201100463. PubMed DOI PMC
Gritti F.; Guiochon G. Accurate measurements of the true column efficiency and of the instrument band broadening contributions in the presence of a chromatographic column. J. Chromatogr. A 2014, 1327, 49–56. 10.1016/j.chroma.2013.12.003. PubMed DOI
Vizcaíno J. A.; Deutsch E. W.; Wang R.; Csordas A.; Reisinger F.; Rios D.; Dianes J. A.; Sun Z.; Farrah T.; Bandeira N.; et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 2014, 32 (3), 223–226. 10.1038/nbt.2839. PubMed DOI PMC
Stejskal K.; Potesil D.; Zdrahal Z. Suppression of peptide sample losses in autosampler vials. J. Proteome Res. 2013, 12 (6), 3057–3062. 10.1021/pr400183v. PubMed DOI
Bian Y.; Zheng R.; Bayer F. P.; Wong C.; Chang Y. C.; Meng C.; Zolg D. P.; Reinecke M.; Zecha J.; Wiechmann S.; et al. Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC-MS/MS. Nat. Commun. 2020, 11 (1), 15710.1038/s41467-019-13973-x. PubMed DOI PMC
Hahne H.; Pachl F.; Ruprecht B.; Maier S. K.; Klaeger S.; Helm D.; Medard G.; Wilm M.; Lemeer S.; Kuster B. DMSO enhances electrospray response, boosting sensitivity of proteomic experiments. Nat. Methods 2013, 10 (10), 989–991. 10.1038/nmeth.2610. PubMed DOI
Yu P.; Hahne H.; Wilhelm M.; Kuster B. Ethylene glycol improves electrospray ionization efficiency in bottom-up proteomics. Anal. Bioanal. Chem. 2017, 409 (4), 1049–1057. 10.1007/s00216-016-0023-x. PubMed DOI
Battellino T.; Ogata K.; Spicer V.; Ishihama Y.; Krokhin O. Acetic Acid Ion Pairing Additive for Reversed-Phase HPLC Improves Detection Sensitivity in Bottom-up Proteomics Compared to Formic Acid. J. Proteome Res. 2023, 22 (1), 272–278. 10.1021/acs.jproteome.2c00388. PubMed DOI
Wang S.; Xing T.; Liu A. P.; He Z.; Yan Y.; Daly T. J.; Li N. Simple Approach for Improved LC–MS Analysis of Protein Biopharmaceuticals via Modification of Desolvation Gas. Anal. Chem. 2019, 91 (4), 3156–3162. 10.1021/acs.analchem.8b05846. PubMed DOI
Savitski M. M.; Sweetman G.; Askenazi M.; Marto J. A.; Lang M.; Zinn N.; Bantscheff M. Delayed Fragmentation and Optimized Isolation Width Settings for Improvement of Protein Identification and Accuracy of Isobaric Mass Tag Quantification on Orbitrap-Type Mass Spectrometers. Anal. Chem. 2011, 83 (23), 8959–8967. 10.1021/ac201760x. PubMed DOI