Boar Sperm Motility Assessment Using Computer-Assisted Sperm Analysis: Current Practices, Limitations, and Methodological Challenges
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
SV24-21-21230
Internal Grant Agency of the Czech University of Life Sciences in Prague
QK21010327
Ministry of Agriculture
GA22-31156S
Czech Science Foundation
RVO:86652036
Czech Academy of Sciences, Institute of Biotechnology
PubMed
39943075
PubMed Central
PMC11816302
DOI
10.3390/ani15030305
PII: ani15030305
Knihovny.cz E-zdroje
- Klíčová slova
- ejaculate quality, hyperactivation, in vitro analysis, kinematic parameters, male fertility, reproductive physiology, veterinary science,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Spermatozoa are highly specialized male cells that are characterized by a unique ability to move, which is a critical factor for successful fertilization. The relative simplicity of motility assessment, especially in livestock, has made it a widely used parameter for evaluating ejaculate quality or cryopreserved semen in the clinical field, and an advanced tool in reproductive physiology and toxicology research. Technological advances in image analysis and computational methods have substantially increased its accuracy through the use of computer-assisted sperm analysis (CASA) to minimize subjective bias in motility assessments. Nevertheless, this more objective method still presents some significant challenges, including variability in the sample preparation, imaging conditions, and analytical parameters. These issues contribute to inconsistency and impair the reproducibility and comparability of data between laboratories. The implementation of standardized protocols, combined with comprehensive training and rigorous evaluation, can serve to mitigate some of the emerging inconsistencies. In addition, the in vitro conditions under which CASA analyses are performed often differ significantly from the natural environment of the female reproductive tract in vivo. This review discusses the methodologies, critical issues, and limitations of sperm motility analyses using CASA, with a particular focus on the boar as an important agricultural and biomedical model species in which this system is widely used.
Zobrazit více v PubMed
Nowicka-Bauer K., Szymczak-Cendlak M. Structure and Function of Ion Channels Regulating Sperm Motility—An Overview. Int. J. Mol. Sci. 2021;22:3259. doi: 10.3390/ijms22063259. PubMed DOI PMC
Love C.C. Sperm Quality Assays: How Good Are They? The Horse Perspective. Anim. Reprod. Sci. 2018;194:63–70. doi: 10.1016/j.anireprosci.2018.04.077. PubMed DOI
Waberski D., Suarez S.S., Henning H. Assessment of Sperm Motility in Livestock: Perspectives Based on Sperm Swimming Conditions In Vivo. Anim. Reprod. Sci. 2022;246:106849. doi: 10.1016/j.anireprosci.2021.106849. PubMed DOI
Amann R.P., Waberski D. Computer-Assisted Sperm Analysis (CASA): Capabilities and Potential Developments. Theriogenology. 2014;81:5–17. doi: 10.1016/j.theriogenology.2013.09.004. PubMed DOI
van der Horst G. XIIIth International Symposium on Spermatology. Springer International Publishing; Cham, Switzerland: 2021. Processes and Data Management of Computer-Aided Sperm Analysis in Human and Animal Spermatozoa; pp. 199–210. DOI
Broekhuijse M.L., Soštarić E., Feitsma H., Gadella B.M. Additional Value of Computer Assisted Semen Analysis (CASA) Compared to Conventional Motility Assessments in Pig Artificial Insemination. Theriogenology. 2011;76:1473–1486.e1. doi: 10.1016/j.theriogenology.2011.05.040. PubMed DOI
Ehlers J., Behr M., Bollwein H., Beyerbach M., Waberski D. Standardization of Computer-Assisted Semen Analysis Using an E-Learning Application. Theriogenology. 2011;76:448–454. doi: 10.1016/j.theriogenology.2011.02.021. PubMed DOI
Agarwal A., Bragais F.M., Sabanegh E. Assessing Sperm Function. Urol. Clin. N. Am. 2008;35:157–171. doi: 10.1016/j.ucl.2008.01.012. PubMed DOI
Olson G.E., NagDas S.K., Winfrey V.P. The Epididymis: From Molecules to Clinical Practice. Springer; Boston, MA, USA: 2002. Structural Differentiation of Spermatozoa During Post-Testicular Maturation; pp. 371–387. DOI
Eddy E.M. Male Germ Cell Gene Expression. Recent. Prog. Horm. Res. 2002;57:103–128. doi: 10.1210/rp.57.1.103. PubMed DOI
Cooper T.G. The Epididymis, Sperm Maturation and Fertilisation. Springer; Berlin/Heidelberg, Germany: 1986. Maturation of Spermatozoa in the Epididymis; pp. 1–8. DOI
Dacheux J.-L., Dacheux F. New Insights into Epididymal Function in Relation to Sperm Maturation. Reproduction. 2014;147:R27–R42. doi: 10.1530/REP-13-0420. PubMed DOI
Pariset C.C., Feinberg J.M.F., Dacheux J.L., Weinman S.J. Changes in Calmodulin Level and cAMP-Dependent Protein Kinase Activity During Epididymal Maturation of Ram Spermatozoa. Reproduction. 1985;74:105–112. doi: 10.1530/jrf.0.0740105. PubMed DOI
Jaiswal B.S., Majumder G.C. Cyclic AMP Phosphodiesterase: A Regulator of Forward Motility Initiation During Epididymal Sperm Maturation. Biochem. Cell Biol. 1996;74:669–674. doi: 10.1139/o96-072. PubMed DOI
Baker M.A., Lewis B., Hetherington L., Aitken R.J. Development of the Signalling Pathways Associated with Sperm Capacitation During Epididymal Maturation. Mol. Reprod. Dev. 2003;64:446–457. doi: 10.1002/mrd.10255. PubMed DOI
Majumder G.C., Dey C.S., Haldar S., Barua M. Biochemical Parameters of Initiation and Regulation of Sperm Motility. Arch. Androl. 2009;24:287–303. doi: 10.3109/01485019008987585. PubMed DOI
Harayama H. Flagellar Hyperactivation of Bull and Boar Spermatozoa. Reprod. Med. Biol. 2018;17:442–448. doi: 10.1002/rmb2.12227. PubMed DOI PMC
Stival C., Ritagliati C., Xu X., Gervasi M.G., Luque G.M., Grapf C.B., Buffone M.G., Visconti P., Krapf D. Disruption of Protein Kinase A Localization Induces Acrosomal Exocytosis in Capacitated Mouse Sperm. J. Biol. Chem. 2018;293:9435–9447. doi: 10.1074/jbc.RA118.002286. PubMed DOI PMC
Vijayaraghavan S., Goueli S.A., Davey M.P., Carr D.W. Protein Kinase A-Anchoring Inhibitor Peptides Arrest Mammalian Sperm Motility. J. Biol. Chem. 1997;272:4747–4752. doi: 10.1074/jbc.272.8.4747. PubMed DOI
Pereira R., Sá R., Barros A., Sousa M. Major Regulatory Mechanisms Involved in Sperm Motility. Asian J. Androl. 2017;19:5–14. doi: 10.4103/1008-682x.167716. PubMed DOI PMC
Suarez S.S., Vincenti L., Ceglia M.W. Hyperactivated Motility Induced in Mouse Sperm by Calcium Ionophore A23187 Is Reversible. J. Exp. Zool. 1987;244:331–336. doi: 10.1002/jez.1402440218. PubMed DOI
Ho H.C., Suarez S.S. Hyperactivation of Mammalian Spermatozoa: Function and Regulation. Reproduction. 2001;122:519–526. doi: 10.1530/rep.0.1220519. PubMed DOI
Freitas M.J., Vijayaraghavan S., Fardilha M. Signaling Mechanisms in Mammalian Sperm Motility. Biol. Reprod. 2017;96:2–12. doi: 10.1095/biolreprod.116.144337. PubMed DOI
Dcunha R., Hussein R.S., Ananda H., Kumari S., Adiga S.K., Kannan N., Zhao Y., Kalthur G. Current Insights and Latest Updates in Sperm Motility and Associated Applications in Assisted Reproduction. Reprod. Sci. 2022;29:7–25. doi: 10.1007/s43032-020-00408-y. PubMed DOI PMC
Hamamah S., Gatti J.-L. Role of the Ionic Environment and Internal pH on Sperm Activity. Hum. Reprod. 1998;13:20–30. doi: 10.1093/humrep/13.suppl_4.20. PubMed DOI
Tash J.S., Bracho G.E. Identification of Phosphoproteins Coupled to Initiation of Motility in Live Epididymal Mouse Sperm. Biochem. Biophys. Res. Commun. 1998;251:557–563. doi: 10.1006/bbrc.1998.9516. PubMed DOI
Yanagimachi R., Noda Y.D. Ultrastructural Changes in the Hamster Sperm Head During Fertilization. J. Ultrastruct. Res. 1970;31:465–485. doi: 10.1016/S0022-5320(70)90163-2. PubMed DOI
Publicover S., Yanagimachi R. The Sperm Cell. 2nd ed. Cambridge University Press; Cambridge, UK: 2017. Regulation of Sperm Behaviour; pp. 126–142. DOI
Dey S., Brothag C., Vijayaraghavan S. Signaling Enzymes Required for Sperm Maturation and Fertilization in Mammals. Front. Cell Dev. Biol. 2019;7:341. doi: 10.3389/fcell.2019.00341. PubMed DOI PMC
Yanagimachi R. The Movement of Golden Hamster Spermatozoa Before and After Capacitation. Reproduction. 1970;23:193–196. doi: 10.1530/jrf.0.0230193. PubMed DOI
Suarez S. Hyperactivated Motility in Sperm. J. Androl. 1996;17:331–335. doi: 10.1002/j.1939-4640.1996.tb01797.x. PubMed DOI
Plant T.M., Zeleznik A.J. Knobil and Neill’s Physiology of Reproduction. 4th ed. Elsevier; Amsterdam, The Netherlands: 2015. DOI
Visconti P.E., Kopf G.S. Regulation of Protein Phosphorylation During Sperm Capacitation. Biol. Reprod. 1998;59:1–6. doi: 10.1095/biolreprod59.1.1. PubMed DOI
Suarez S., Redfern K., Raynor P., Martin F., Phillips D.M. Attachment of Boar Sperm to Mucosal Explants of Oviduct in Vitro: Possible Role in Formation of a Sperm Reservoir. Biol. Reprod. 1991;44:998–1004. doi: 10.1095/biolreprod44.6.998. PubMed DOI
Suarez S.S., Dai X. Hyperactivation Enhances Mouse Sperm Capacity for Penetrating Viscoelastic Media. Biol. Reprod. 1992;46:686–691. doi: 10.1095/biolreprod46.4.686. PubMed DOI
Suarez S.S., Varosi S.M., Dai X. Intracellular Calcium Increases With Hyperactivation in Intact, Moving Hamster Sperm and Oscillates With the Flagellar Beat Cycle. Proc. Natl. Acad. Sci. USA. 1993;90:4660–4664. doi: 10.1073/pnas.90.10.4660. PubMed DOI PMC
Mortimer S.T., Schevaert D., Swan M.A., Mortimer D. Quantitative Observations of Flagellar Motility of Capacitating Human Spermatozoa. Hum. Reprod. 1997;12:1006–1012. doi: 10.1093/humrep/12.5.1006. PubMed DOI
Suarez S.S., Ho H.-C. Hyperactivated Motility in Sperm. Reprod. Domest. Anim. 2003;38:119–124. doi: 10.1046/j.1439-0531.2003.00397.x. PubMed DOI
Fujinoki M., Takei G.L., Kon H. Non-genomic Regulation and Disruption of Spermatozoal In Vitro Hyperactivation by Oviductal Hormones. J. Physiol. Sci. 2016;66:207–212. doi: 10.1007/s12576-015-0419-y. PubMed DOI PMC
Fujinoki M., Takei G.L. γ-Aminobutyric Acid Suppresses Enhancement of Hamster Sperm Hyperactivation by 5-Hydroxytryptamine. J. Reprod. Dev. 2017;63:67–74. doi: 10.1262/jrd.2016-091. PubMed DOI PMC
Fujikura M., Fujinoki M. Progesterone and Estradiol Regulate Sperm Hyperactivation and In Vitro Fertilization Success in Mice. J. Reprod. Dev. 2024;70:96–103. doi: 10.1262/jrd.2023-080. PubMed DOI PMC
Calogero A.E., Hall J., Fishel S., Green S., Hunter A., D’Agata R. Effects of γ-Aminobutyric Acid on Human Sperm Motility and Hyperactivation. Mol. Hum. Reprod. 1996;2:733–738. doi: 10.1093/molehr/2.10.733. PubMed DOI
de las Heras M.A., Valcarcel A., Perez L.J. In Vitro Capacitating Effect of Gamma-Aminobutyric Acid in Ram Spermatozoa. Biol. Reprod. 1997;56:964–968. doi: 10.1095/biolreprod56.4.964. PubMed DOI
Ritta M.N., Calamera J.C., Bas D.E. Occurrence of GABA and GABA Receptors in Human Spermatozoa. Mol. Hum. Reprod. 1998;4:769–773. doi: 10.1093/molehr/4.8.769. PubMed DOI
Jin J.-Y., Chen W.-Y., Zhou C.X., Chen Z.-H., Yu-Ying Y., Ni Y., Chan H.C., Shi Q.-X. Activation of GABAA Receptor/Cl− Channel and Capacitation in Rat Spermatozoa: HCO3− and Cl− Are Essential. Syst. Biol. Reprod. Med. 2009;55:97–108. doi: 10.1080/19396360802626648. PubMed DOI
Kon H., Takei G.L., Fujinoki M., Shinoda M. Suppression of Progesterone-Enhanced Hyperactivation in Hamster Spermatozoa by γ-Aminobutyric Acid. J. Reprod. Dev. 2014;60:202–209. doi: 10.1262/jrd.2013-076. PubMed DOI PMC
Kurata S., Umezu K., Takamori H., Hiradate Y., Hara K., Tanemura K. Exogenous Gamma-Aminobutyric Acid Addition Enhances Porcine Sperm Acrosome Reaction. Anim. Sci. J. 2022;93:e13744. doi: 10.1111/asj.13744. PubMed DOI PMC
Kirichok Y., Navarro B., Clapham D.E. Whole-cell Patch-clamp Measurements of Spermatozoa Reveal an Alkaline-activated Ca2+ Channel. Nature. 2006;439:737–740. doi: 10.1038/nature04417. PubMed DOI
Carlson A.E., Quill T.A., Westenbroek R.E., Schuh S.M., Hill B., Babcock D.F. Identical Phenotypes of CatSper1 and CatSper2 Null Sperm. J. Biol. Chem. 2005;280:32238–32244. doi: 10.1074/jbc.M501430200. PubMed DOI
Costello S., Michelangeli F., Nash K., Lefievre L., Morris J., Machado-Oliveira G., Barratt C., Kirkman-Brown J., Publicover S. Ca2+-stores in Sperm: Their Identities and Functions. Reproduction. 2009;138:425–437. doi: 10.1530/REP-09-0134. PubMed DOI PMC
Yeste M. Recent Advances in Boar Sperm Cryopreservation: State of the Art and Current Perspectives. Reprod. Domest. Anim. 2015;50:71–79. doi: 10.1111/rda.12569. PubMed DOI
Chang H., Suarez S.S. Two Distinct Ca2+ Signaling Pathways Modulate Sperm Flagellar Beating Patterns in Mice. Biol. Reprod. 2011;85:296–305. doi: 10.1095/biolreprod.110.089789. PubMed DOI PMC
Kojima A., Matsushita Y., Ogura Y., Ishikawa S., Noda T., Murase T., Harayama H. Roles of Extracellular Ca2+ in the Occurrence of Full-type Hyperactivation in Boar Ejaculated Spermatozoa Pre-incubated to Induce cAMP-triggered Events. Andrology. 2015;3:321–331. doi: 10.1111/andr.12005. PubMed DOI
Mizuno Y., Isono A., Kojima A., Arai M.M., Noda T., Sakase M., Fukushima M., Harayama H. Distinct Segment-specific Functions of Calyculin A-sensitive Protein Phosphatases in the Regulation of cAMP-triggered Events in Ejaculated Bull Spermatozoa. Mol. Reprod. Dev. 2015;82:232–250. doi: 10.1002/mrd.22465. PubMed DOI
Otsuka N., Harayama H. Characterization of Extracellular Ca2+-dependent Full-type Hyperactivation in Ejaculated Boar Spermatozoa Pre-incubated With a cAMP Analog. Mol. Reprod. Dev. 2017;84:1203–1217. doi: 10.1002/mrd.22921. PubMed DOI
Chang H., Suarez S.S. Unexpected Flagellar Movement Patterns and Epithelial Binding Behavior of Mouse Sperm in the Oviduct. Biol. Reprod. 2012;86:1–8. doi: 10.1095/biolreprod.111.096578. PubMed DOI PMC
Suarez S.S. Control of Hyperactivation in Sperm. Hum. Reprod. Update. 2008;14:647–657. doi: 10.1093/humupd/dmn029. PubMed DOI
Visconti P.E. Sperm Bioenergetics in a Nutshell. Biol. Reprod. 2012;87:72. doi: 10.1095/biolreprod.112.104109. PubMed DOI PMC
Bailey J.L., Tardif S., Dubé C., Beaulieu M., Reyes-Moreno C., Lefièvre L., Leclerc P. Use of Phosphoproteomics to Study Tyrosine Kinase Activity in Capacitating Boar Sperm. Theriogenology. 2005;63:599–614. doi: 10.1016/j.theriogenology.2004.09.034. PubMed DOI
Yanagimachi R. Requirement of Extracellular Calcium Ions for Various Stages of Fertilization and Fertilization-related Phenomena in the Hamster. Gamete Res. 1982;5:323–344. doi: 10.1002/mrd.1120050404. DOI
Fraser L.R. Minimum and Maximum Extracellular Ca2+ Requirements During Mouse Sperm Capacitation and Fertilization In Vitro. Reproduction. 1987;81:77–89. doi: 10.1530/jrf.0.0810077. PubMed DOI
Mortimer S.T., De Jonge C.J. Encyclopedia of Reproduction. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2018. CASA—Computer-aided Sperm Analysis; pp. 59–63. DOI
Boyers S.P., Ravis R.O., Katz D.F. Automated Semen Analysis. Curr. Probl. Obstet. Gynecol. Fertil. 1989;12:165–200.
van der Horst G., Maree L., du Plessis S.S. Current Perspectives of CASA Applications in Diverse Mammalian Spermatozoa. Reprod. Fertil. Dev. 2018;30:875–888. doi: 10.1071/RD17468. PubMed DOI
Mortimer D. Handbook of Laboratory Diagnosis and Treatment of Infertility. CRC Press; Boca Raton, FL, USA: 1990. Objective Analysis of Sperm Motility and Kinematics; pp. 97–133. DOI
van der Horst G. Computer Aided Sperm Analysis (CASA) in Domestic Animals: Current Status, Three-Dimensional Tracking, and Flagellar Analysis. Anim. Reprod. Sci. 2020;220:106350. doi: 10.1016/j.anireprosci.2020.106350. PubMed DOI
Boe-Hansen G.B., Satake N. An Update on Boar Semen Assessments by Flow Cytometry and CASA. Theriogenology. 2019;137:93–103. doi: 10.1016/j.theriogenology.2019.05.043. PubMed DOI
Tanga B.M., Qamar A.Y., Raza S., Bang S., Fang X., Yoon K., Cho J. Semen Evaluation: Methodological Advancements in Sperm Quality-specific Fertility Assessment—A Review. Anim. Biosci. 2021;34:1253–1270. doi: 10.5713/ab.21.0072. PubMed DOI PMC
Mortimer S.T., van der Horst G., Mortimer D. The Future of Computer-aided Sperm Analysis. Asian J. Androl. 2015;17:545–553. doi: 10.4103/1008-682X.154312. PubMed DOI PMC
Soler C., Cooper T.G., Valverde A., Yániz J.L. Afterword to Sperm Morphometrics Today and Tomorrow Special Issue. Asian J. Androl. 2016;18:895–897. doi: 10.4103/1008-682X.188451. PubMed DOI PMC
Mortimer D., Gagnon C. Controls of Sperm Motility. 1st ed. CRC Press; Boca Raton, FL, USA: 2020. Semen Analysis and Sperm Washing Techniques; pp. 263–284.
Valverde A., Barquero V., Soler C. The Application of Computer-assisted Semen Analysis (CASA) Technology to Optimize Semen Evaluation: A Review. J. Anim. Feed. Sci. 2020;29:189–198. doi: 10.22358/jafs/127691/2020. DOI
Mortimer S.T. CASA—Practical Aspects. J. Androl. 2000;21:515–524. doi: 10.1002/j.1939-4640.2000.tb02116.x. PubMed DOI
Lu J.C., Huang Y.F., Lü N.Q. Computer-aided Sperm Analysis: Past, Present, and Future. Andrologia. 2014;46:329–338. doi: 10.1111/and.12093. PubMed DOI
Urbano L.F., Masson P., VerMilyea M., Kam M. Automatic Tracking and Motility Analysis of Human Sperm in Time-lapse Images. IEEE Trans. Med. Imaging. 2017;36:792–801. doi: 10.1109/TMI.2016.2630720. PubMed DOI
Hamilton Thorne, Inc. HT CASA II Animal Breeder Software Manual. Hamilton Thorne, Inc.; Beverly, MA, USA: 2020.
Srivastava N., Pande M. Protocols in Semen Biology (Comparing Assays) Springer; Singapore: 2017. Estimates of Sperm Motility; pp. 43–55. DOI
Kay V. Hyperactivated Motility of Human Spermatozoa: A Review of Physiological Function and Application in Assisted Reproduction. Hum. Reprod. Update. 1998;4:776–786. doi: 10.1093/humupd/4.6.776. PubMed DOI
Gallagher M.T., Cupples G., Ooi E.H., Kirkman-Brown J.C., Smith D.J. Rapid Sperm Capture: High-throughput Flagellar Waveform Analysis. Hum. Reprod. 2019;34:1173–1185. doi: 10.1093/humrep/dez056. PubMed DOI PMC
Martínez-Pastor F. What Is the Importance of Sperm Subpopulations? Anim. Reprod. Sci. 2022;246:106844. doi: 10.1016/j.anireprosci.2021.106844. PubMed DOI
Schmidt H., Kamp G. Induced Hyperactivity in Boar Spermatozoa and Its Evaluation by Computer-assisted Sperm Analysis. Reproduction. 2004;128:171–179. doi: 10.1530/rep.1.00153. PubMed DOI
Mbizvo M.T., Burkman J.L., Alexander N.J. Human Follicular Fluid Stimulates Hyperactivated Motility in Human Sperm. Fertil. Steril. 1990;54:708–712. doi: 10.1016/S0015-0282(16)53834-5. PubMed DOI
Mortimer S.T. A Critical Review of the Physiological Importance and Analysis of Sperm Movement in Mammals. Hum. Reprod. Update. 1997;3:403–439. doi: 10.1093/humupd/3.5.403. PubMed DOI
Mortimer S.T., Swan M.A., Mortimer D. Fractal Analysis of Capacitating Human Spermatozoa. Hum. Reprod. 1996;11:1049–1054. doi: 10.1093/oxfordjournals.humrep.a019295. PubMed DOI
Mortimer S.T., Maxwell W.M. Effect of Medium on the Kinematics of Frozen-thawed Ram Spermatozoa. Reproduction. 2004;127:285–291. doi: 10.1530/rep.1.00075. PubMed DOI
Mircu C., Cernescu H., Igna V., Knip R., Frunza I., Ardelean V., Bonca G.H., Otava G., Zarcula S., Korodi G., et al. Boar semen evaluation using CASA and its relation to fertility. Med. Vet. 2010;41:203–212.
Broekhuijse M.L.W.J., Šoštarić E., Feitsma H., Gadella B.M. Application of computer-assisted semen analysis to explain variations in pig fertility. J. Anim. Sci. 2012;90:779–789. doi: 10.2527/jas.2011-4311. PubMed DOI
Martin-Hidalgo D., Hurtado de Llera A., Yeste M., Gil M.C., Bragado M.J., Garcia-Marin L.J. Adenosine monophosphate-activated kinase, AMPK, is involved in the maintenance of the quality of extended boar semen during long-term storage. Theriogenology. 2013;80:285–294. doi: 10.1016/j.theriogenology.2013.02.015. PubMed DOI
Ramón M., Jiménez-Rabadán P., García-Álvarez O., Maroto-Morales A., Soler A.J., Fernández-Santos M.R., Pérez-Guzmán M.D., Garde J.J. Understanding sperm heterogeneity: Biological and practical implications. Reprod. Domest. Anim. 2014;49:30–36. doi: 10.1111/rda.12404. PubMed DOI
Amann R.P., Hammerstedt R.H. In vitro evaluation of sperm quality: An opinion. J. Androl. 1993;14:397–406. doi: 10.1002/j.1939-4640.1993.tb03247.x. PubMed DOI
Soler C., Contell J., Bori L., Sancho M., García-Molina A., Valverde A., Segarvall J. Sperm kinematic, head morphometric and kinetic-morphometric subpopulations in the blue fox (Alopex lagopus) Asian J. Androl. 2017;19:154–159. doi: 10.4103/1008-682X.188445. PubMed DOI PMC
Caldeira C., García-Molina A., Valverde A., Bompart D., Hassane M., Martin P., Soler C. Comparison of sperm motility subpopulation structure among wild anadromous and farmed male Atlantic salmon (Salmo salar) parr using a CASA system. Reprod. Fertil. Dev. 2018;30:897–906. doi: 10.1071/RD17466. PubMed DOI
Yániz J.L., Palacín I., Caycho K.S., Soler C., Silvestre M.A., Santolaria P. Determining the relationship between bull sperm kinematic subpopulations and fluorescence groups using an integrated sperm quality analysis technique. Reprod. Fertil. Dev. 2018;30:919–923. doi: 10.1071/RD17441. PubMed DOI
Martínez-Pastor F., Tizado E.J., Garde J.J., Anel L., de Paz P. Statistical Series: Opportunities and challenges of sperm motility subpopulation analysis. Theriogenology. 2011;75:783–795. doi: 10.1016/j.theriogenology.2010.11.034. PubMed DOI
Ibanescu I., Leiding C., Bollwein H. Cluster analysis reveals seasonal variation of sperm subpopulations in extended boar semen. J. Reprod. Dev. 2018;64:33–39. doi: 10.1262/jrd.2017-083. PubMed DOI PMC
Basioura A., Tsousis G., Boscos C., Lymberopoulos A., Tsakmakidis I. Method agreement between three different chambers for comparative boar semen computer-assisted sperm analysis. Reprod. Domest. Anim. 2019;54:41–45. doi: 10.1111/rda.13494. PubMed DOI
O’Meara C., Henrotte E., Kupisiewicz K., Latour C., Broekhuijse M., Camus A., Gavin-Plagne L., Sellem E. The effect of adjusting settings within a computer-assisted sperm analysis (CASA) system on bovine sperm motility and morphology results. Anim. Reprod. 2022;19:e20210077. doi: 10.1590/1984-3143-ar2021-0077. PubMed DOI PMC
Jorge-Neto P.N., Francisco F.d.M., Carneiro M.D.D., Santos S.R.B., Requena L.A., Ramos S.D., de Goés M.F., Valle R.F., Padilha F.L.A., Colbachini H., et al. Specific setup and methodology for computer-assisted sperm analysis (CASA) in evaluating elasmobranch sperm. Theriogenol. Wild. 2024;4:100091. doi: 10.1016/j.therwi.2024.100091. DOI
Camus A., Rouillon C., Gavin-Plagne L., Schmitt E. The Motility Ratio method as a novel approach to qualify semen assessment. Sci. Rep. 2024;14:27932. doi: 10.1038/s41598-024-79500-1. PubMed DOI PMC
Sloter E., Schmid T.E., Marchetti F., Eskenazi B., Nath J., Wyrobek A.J. Quantitative effects of male age on sperm motion. Hum. Reprod. 2006;21:2868–2875. doi: 10.1093/humrep/del250. PubMed DOI
Murphy E.M., Kelly A.K., O’Meara C., Eivers B., Lonergan P., Fair S. Influence of bull age, ejaculate number, and season of collection on semen production and sperm motility parameters in Holstein Friesian bulls in a commercial artificial insemination centre. J. Anim. Sci. 2018;96:2408–2418. doi: 10.1093/jas/sky130. PubMed DOI PMC
Hoflack G., Opsomer G., Rijsselaere T., Van Soom A., Maes D., De Kruif A., Duchateau L. Comparison of computer-assisted sperm motility analysis parameters in semen from Belgian Blue and Holstein–Friesian bulls. Reprod. Domest. Anim. 2007;42:153–161. doi: 10.1111/j.1439-0531.2006.00745.x. PubMed DOI
Tremoen N.H., Gaustad A.H., Andersen-Ranberg I., van Son M., Zeremichael T.T., Frydenlund K., Grindflek E., Våge D.I., Myromslien F.D. Relationship between sperm motility characteristics and ATP concentrations, and association with fertility in two different pig breeds. Anim. Reprod. Sci. 2018;193:226–234. doi: 10.1016/j.anireprosci.2018.04.075. PubMed DOI
Valverde A., Arnau S., García-Molina A., Bompart D., Campos M., Roldán E.R.S., Soler C. Dog sperm swimming parameters analysed by computer-assisted semen analysis of motility reveal major breed differences. Reprod. Domest. Anim. 2019;54:795–803. doi: 10.1111/rda.13420. PubMed DOI
Bompart D., García-Molina A., Valverde A., Caldeira C., Yániz J., de Murga M.N., Soler C. CASA-Mot technology: How results are affected by the frame rate and counting chamber. Reprod. Fertil. Dev. 2018;30:810–819. doi: 10.1071/RD17551. PubMed DOI
Valverde A., Areán H., Fernández A., Bompart D., García-Molina A., López-Viana J., Soler C. Combined effect of type and capture area of counting chamber and diluent on Holstein bull sperm kinematics. Andrologia. 2019;51:e13223. doi: 10.1111/and.13223. PubMed DOI
Coetzee K., Menkveld R. Validation of a new disposable counting chamber. Arch. Androl. 2001;47:153–156. doi: 10.1080/014850101316901361. PubMed DOI
Del Gallego R., Sadeghi S., Blasco E., Soler C., Yániz J.L., Silvestre M.A. Effect of chamber characteristics, loading and analysis time on motility and kinetic variables analysed with the CASA-mot system in goat sperm. Anim. Reprod. Sci. 2017;177:97–104. doi: 10.1016/j.anireprosci.2016.12.010. PubMed DOI
Dardmeh F., Heidari M., Alipour H. Comparison of commercially available chamber slides for computer-aided analysis of human sperm. Syst. Biol. Reprod. Med. 2021;67:168–175. doi: 10.1080/19396368.2020.1850907. PubMed DOI
Christensen P., Stryhn H., Hansen C. Discrepancies in the determination of sperm concentration using Bürker-Türk, Thoma and Makler counting chambers. Theriogenology. 2005;63:992–1003. doi: 10.1016/j.theriogenology.2004.05.026. PubMed DOI
Contri A., Valorz C., Faustin M., Wegher L., Carluccio A. Effect of semen preparation on CASA motility results in cryopreserved bull spermatozoa. Theriogenology. 2010;74:424–435. doi: 10.1016/j.theriogenology.2010.02.025. PubMed DOI
Palacín I., Vicente-Fiel S., Santolaria P., Yániz J.L. Standardization of CASA sperm motility assessment in the ram. Small Rumin. Res. 2013;112:128–135. doi: 10.1016/j.smallrumres.2012.12.014. DOI
Hoogewijs M.K., De Vliegher S.P., Govaere J.L., De Schauwer C., De Kruif A., Van Soom A. Influence of counting chamber type on CASA outcomes of equine semen analysis. Equine Vet. J. 2012;44:542–549. doi: 10.1111/j.2042-3306.2011.00523.x. PubMed DOI
Lenz R.W., Kjelland M.E., VonderHaar K., Swannack T.M., Moreno J.F. A comparison of bovine seminal quality assessments using different viewing chambers with a computer-assisted semen analyzer. J. Anim. Sci. 2011;89:383–388. doi: 10.2527/jas.2010-3056. PubMed DOI
Gączarzewicz D. Influence of chamber type integrated with computer-assisted semen analysis (CASA) system on the results of boar semen evaluation. Pol. J. Vet. Sci. 2015;18:817–824. doi: 10.1515/pjvs-2015-0106. PubMed DOI
Gloria A., Carlucci A., Contri A., Wegher L., Valorz C., Robbe D. The effect of the chamber on kinetic results in cryopreserved bull spermatozoa. Andrology. 2013;1:879–885. doi: 10.1111/j.2047-2927.2013.00121.x. PubMed DOI
Lannou D.L., Griveau J.F., Pichon J.P.L., Quero J.C. Effects of chamber depth on the motion pattern of human spermatozoa in semen or in capacitating medium. Hum. Reprod. 1992;7:1417–1421. doi: 10.1093/oxfordjournals.humrep.a137585. PubMed DOI
Soler C., Picazo-Bueno J.Á., Micó V., Valverde A., Bompart D., Blasco F.J., Álvarez J.G., García-Molina A. Effect of counting chamber depth on the accuracy of lensless microscopy for the assessment of boar sperm motility. Reprod. Fertil. Dev. 2018;30:924–934. doi: 10.1071/RD17467. PubMed DOI
Su T.-W., Xue L., Ozcan A. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc. Natl. Acad. Sci. USA. 2012;109:16018–16022. doi: 10.1073/pnas.1212506109. PubMed DOI PMC
Su T.-W., Choi I., Feng J., Huang K., McLeod E., Ozcan A. Sperm Trajectories Form Chiral Ribbons. Sci. Rep. 2013;3:1664. doi: 10.1038/srep01664. PubMed DOI PMC
Merola F., Miccio L., Memmolo P., Di Caprio G., Galli A., Puglisi R., Balduzzi D., Coppola G., Netti P., Ferraro P. Digital holography as a method for 3D imaging and estimating the biovolume of motile cells. Lab. Chip. 2013;13:4512–4516. doi: 10.1039/c3lc50515d. PubMed DOI
Memmolo P., Miccio L., Paturzo M., Caprio G.D., Coppola G., Netti P.A., Ferraro P. Recent advances in holographic 3D particle tracking. Adv. Opt. Photon. 2015;7:713–755. doi: 10.1364/AOP.7.000713. DOI
Rijsselaere T., Van Soom A., Maes D., de Kruif A. Effect of technical settings on canine semen motility parameters measured by the Hamilton-Thorne analyzer. Theriogenology. 2003;60:1553–1568. doi: 10.1016/S0093-691X(03)00171-7. PubMed DOI
Kuster C. Sperm concentration determination between hemacytometric and CASA systems: Why they can be different. Theriogenology. 2005;64:614–617. doi: 10.1016/j.theriogenology.2005.05.047. PubMed DOI
Tomlinson M.J., Pooley K., Simpson T., Newton T., Hopkisson J., Jayaprakasan K., Jayaprakasan R., Naeem A., Pridmore T. Validation of a novel computer-assisted sperm analysis (CASA) system using multitarget-tracking algorithms. Fertil. Steril. 2010;93:1911–1920. doi: 10.1016/j.fertnstert.2008.12.064. PubMed DOI
Douglas-Hamilton D.H., Smith N.G., Kuster C.E., Vermeiden J.P.W., Althouse G.C. Capillary-loaded particle fluid dynamics: Effect on estimation of sperm concentration. J. Androl. 2005;26:115–122. doi: 10.1002/j.1939-4640.2005.tb02880.x. PubMed DOI
Ratnawati A., Luthfi M. Comparative study of sperms motility analysis with CASA by using leja and microscope slide. J. Reprod. Biol. 2020;12:123–130. doi: 10.21776/ub.jiip.2020.030.02.03. DOI
Robinson J.A., Smith K.L., Doe J.B. Sperm Motility Assessment Using Computer-Assisted Semen Analysis (CASA): A Comparison of Standard Microscope Slides and Coverslips and the 20 µm MicroCell™. J. Reprod. Stem Cell Biotechnol. 2018;7:1–8.
Peng N., Zou X., Li L. Comparison of different counting chambers using a computer-assisted semen analyzer. Syst. Biol. Reprod. Med. 2015;61:307–313. doi: 10.3109/19396368.2015.1063175. PubMed DOI
Nöthling J.O., Dos Santos I.P. Which fields under a coverslip should one assess to estimate sperm motility? Theriogenology. 2012;77:1686–1697. doi: 10.1016/j.theriogenology.2011.12.014. PubMed DOI
Sevilla F., Murillo L., Araya-Zúñiga I., Silvestre M.A., Saborío-Montero A., Vargas-Leitón B., Valverde A. Effect of age, season, breed composition, and sperm counting chamber on boar semen quality in tropics. Preprints. 2024:2024081546. doi: 10.20944/preprints202408.1546.v1. DOI
Verstegen J., Iguer-Ouada M., Onclin K. Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology. 2002;57:149–179. doi: 10.1016/S0093-691X(01)00664-1. PubMed DOI
Gómez-Fernández J., Gómez-Izquierdo E., Tomás C., Mocé E., de Mercado E. Effect of different monosaccharides and disaccharides on boar sperm quality after cryopreservation. Anim. Reprod. Sci. 2012;133:109–116. doi: 10.1016/j.anireprosci.2012.06.010. PubMed DOI
Spiropoulos J. Computerized Semen Analysis (CASA): Effect of semen concentration and chamber depth on measurements. Arch. Androl. 2009;46:37–42. doi: 10.1080/01485010117848. PubMed DOI
Hayden S.S., Blanchard T.L., Brinsko S.P., Varner D.D., Hinrichs K., Love C.C. The “dilution effect” in stallion sperm. Theriogenology. 2015;83:772–777. doi: 10.1016/j.theriogenology.2014.11.012. PubMed DOI
Quirino M., Pereira V.N., Tamanini M.d.S.C., Ulguim R.d.R., Schulze M., Mellagi A.P.G., Bortolozzo F.P. Sperm concentration of boar semen doses and sperm quality: Novel perspectives based on the extender type and sperm resilience. Anim. Reprod. Sci. 2023;255:107293. doi: 10.1016/j.anireprosci.2023.107293. PubMed DOI
Henning H., Franz J., Batz-Schott J., Le Thi X., Waberski D. Assessment of Chilling Injury in Boar Spermatozoa by Kinematic Patterns and Competitive Sperm-Oviduct Binding In Vitro. Animals. 2022;12:712. doi: 10.3390/ani12060712. PubMed DOI PMC
Michos I., Tsantarliotou M., Boscos C.M., Tsousis G., Basioura A., Tzika E.D., Tassis P.D., Lymberopoulos A.G., Tsakmakidis I.A. Effect of Boar Sperm Proteins and Quality Changes on Field Fertility. Animals. 2021;11:1813. doi: 10.3390/ani11061813. PubMed DOI PMC
Parrilla I., del Olmo D., Sijses L., Martinez-Alborcia M.J., Cuello C., Vazquez J.M., Martinez E.A., Roca J. Differences in the ability of spermatozoa from individual boar ejaculates to withstand different semen-processing techniques. Anim. Reprod. Sci. 2012;132:66–73. doi: 10.1016/j.anireprosci.2012.04.003. PubMed DOI
Qu X., Han Y., Chen X., Lv Y., Zhang Y., Cao L., Zhang J., Jin Y. Inhibition of 26S proteasome enhances AKAP3-mediated cAMP-PKA signaling during boar sperm capacitation. Anim. Reprod. Sci. 2022;247:107079. doi: 10.1016/j.anireprosci.2022.107079. PubMed DOI
Hackerova L., Klusackova B., Zigo M., Zelenkova N., Havlikova K., Krejcirova R., Sedikova M., Sutovsky P., Komrskova K., Postlerova P., et al. Modulatory effect of MG-132 proteasomal inhibition on boar sperm motility during in vitro capacitation. Front. Vet. Sci. 2023;10:1116891. doi: 10.3389/fvets.2023.1116891. PubMed DOI PMC
Melanda C.A.A., de Almeida A.B.M., Hidalgo M.M.T., Souza A.K., Trautwein L.G.C., Neta J.H., dos Santos R., Dearo A.C.d.O., Martins M.I.M. Sperm filtration as an alternative technique for seminal plasma separation in boars. Semin. Cienc. Agrar. 2021;42:2439–2452. doi: 10.5433/1679-0359.2021v42n4p2439. DOI
Carvajal G., Cuello C., Ruiz M., Vázquez J.M., Martínez E.A., Roca J. Effects of Centrifugation Before Freezing on Boar Sperm Cryosurvival. J. Androl. 2004;25:389–396. doi: 10.1002/j.1939-4640.2004.tb02805.x. PubMed DOI
Bury O., McRae V., Len J., Plush K., Kirkwood R.N. Effects of centrifugation and removal of seminal plasma on motility of fresh boar sperm. Thai J. Vet. Med. 2017;47:557–562. doi: 10.56808/2985-1130.2870. DOI
Alvarez J.G., Lasso J.L., Blasco L., Nuñez R.C., Heyner S., Caballero P.P., Storey B.T. Centrifugation of human spermatozoa induces sublethal damage; separation of human spermatozoa from seminal plasma by a dextran swim-up procedure without centrifugation extends their motile lifetime. Hum. Reprod. 1993;8:1087–1092. doi: 10.1093/oxfordjournals.humrep.a138198. PubMed DOI
Dirican E.K., Özgün O.D., Akarsu S., Akın K.O., Ercan Ö., Uğurlu M., Çamsarı Ç., Kanyılmaz O., Kaya A., Ünsal A. Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J. Assist. Reprod. Genet. 2008;25:375–381. doi: 10.1007/s10815-008-9250-1. PubMed DOI PMC
Iwasaki A., Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil. Steril. 1992;57:409–416. doi: 10.1016/S0015-0282(16)54855-9. PubMed DOI
Shekarriz M., Thomas A.J., Agarwal A. Effects of Time and Sperm Concentration on Reactive Oxygen Species Formation in Human Semen. Arch. Androl. 2009;34:69–75. doi: 10.3109/01485019508987833. PubMed DOI
Neila-Montero M., Riesco M.F., Alvarez M., Montes-Garrido R., Boixo J.C., de Paz P., Anel-Lopez L., Anel L. Centrifugal force assessment in ram sperm: Identifying species-specific impact. Acta Vet. Scand. 2021;63:42. doi: 10.1186/s13028-021-00609-8. PubMed DOI PMC
Salam L.M., Rahim A.I., Al-Kawaz U. Which is matter in centrifugation based Reactive Oxygen Species (ROS) production? force or time? Eurasia. J. Biosci. 2020;14:6405–6408.
Henkel R.R., Schill W.-B. Sperm preparation for ART. Reprod. Biol. Endocrinol. 2003;1:108. doi: 10.1186/1477-7827-1-108. PubMed DOI PMC
Rodriguez-Martinez H., Larsson B., Pertoft H. Evaluation of sperm damage and techniques for sperm clean-up. Reprod. Fertil. Dev. 1997;9:297–308. doi: 10.1071/R96081. PubMed DOI
Morrell J.M. Update on Semen Technologies for Animal Breeding. Reprod. Domest. Anim. 2006;41:63–67. doi: 10.1111/j.1439-0531.2006.00621.x. PubMed DOI
Godja G., Marc S., Horia C., Dobře M., Ardelean V., Otava G., Tulcan C., Patras I., Hutu I. Comparative boar and bull semen evaluation after percoll treatment. Med. Vet. 2016;59:167–173. doi: 10.13140/RG.2.2.15444.76168. DOI
Serrano-Albal M., Aquilina M.C., Kiazim L.G., Zak L.J., Griffin D.K., Ellis P.J. Effect of Two Different Sperm Selection Methods on Boar Sperm Parameters and In Vitro Fertilisation Outcomes. Animals. 2024;14:2544. doi: 10.3390/ani14172544. PubMed DOI PMC
Noguchi M., Yoshioka K., Hikono H., Iwagami G., Suzuki C., Kikuchi K. Centrifugation on Percoll density gradient enhances motility, membrane integrity and in vitro fertilizing ability of frozen–thawed boar sperm. Zygote. 2015;23:68–75. doi: 10.1017/S0967199413000208. PubMed DOI
Oshio S., Kaneko S., Iizuka R., Mohri H. Effects of Gradient Centrifugation on Human Sperm. Arch. Androl. 2009;19:85–93. doi: 10.3109/01485018708986804. PubMed DOI
Agarwal A., Sharma R., Beydola T. Sperm Preparation and Selection Techniques. In: Ashok A., Botros R., Nabil A., Sabanegh E. Jr., editors. Medical and Surgical Management of Male Infertility. 1st ed. Jaypee Brothers Medical Publishers; New Delhi, India: 2014. p. 244. DOI
Takeshima T., Yumura Y., Kuroda S., Kawahara T., Uemura H., Iwasaki A. Effect of density gradient centrifugation on reactive oxygen species in human semen. Syst. Biol. Reprod. Med. 2017;63:192–198. doi: 10.1080/19396368.2017.1294214. PubMed DOI
Malvezzi H., Sharma R., Agarwal A., Abuzenadah A.M., Abu-Elmagd M. Sperm quality after density gradient centrifugation with three commercially available media: A controlled trial. Reprod. Biol. Endocrinol. 2014;12:121. doi: 10.1186/1477-7827-12-121. PubMed DOI PMC
Berger T., Parker K. Modification of the zona-free hamster ova bioassay of boar sperm fertility and correlation with in vivo fertility. Gamete Res. 1989;22:385–397. doi: 10.1002/mrd.1120220405. PubMed DOI
Grant S.A., Long S.E., Parkinson T.J. Fertilizability and structural properties of boar spermatozoa prepared by Percoll gradient centrifugation. Reproduction. 1994;100:477–483. doi: 10.1530/jrf.0.1000477. PubMed DOI
Waberski D., Magnus F., Ardón F., Petrunkina A.M., Weitze K.F., Töpfer-Petersen E. Binding of boar spermatozoa to oviductal epithelium in vitro in relation to sperm morphology and storage time. Reproduction. 2006;131:311–318. doi: 10.1530/rep.1.00814. PubMed DOI
Horan R., Powell R., McQuaid S., Gannon F., Houghton J.A. Association of Foreign DNA with Porcine Spermatozoa. Arch. Androl. 2009;26:83–92. doi: 10.3109/01485019108987631. PubMed DOI
Matás C., Vieira L., García-Vázquez F.A., Avilés-López K., López-Úbeda R., Carvajal J.A., Gadea J. Effects of centrifugation through three different discontinuous Percoll gradients on boar sperm function. Anim. Reprod. Sci. 2011;127:62–72. doi: 10.1016/j.anireprosci.2011.06.009. PubMed DOI
Aitken R.J., Clarkson J.S. Significance of Reactive Oxygen Species and Antioxidants in Defining the Efficacy of Sperm Preparation Techniques. J. Androl. 1988;9:367–376. doi: 10.1002/j.1939-4640.1988.tb01067.x. PubMed DOI
Nosrati R., Graham P.J., Zhang B., Riordon J., Lagunov A., Hannam T.G., Escobedo C., Jarvi K., Sinton D. Microfluidics for sperm analysis and selection. Nat. Rev. Urol. 2017;14:707–730. doi: 10.1038/nrurol.2017.175. PubMed DOI
Harrison R.A.P., Dott H.M., Foster G.C. Effect of ionic strength, serum albumin and other macromolecules on the maintenance of motility and the surface of mammalian spermatozoa in a simple medium. Reproduction. 1978;52:65–73. doi: 10.1530/jrf.0.0520065. PubMed DOI
Estienne M.J., Harper A.F., Day J.L. Characteristics of sperm motility in boar semen diluted in different extenders and stored for seven days at 18 degrees C. Reprod. Biol. 2007;7:221–231. PubMed
Dziekońska A., Świąder K., Koziorowska-Gilun M., Mietelska K., Zasiadczyk Ł., Kordan W. Effect of boar ejaculate fraction, extender type and time of storage on quality of spermatozoa. Pol. J. Vet. Sci. 2017;20:77–84. doi: 10.1515/pjvs-2017-0011. PubMed DOI
Chaves B.R., Pavaneli A.P.P., Blanco-Prieto O., Pinart E., Bonet S., Zangeronimo M.G., Rodríguez-Gil J.E., Yeste M. Exogenous Albumin Is Crucial for Pig Sperm to Elicit In Vitro Capacitation Whereas Bicarbonate Only Modulates Its Efficiency. Biology. 2021;10:1105. doi: 10.3390/biology10111105. PubMed DOI PMC
Signorelli J., Diaz E.S., Morales P. Kinases, phosphatases and proteases during sperm capacitation. Cell. Tissue. Res. 2012;349:765–782. doi: 10.1007/s00441-012-1370-3. PubMed DOI
Lacalle E., Consuegra C., Martínez C.A., Hidalgo M., Dorado J., Martínez-Pastor F., Álvarez-Rodríguez M., Rodríguez-Martínez H. Bicarbonate-Triggered In Vitro Capacitation of Boar Spermatozoa Conveys an Increased Relative Abundance of the Canonical Transient Receptor Potential Cation (TRPC) Channels 3, 4, 6 and 7 and of CatSper-γ Subunit mRNA Transcripts. Animals. 2022;12:1012. doi: 10.3390/ani12081012. PubMed DOI PMC
Uysal O., Bucak M.N. Effects of Oxidized Glutathione, Bovine Serum Albumin, Cysteine and Lycopene on the Quality of Frozen-Thawed Ram Semen. Acta Vet. Brno. 2007;76:383–390. doi: 10.2754/avb200776030383. DOI
Zhang X.-G., Yan G.-J., Hong J.-Y., Su Z.-Z., Yang G.-S., Li Q.-W., Hu J.-H. Effects of Bovine Serum Albumin on Boar Sperm Quality During Liquid Storage at 17 °C. Reprod. Domest. Anim. 2015;50:263–269. doi: 10.1111/rda.12481. PubMed DOI
Waberski D., Weitze K.F., Rath D., Sallmann H.P. Wirkung von bovinem Serumalbumin und Zwitterionenpuffer auf flüssigkonservierten Ebersamen. Reprod. Domest. Anim. 1989;24:128–133. doi: 10.1111/j.1439-0531.1989.tb00430.x. DOI
Fu J., Li Y., Wang L., Zhen L., Yang Q., Li P., Li X. Bovine serum albumin and skim-milk improve boar sperm motility by enhancing energy metabolism and protein modifications during liquid storage at 17 °C. Theriogenology. 2017;102:87–97. doi: 10.1016/j.theriogenology.2017.07.020. PubMed DOI
Dudkiewicz S., Peris-Frau P., Nieto-Cristóbal H., Santiago-Moreno J., de Mercado E., Álvarez-Rodríguez M. Bicarbonate and BSA increase the capacitation pattern and acrosomal exocytosis in boar sperm after 120 min of incubation. Reprod. Domest. Anim. 2024;59:e14505. doi: 10.1111/rda.14505. PubMed DOI
Gadella B.M., Tsai P., Boerke A., Brewis I.A. Sperm head membrane reorganisation during capacitation. Int. J. Dev. Biol. 2008;52:473–480. doi: 10.1387/ijdb.082583bg. PubMed DOI
Sutovsky P., Kerns K., Zigo M., Zuidema D. Boar semen improvement through sperm capacitation management, with emphasis on zinc ion homeostasis. Theriogenology. 2019;137:50–55. doi: 10.1016/j.theriogenology.2019.05.037. PubMed DOI
Ramió-Lluch L., Fernández-Novell J.M., Peña A., Colás C., Cebrián-Pérez J.A., Muiño-Blanco T., Ramírez A., Concha I.I., Rigau T., Rodríguez-Gil J.E. ‘In Vitro’ Capacitation and Acrosome Reaction are Concomitant with Specific Changes in Mitochondrial Activity in Boar Sperm: Evidence for a Nucleated Mitochondrial Activation and for the Existence of a Capacitation-Sensitive Subpopulational Structure. Reprod. Domest. Anim. 2011;46:664–673. doi: 10.1111/j.1439-0531.2010.01725.x. PubMed DOI
Wennemuth G., Carlson A.E., Harper A.J., Babcock D.F. Bicarbonate actions on flagellar and Ca2+-channel responses: Initial events in sperm activation. Development. 2003;130:1317–1326. doi: 10.1242/dev.00353. PubMed DOI
Tajima Y., Okamura N., Sugita Y. The activating effects of bicarbonate on sperm motility and respiration at ejaculation. Biochim. Biophys. Acta Gen. Subj. 1987;924:519–529. doi: 10.1016/0304-4165(87)90168-1. PubMed DOI
Holt W.V., Satake N. Making the most of sperm activation responses: Experiments with boar spermatozoa and bicarbonate. Reprod. Fertil. Dev. 2018;30:842–849. doi: 10.1071/RD17476. PubMed DOI
Holt W.V., Harrison R.A.P. Bicarbonate Stimulation of Boar Sperm Motility via a Protein Kinase A—Dependent Pathway: Between-Cell and Between-Ejaculate Differences Are Not Due to Deficiencies in Protein Kinase A Activation. J. Androl. 2002;23:557–565. doi: 10.1002/j.1939-4640.2002.tb02279.x. PubMed DOI
Soriano-Úbeda C., Romero-Aguirregomezcorta J., Matás C., Visconti P.E., García-Vázquez F.A. Manipulation of bicarbonate concentration in sperm capacitation media improves in vitro fertilisation output in porcine species. J. Anim. Sci. Biotechnol. 2019;10:19. doi: 10.1186/s40104-019-0324-y. PubMed DOI PMC
Rocco M., Betarelli R., Placci A., Fernandey-Novell J.M., Spinaci A., Rigau S., Bonet S., Castillo-Martin M., Yeste M., Rodrigey-Gil J.E. Melatonin affects the motility and adhesiveness of in vitro capacitated boar spermatozoa via a mechanism that does not depend on intracellular ROS levels. Andrology. 2018;6:720–736. doi: 10.1111/andr.12504. PubMed DOI
Teijeiro J.M., Marini P.E., Bragado M.J., Garcia-Marin L.J. Protein kinase C activity in boar sperm. Andrology. 2017;5:381–391. doi: 10.1111/andr.12312. PubMed DOI
Harayama H., Miyake M., Shidara O., Iwamoto E., Kato S. Effects of calcium and bicarbonate on head-to-head agglutination in ejaculated boar spermatozoa. Reprod. Fertil. Dev. 1998;10:445–450. doi: 10.1071/RD98124. PubMed DOI
Finkelstein M., Etkovitz N., Breitbart H. Ca2+ signaling in mammalian spermatozoa. Mol. Cell. Endocrinol. 2020;516:110953. doi: 10.1016/j.mce.2020.110953. PubMed DOI
Hwang J.Y. Analysis of Ca2+-mediated sperm motility to evaluate the functional normality of the sperm-specific Ca2+ channel, CatSper. Front. Cell Dev. Biol. 2024;12:1284988. doi: 10.3389/fcell.2024.1284988. PubMed DOI PMC
Li X., Wang L., Li Y., Zhao N., Zhen L., Fu J., Yang Q. Calcium regulates motility and protein phosphorylation by changing cAMP and ATP concentrations in boar sperm in vitro. Anim. Reprod. Sci. 2016;172:39–51. doi: 10.1016/j.anireprosci.2016.07.001. PubMed DOI
Tourmente M., Villar-Moya P., Rial E., Roldan E.R.S. Differences in ATP Generation Via Glycolysis and Oxidative Phosphorylation and Relationships with Sperm Motility in Mouse Species. J. Biol. Chem. 2015;290:20613–20626. doi: 10.1074/jbc.M115.664813. PubMed DOI PMC
Takei G.L., Miyashiro D., Mukai C., Okuno M. Glycolysis plays an important role in energy transfer from the base to the distal end of the flagellum in mouse sperm. J. Exp. Biol. 2014;217:1876–1886. doi: 10.1242/jeb.090985. PubMed DOI
Rodríguez-Gil J.E., Bonet S. Current knowledge on boar sperm metabolism: Comparison with other mammalian species. Theriogenology. 2016;85:4–11. doi: 10.1016/j.theriogenology.2015.05.005. PubMed DOI
Marin S., Chiang K., Bassilian S., Lee W.-N.P., Boros L.G., Fernández-Novell J.M., Centelles J.J., Medrano A., Rodriguez-Gil J.E., Cascante M. Metabolic strategy of boar spermatozoa revealed by a metabolomic characterization. FEBS Lett. 2003;554:342–346. doi: 10.1016/S0014-5793(03)01185-2. PubMed DOI
Prieto O.B., Algieri C., Spinaci M., Trombetti F., Nesci S., Bucci D. Cell bioenergetics and ATP production of boar spermatozoa. Theriogenology. 2023;210:162–168. doi: 10.1016/j.theriogenology.2023.07.018. PubMed DOI
Dziekońska A., Kinder M., Fraser L., Strzeżek J., Kordan W. Metabolic activity of boar semen stored in different extenders supplemented with ostrich egg yolk lipoproteins. J. Vet. Res. 2017;61:127–133. doi: 10.1515/jvetres-2017-0016. PubMed DOI PMC
Medrano A., García-Gil N., Ramió L., Rivera M.M., Fernández-Novell J.M., Ramírez A., Peña A., Briz M.D., Pinart E., Concha I.I., et al. Hexose-specificity of hexokinase and ADP-dependence of pyruvate kinase play important roles in the control of monosaccharide utilization in freshly diluted boar spermatozoa. Mol. Rep. Dev. 2006;73:1179–1194. doi: 10.1002/mrd.20480. PubMed DOI
Singh A.K., Kumar A., Bisla A. Computer-assisted sperm analysis (CASA) in veterinary science: A review. Indian. J. Anim. Sci. 2021;91:419–429. doi: 10.56093/ijans.v91i6.115435. DOI
Vincent P., Underwood S.L., Dolbec C., Bouchard N., Kroetsch T., Blondin P. Bovine semen quality control in artificial insemination centres. Anim. Rep. 2012;9:153–165. doi: 10.1002/9781118833971.ch74. DOI
González-Abreu D., García-Martínez S., Fernández-Espín V., Romar R., Gadea J. Incubation of boar spermatozoa in viscous media by addition of methylcellulose improves sperm quality and penetration rates during in vitro fertilization. Theriogenology. 2017;92:14–23. doi: 10.1016/j.theriogenology.2017.01.016. PubMed DOI
Contri A., Gloria A., Robbe D., Valorz C., Wegher L., Carluccio A. Kinematic study on the effect of pH on bull sperm function. Anim. Reprod. Sci. 2013;136:252–259. doi: 10.1016/j.anireprosci.2012.11.008. PubMed DOI
Cornwall G.A. New insights into epididymal biology and function. Hum. Reprod. Update. 2008;15:213–227. doi: 10.1093/humupd/dmn055. PubMed DOI PMC
Rodriguez-Martinez H., Ekstedt E., Einarsson S. Acidification of epididymal fluid in the boar. Int. J. Androl. 1990;13:238–243. doi: 10.1111/j.1365-2605.1990.tb00982.x. PubMed DOI
James E.R., Carrell D.T., Aston K.I., Jenkins T.G., Yeste M., Salas-Huetos A. The Role of the Epididymis and the Contribution of Epididymosomes to Mammalian Reproduction. Int. J. Mol. Sci. 2020;21:5377. doi: 10.3390/ijms21155377. PubMed DOI PMC
Vyt P., Maes D., Dejonckheere E., Castryck F., Van Soom A. Comparative Study on Five Different Commercial Extenders for Boar Semen. Reprod. Domest. Anim. 2004;39:8–12. doi: 10.1046/j.1439-0531.2003.00468.x. PubMed DOI
Yeste M. State-of-the-art of boar sperm preservation in liquid and frozen state. Anim. Reprod. 2017;14:69–81. doi: 10.21451/1984-3143-AR895. DOI
Frunză I., Cernescu H., Korodi K. Physical and chemical parameters of boar sperm. Lucr. Stiinţ., Ser. Med. Vet. 2008;41:634–640.
Nichol R., Hunter R.H., Cooke G.M. Oviduct fluid pH in intact and unilaterally ovariectomized pigs. Can. J. Physiol. Pharmacol. 1997;75:1069–1074. doi: 10.1139/y97-115. PubMed DOI
Rivas C.U., Ayala M.E., Aragón A. Effect of various pH levels on the sperm kinematic parameters of boars. S. Afr. J. Anim. Sci. 2022;52:693–704. doi: 10.4314/sajas.v52i5.13. DOI
Gatti J.-L., Chevrier C., Paquignon M., Dacheux J.-L. External ionic conditions, internal pH and motility of ram and boar spermatozoa. Reproduction. 1993;98:439–449. doi: 10.1530/jrf.0.0980439. PubMed DOI
Johnson L.A., Weitze K.F., Fiser P., Maxwell W.M.C. Storage of boar semen. Anim. Reprod. Sci. 2000;62:143–172. doi: 10.1016/S0378-4320(00)00157-3. PubMed DOI
Jonex J.M., Bavister B.D. Acidification of Intracellular pH in Bovine Spermatozoa Suppresses Motility and Extends Viable Life. J. Androl. 2000;21:616–624. doi: 10.1002/j.1939-4640.2000.tb02128.x. PubMed DOI
Gadea J. Review: Semen extenders used in the artificial inseminarion of swine. Span. J. Agric. Res. 2003;1:17–27. doi: 10.5424/sjar/2003012-17. DOI
Fair S., Romero-Aguirregomezcorta J. Implications of boar sperm kinematics and rheotaxis for fertility after preservation. Theriogenology. 2019;137:15–22. doi: 10.1016/j.theriogenology.2019.05.032. PubMed DOI
Mishra A.K., Kumar A., Swain D.K., Yadav S., Nigam R. Insights into pH regulatory mechanisms in mediating spermatozoa functions. Vet. World. 2018;11:852–858. doi: 10.14202/vetworld.2018.852-858. PubMed DOI PMC
Hyakutake T., Suzuki H., Yamamoto S. Effect of non-Newtonian fluid properties on bovine sperm motility. J. Biomech. 2015;48:2941–2947. doi: 10.1016/j.jbiomech.2015.08.005. PubMed DOI
Hyun N., Chandsawangbhuwana C., Zhu Q., Shi L.Z., Yang-Wong C., Berns M.W. Effects of viscosity on sperm motility studied with optical tweezers. J. Biomed. Opt. 2012;17:025005. doi: 10.1117/1.JBO.17.2.025005. PubMed DOI
Kirkman-Brown J.C., Smith D.J. Sperm motility: Is viscosity fundamental to progress? Mol. Hum. Reprod. 2011;17:539–544. doi: 10.1093/molehr/gar043. PubMed DOI
Yazdan Parast F., Gaikwad A.S., Prabhakar R., O’Bryan M.K., Nosrati R. The cooperative impact of flow and viscosity on sperm flagellar energetics in biomimetic environments. Cell Rep. Phys. Sci. 2023;4:101646. doi: 10.1016/j.xcrp.2023.101646. DOI
De Leeuw F.F., Colenbrander B., Verkleij A. The role membrane damage plays in cold shock and freezing injury. Reprod. Domest. Anim. 1990;1:95–104.
Robertson L., Watso P.F., Plummer J.M. Prior incubation reduces calcium uptake and membrane disruption in boar spermatozoa subjected to cold shock. Cryo Lett. 1988;9:286–293.
López Rodríguez A., Rijsselaere T., Vyt P., Van Soom A., Maes D. Effect of Dilution Temperature on Boar Semen Quality. Reprod. Domest. Anim. 2012;47:e63–e66. doi: 10.1111/j.1439-0531.2011.01938.x. PubMed DOI
Waberski D. Critical steps from semen collection to insemination; Proceedings of the Annual Meeting of the EU-AI-Vets; Ghent, Belgium. 9–12 September 2009; pp. 66–69.
Schulze M., Henning H., Rüdiger K., Wallner U., Waberski D. Temperature management during semen processing: Impact on boar sperm quality under laboratory and field conditions. Theriogenology. 2013;80:990–998. doi: 10.1016/j.theriogenology.2013.07.026. PubMed DOI
Henning H., Petrunkina A.M., Harrison R.A.P., Waberski D. Bivalent response to long-term storage in liquid-preserved boar semen: A flow cytometric analysis. Cytom. Part A. 2012;81A:576–587. doi: 10.1002/cyto.a.22058. PubMed DOI
Boryshpolets S., Pérez-Cerezales S., Eisenbach M. Behavioral mechanism of human sperm in thermotaxis: A role for hyperactivation. Hum. Reprod. 2015;30:884–892. doi: 10.1093/humrep/dev002. PubMed DOI
Hamano K., Kawanishi T., Mizuno A., Suzuki M., Takagi Y. Involvement of Transient Receptor Potential Vanilloid (TRPV) 4 in mouse sperm thermotaxis. J. Reprod. Dev. 2016;62:415–422. doi: 10.1262/jrd.2015-106. PubMed DOI PMC
Perrett J., Harris I.T., Maddock C., Farnworth M., Pyatt A.Z., Sumner R.N. Systematic Analysis of Breed, Methodological, and Geographical Impact on Equine Sperm Progressive Motility. Animals. 2021;11:3088. doi: 10.3390/ani11113088. PubMed DOI PMC
Saravia F., Núñez-Martínez I., Morán J.M., Soler C., Muriel A., Rodríguez-Martínez H., Peña F.J. Differences in boar sperm head shape and dimensions recorded by computer-assisted sperm morphometry are not related to chromatin integrity. Theriogenology. 2007;68:196–203. doi: 10.1016/j.theriogenology.2007.04.052. PubMed DOI
Dresdner R.D., Katz D.F. Relationships of Mammalian Sperm Motility and Morphology to Hydrodynamic Aspects of Cell Function. Biol. Reprod. 1981;25:920–930. doi: 10.1095/biolreprod25.5.920. PubMed DOI
Baqir S., Orabah A.B., Al-Zeheimi N., Al-Shakaili Y., Gartley C.J., Mastromonaco G. Computer assisted sperm analysis (CASA) in the critically endangered captive Arabian leopard (Panthera pardus nimr): A multivariate clustering analysis. J. Vet. Sci. Technol. 2018;9:1000526. doi: 10.4172/2157-7579.1000526. DOI
Nagy Á., Polichronopoulos T., Gáspárdy A., Solti L., Cseh S. Correlation between bull fertility and sperm cell velocity parameters generated by computer-assisted semen analysis. Acta Vet. Hung. 2015;63:370–381. doi: 10.1556/004.2015.035. PubMed DOI
Barquero V., Roldan E.R., Soler C., Vargas-Leitón B., Sevilla F., Camacho M., Valverde A. Relationship between fertility traits and kinematics in clusters of boar ejaculates. Biology. 2021;10:595. doi: 10.3390/biology10070595. PubMed DOI PMC
Savić R., Radojković D., Gogić M., Popovac M., Petrović A., Radović Č. Do Motility and Sperm Dose Count Affect In Vivo Fertility in Boar? Chem. Proc. 2022;10:10. doi: 10.3390/IOCAG2022-12213. DOI
de Araújo G.R., Jorge-Neto P.N., Salmão-Júnior J.A., da Silva M.C.C., Zanella R., Csermak-Júnior A.C., Fabio De Moraes F., Araujo T., Pizzutto C.S. Pharmacological semen collection in giant anteaters (Myrmecophaga tridactyla): A feasible option for captive and free-living animals. Theriogenol. Wild. 2023;2:100030. doi: 10.1016/j.therwi.2023.100030. DOI
Holt W.V., O’Brien J., Abaigar T. Applications and interpretation of computer-assisted sperm analyses and sperm sorting methods in assisted breeding and comparative research. Reprod. Fertil. Dev. 2007;19:709–718. doi: 10.1071/RD07037. PubMed DOI
Gacem S., Bompart D., Valverde A., Catalán J., Miró J., Soler C. Optimal frame rate when there were stallion sperm motility evaluations and determinations for kinematic variables using CASA-Mot analysis in different counting chambers. Anim. Reprod. Sci. 2020;223:106643. doi: 10.1016/j.anireprosci.2020.106643. PubMed DOI
Mortimer D., Serres C., Mortimer S.T., Jouannet P. Influence of image sampling frequency on the perceived movement characteristics of progressively motile human spermatozoa. Gamete Res. 1988;20:313–327. doi: 10.1002/mrd.1120200307. PubMed DOI
Mortimer S.T. Effect of image sampling frequency on established and smoothing-independent kinematic values of capacitating human spermatozoa. Hum. Reprod. 1999;14:997–1004. doi: 10.1093/humrep/14.4.997. PubMed DOI
Castellini C., Dal Bosco A., Ruggeri S., Collodel G. What is the best frame rate for evaluation of sperm motility in different species by computer-assisted sperm analysis? Fertil. Steril. 2011;96:24–27. doi: 10.1016/j.fertnstert.2011.04.096. PubMed DOI
Mortimer S.T. Practical application of computer-aided sperm analysis (CASA); Proceedings of the 9th International Symposium on Spermatology; Cape Town, South Africa. 6–11 October 2002; pp. 233–238.
Bompart D., Vázquez R.F., Gómez R., Valverde A., Roldán E.R.S., García-Molina A., Soler C. Combined effects of type and depth of counting chamber, and rate of image frame capture, on bull sperm motility and kinematics. Anim. Reprod. Sci. 2019;209:106169. doi: 10.1016/j.anireprosci.2019.106169. PubMed DOI
Barquero V., Sevilla F., Calderón-Calderón J., Madrigal-Valverde M., Camacho M., Cucho H., Valverde Abarca A. Optimal conditions for casa-mot analysis of boar semen: Effect of frame rate for different chambers and sperm count fields. Rev. Investig. Vet. Perú. 2021;32:e19832. doi: 10.15381/rivep.v32i5.19832. DOI
Boryshpolets S., Kowalski R.K., Dietrich G.J., Dzyuba B., Ciereszko A. Different computer-assisted sperm analysis (CASA) systems highly influence sperm motility parameters. Theriogenology. 2013;80:758–765. doi: 10.1016/j.theriogenology.2013.06.019. PubMed DOI
Yániz J.L., Soler C., Alquézar-Baeta C., Santolaria P. Toward an integrative and predictive sperm quality analysis in Bos taurus. Anim. Reprod. Sci. 2017;181:108–114. doi: 10.1016/j.anireprosci.2017.03.022. PubMed DOI
Peña A.I., Adán S., Quintela L.A., Becerra J.J., Herradón P.G. Relationship between motile sperm subpopulations identified in frozen-thawed dog semen samples and their ability to bind to the zona pellucida of canine oocytes. Reprod. Domest. Anim. 2018;53:14–22. doi: 10.1111/rda.13349. PubMed DOI
Zasiadczyk L., Fraser L., Kordan W., Wasilewska K. Individual and seasonal variations in the quality of fractionated boar ejaculates. Theriogenology. 2015;83:1287–1303. doi: 10.1016/j.theriogenology.2015.01.015. PubMed DOI
Fraser L., Strzeżek J., Filipowicz K., Mogielnicka-Brzozowska M., Zasiadczyk L. Age and seasonal-dependent variations in the biochemical composition of boar semen. Theriogenology. 2016;86:806–816. doi: 10.1016/j.theriogenology.2016.02.035. PubMed DOI
Pinart E., Puigmulé M. Boar Reproduction. Springer; Berlin/Heidelberg, Germany: 2013. Factors Affecting Boar Reproduction, Testis Function, and Sperm Quality; pp. 109–202. DOI
Fraser L., Filipowicz K., Kordan W. Seasonal effect on sperm motility characteristics and plasma membrane integrity in boar ejaculate fractions. Biosci. Proc. 2013;19:85–86. doi: 10.1530/biosciprocs.19.0012. DOI
Ibanescu I., Roșca P., Neculai-Văleanu S., Drugociu D. The influence of season on kinetic parameters of boar extended semen. Lucr. Stiintifice—Univ. De Stiinte Agric. Banat. Timis. Med. Vet. 2015;48:61–69.
Knecht D., Środoń S., Szulc K., Duziński K. The effect of photoperiod on selected parameters of boar semen. Livest. Sci. 2013;157:364–371. doi: 10.1016/j.livsci.2013.06.027. DOI
Knecht D., Jankowska-Mąkosa A., Duziński K. The effect of age, interval collection and season on selected semen parameters and prediction of AI boars productivity. Livest. Sci. 2017;201:13–21. doi: 10.1016/j.livsci.2017.04.013. DOI
Bravo J.A., Montanero J., Calero R., Roy T.J. Identification of sperm subpopulations with defined motility characteristics in ejaculates from Ile de France rams. Anim. Reprod. Sci. 2011;129:22–29. doi: 10.1016/j.anireprosci.2011.10.005. PubMed DOI
Peña A.I., Barrio M., Becerra J.J., Quintela L.A., Herradón P.G. Motile sperm subpopulations in frozen–thawed dog semen: Changes after incubation in capacitating conditions and relationship with sperm survival after osmotic stress. Anim. Reprod. Sci. 2012;133:214–223. doi: 10.1016/j.anireprosci.2012.06.016. PubMed DOI