Boar Sperm Motility Assessment Using Computer-Assisted Sperm Analysis: Current Practices, Limitations, and Methodological Challenges

. 2025 Jan 22 ; 15 (3) : . [epub] 20250122

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39943075

Grantová podpora
SV24-21-21230 Internal Grant Agency of the Czech University of Life Sciences in Prague
QK21010327 Ministry of Agriculture
GA22-31156S Czech Science Foundation
RVO:86652036 Czech Academy of Sciences, Institute of Biotechnology

Spermatozoa are highly specialized male cells that are characterized by a unique ability to move, which is a critical factor for successful fertilization. The relative simplicity of motility assessment, especially in livestock, has made it a widely used parameter for evaluating ejaculate quality or cryopreserved semen in the clinical field, and an advanced tool in reproductive physiology and toxicology research. Technological advances in image analysis and computational methods have substantially increased its accuracy through the use of computer-assisted sperm analysis (CASA) to minimize subjective bias in motility assessments. Nevertheless, this more objective method still presents some significant challenges, including variability in the sample preparation, imaging conditions, and analytical parameters. These issues contribute to inconsistency and impair the reproducibility and comparability of data between laboratories. The implementation of standardized protocols, combined with comprehensive training and rigorous evaluation, can serve to mitigate some of the emerging inconsistencies. In addition, the in vitro conditions under which CASA analyses are performed often differ significantly from the natural environment of the female reproductive tract in vivo. This review discusses the methodologies, critical issues, and limitations of sperm motility analyses using CASA, with a particular focus on the boar as an important agricultural and biomedical model species in which this system is widely used.

Zobrazit více v PubMed

Nowicka-Bauer K., Szymczak-Cendlak M. Structure and Function of Ion Channels Regulating Sperm Motility—An Overview. Int. J. Mol. Sci. 2021;22:3259. doi: 10.3390/ijms22063259. PubMed DOI PMC

Love C.C. Sperm Quality Assays: How Good Are They? The Horse Perspective. Anim. Reprod. Sci. 2018;194:63–70. doi: 10.1016/j.anireprosci.2018.04.077. PubMed DOI

Waberski D., Suarez S.S., Henning H. Assessment of Sperm Motility in Livestock: Perspectives Based on Sperm Swimming Conditions In Vivo. Anim. Reprod. Sci. 2022;246:106849. doi: 10.1016/j.anireprosci.2021.106849. PubMed DOI

Amann R.P., Waberski D. Computer-Assisted Sperm Analysis (CASA): Capabilities and Potential Developments. Theriogenology. 2014;81:5–17. doi: 10.1016/j.theriogenology.2013.09.004. PubMed DOI

van der Horst G. XIIIth International Symposium on Spermatology. Springer International Publishing; Cham, Switzerland: 2021. Processes and Data Management of Computer-Aided Sperm Analysis in Human and Animal Spermatozoa; pp. 199–210. DOI

Broekhuijse M.L., Soštarić E., Feitsma H., Gadella B.M. Additional Value of Computer Assisted Semen Analysis (CASA) Compared to Conventional Motility Assessments in Pig Artificial Insemination. Theriogenology. 2011;76:1473–1486.e1. doi: 10.1016/j.theriogenology.2011.05.040. PubMed DOI

Ehlers J., Behr M., Bollwein H., Beyerbach M., Waberski D. Standardization of Computer-Assisted Semen Analysis Using an E-Learning Application. Theriogenology. 2011;76:448–454. doi: 10.1016/j.theriogenology.2011.02.021. PubMed DOI

Agarwal A., Bragais F.M., Sabanegh E. Assessing Sperm Function. Urol. Clin. N. Am. 2008;35:157–171. doi: 10.1016/j.ucl.2008.01.012. PubMed DOI

Olson G.E., NagDas S.K., Winfrey V.P. The Epididymis: From Molecules to Clinical Practice. Springer; Boston, MA, USA: 2002. Structural Differentiation of Spermatozoa During Post-Testicular Maturation; pp. 371–387. DOI

Eddy E.M. Male Germ Cell Gene Expression. Recent. Prog. Horm. Res. 2002;57:103–128. doi: 10.1210/rp.57.1.103. PubMed DOI

Cooper T.G. The Epididymis, Sperm Maturation and Fertilisation. Springer; Berlin/Heidelberg, Germany: 1986. Maturation of Spermatozoa in the Epididymis; pp. 1–8. DOI

Dacheux J.-L., Dacheux F. New Insights into Epididymal Function in Relation to Sperm Maturation. Reproduction. 2014;147:R27–R42. doi: 10.1530/REP-13-0420. PubMed DOI

Pariset C.C., Feinberg J.M.F., Dacheux J.L., Weinman S.J. Changes in Calmodulin Level and cAMP-Dependent Protein Kinase Activity During Epididymal Maturation of Ram Spermatozoa. Reproduction. 1985;74:105–112. doi: 10.1530/jrf.0.0740105. PubMed DOI

Jaiswal B.S., Majumder G.C. Cyclic AMP Phosphodiesterase: A Regulator of Forward Motility Initiation During Epididymal Sperm Maturation. Biochem. Cell Biol. 1996;74:669–674. doi: 10.1139/o96-072. PubMed DOI

Baker M.A., Lewis B., Hetherington L., Aitken R.J. Development of the Signalling Pathways Associated with Sperm Capacitation During Epididymal Maturation. Mol. Reprod. Dev. 2003;64:446–457. doi: 10.1002/mrd.10255. PubMed DOI

Majumder G.C., Dey C.S., Haldar S., Barua M. Biochemical Parameters of Initiation and Regulation of Sperm Motility. Arch. Androl. 2009;24:287–303. doi: 10.3109/01485019008987585. PubMed DOI

Harayama H. Flagellar Hyperactivation of Bull and Boar Spermatozoa. Reprod. Med. Biol. 2018;17:442–448. doi: 10.1002/rmb2.12227. PubMed DOI PMC

Stival C., Ritagliati C., Xu X., Gervasi M.G., Luque G.M., Grapf C.B., Buffone M.G., Visconti P., Krapf D. Disruption of Protein Kinase A Localization Induces Acrosomal Exocytosis in Capacitated Mouse Sperm. J. Biol. Chem. 2018;293:9435–9447. doi: 10.1074/jbc.RA118.002286. PubMed DOI PMC

Vijayaraghavan S., Goueli S.A., Davey M.P., Carr D.W. Protein Kinase A-Anchoring Inhibitor Peptides Arrest Mammalian Sperm Motility. J. Biol. Chem. 1997;272:4747–4752. doi: 10.1074/jbc.272.8.4747. PubMed DOI

Pereira R., Sá R., Barros A., Sousa M. Major Regulatory Mechanisms Involved in Sperm Motility. Asian J. Androl. 2017;19:5–14. doi: 10.4103/1008-682x.167716. PubMed DOI PMC

Suarez S.S., Vincenti L., Ceglia M.W. Hyperactivated Motility Induced in Mouse Sperm by Calcium Ionophore A23187 Is Reversible. J. Exp. Zool. 1987;244:331–336. doi: 10.1002/jez.1402440218. PubMed DOI

Ho H.C., Suarez S.S. Hyperactivation of Mammalian Spermatozoa: Function and Regulation. Reproduction. 2001;122:519–526. doi: 10.1530/rep.0.1220519. PubMed DOI

Freitas M.J., Vijayaraghavan S., Fardilha M. Signaling Mechanisms in Mammalian Sperm Motility. Biol. Reprod. 2017;96:2–12. doi: 10.1095/biolreprod.116.144337. PubMed DOI

Dcunha R., Hussein R.S., Ananda H., Kumari S., Adiga S.K., Kannan N., Zhao Y., Kalthur G. Current Insights and Latest Updates in Sperm Motility and Associated Applications in Assisted Reproduction. Reprod. Sci. 2022;29:7–25. doi: 10.1007/s43032-020-00408-y. PubMed DOI PMC

Hamamah S., Gatti J.-L. Role of the Ionic Environment and Internal pH on Sperm Activity. Hum. Reprod. 1998;13:20–30. doi: 10.1093/humrep/13.suppl_4.20. PubMed DOI

Tash J.S., Bracho G.E. Identification of Phosphoproteins Coupled to Initiation of Motility in Live Epididymal Mouse Sperm. Biochem. Biophys. Res. Commun. 1998;251:557–563. doi: 10.1006/bbrc.1998.9516. PubMed DOI

Yanagimachi R., Noda Y.D. Ultrastructural Changes in the Hamster Sperm Head During Fertilization. J. Ultrastruct. Res. 1970;31:465–485. doi: 10.1016/S0022-5320(70)90163-2. PubMed DOI

Publicover S., Yanagimachi R. The Sperm Cell. 2nd ed. Cambridge University Press; Cambridge, UK: 2017. Regulation of Sperm Behaviour; pp. 126–142. DOI

Dey S., Brothag C., Vijayaraghavan S. Signaling Enzymes Required for Sperm Maturation and Fertilization in Mammals. Front. Cell Dev. Biol. 2019;7:341. doi: 10.3389/fcell.2019.00341. PubMed DOI PMC

Yanagimachi R. The Movement of Golden Hamster Spermatozoa Before and After Capacitation. Reproduction. 1970;23:193–196. doi: 10.1530/jrf.0.0230193. PubMed DOI

Suarez S. Hyperactivated Motility in Sperm. J. Androl. 1996;17:331–335. doi: 10.1002/j.1939-4640.1996.tb01797.x. PubMed DOI

Plant T.M., Zeleznik A.J. Knobil and Neill’s Physiology of Reproduction. 4th ed. Elsevier; Amsterdam, The Netherlands: 2015. DOI

Visconti P.E., Kopf G.S. Regulation of Protein Phosphorylation During Sperm Capacitation. Biol. Reprod. 1998;59:1–6. doi: 10.1095/biolreprod59.1.1. PubMed DOI

Suarez S., Redfern K., Raynor P., Martin F., Phillips D.M. Attachment of Boar Sperm to Mucosal Explants of Oviduct in Vitro: Possible Role in Formation of a Sperm Reservoir. Biol. Reprod. 1991;44:998–1004. doi: 10.1095/biolreprod44.6.998. PubMed DOI

Suarez S.S., Dai X. Hyperactivation Enhances Mouse Sperm Capacity for Penetrating Viscoelastic Media. Biol. Reprod. 1992;46:686–691. doi: 10.1095/biolreprod46.4.686. PubMed DOI

Suarez S.S., Varosi S.M., Dai X. Intracellular Calcium Increases With Hyperactivation in Intact, Moving Hamster Sperm and Oscillates With the Flagellar Beat Cycle. Proc. Natl. Acad. Sci. USA. 1993;90:4660–4664. doi: 10.1073/pnas.90.10.4660. PubMed DOI PMC

Mortimer S.T., Schevaert D., Swan M.A., Mortimer D. Quantitative Observations of Flagellar Motility of Capacitating Human Spermatozoa. Hum. Reprod. 1997;12:1006–1012. doi: 10.1093/humrep/12.5.1006. PubMed DOI

Suarez S.S., Ho H.-C. Hyperactivated Motility in Sperm. Reprod. Domest. Anim. 2003;38:119–124. doi: 10.1046/j.1439-0531.2003.00397.x. PubMed DOI

Fujinoki M., Takei G.L., Kon H. Non-genomic Regulation and Disruption of Spermatozoal In Vitro Hyperactivation by Oviductal Hormones. J. Physiol. Sci. 2016;66:207–212. doi: 10.1007/s12576-015-0419-y. PubMed DOI PMC

Fujinoki M., Takei G.L. γ-Aminobutyric Acid Suppresses Enhancement of Hamster Sperm Hyperactivation by 5-Hydroxytryptamine. J. Reprod. Dev. 2017;63:67–74. doi: 10.1262/jrd.2016-091. PubMed DOI PMC

Fujikura M., Fujinoki M. Progesterone and Estradiol Regulate Sperm Hyperactivation and In Vitro Fertilization Success in Mice. J. Reprod. Dev. 2024;70:96–103. doi: 10.1262/jrd.2023-080. PubMed DOI PMC

Calogero A.E., Hall J., Fishel S., Green S., Hunter A., D’Agata R. Effects of γ-Aminobutyric Acid on Human Sperm Motility and Hyperactivation. Mol. Hum. Reprod. 1996;2:733–738. doi: 10.1093/molehr/2.10.733. PubMed DOI

de las Heras M.A., Valcarcel A., Perez L.J. In Vitro Capacitating Effect of Gamma-Aminobutyric Acid in Ram Spermatozoa. Biol. Reprod. 1997;56:964–968. doi: 10.1095/biolreprod56.4.964. PubMed DOI

Ritta M.N., Calamera J.C., Bas D.E. Occurrence of GABA and GABA Receptors in Human Spermatozoa. Mol. Hum. Reprod. 1998;4:769–773. doi: 10.1093/molehr/4.8.769. PubMed DOI

Jin J.-Y., Chen W.-Y., Zhou C.X., Chen Z.-H., Yu-Ying Y., Ni Y., Chan H.C., Shi Q.-X. Activation of GABAA Receptor/Cl− Channel and Capacitation in Rat Spermatozoa: HCO3− and Cl− Are Essential. Syst. Biol. Reprod. Med. 2009;55:97–108. doi: 10.1080/19396360802626648. PubMed DOI

Kon H., Takei G.L., Fujinoki M., Shinoda M. Suppression of Progesterone-Enhanced Hyperactivation in Hamster Spermatozoa by γ-Aminobutyric Acid. J. Reprod. Dev. 2014;60:202–209. doi: 10.1262/jrd.2013-076. PubMed DOI PMC

Kurata S., Umezu K., Takamori H., Hiradate Y., Hara K., Tanemura K. Exogenous Gamma-Aminobutyric Acid Addition Enhances Porcine Sperm Acrosome Reaction. Anim. Sci. J. 2022;93:e13744. doi: 10.1111/asj.13744. PubMed DOI PMC

Kirichok Y., Navarro B., Clapham D.E. Whole-cell Patch-clamp Measurements of Spermatozoa Reveal an Alkaline-activated Ca2+ Channel. Nature. 2006;439:737–740. doi: 10.1038/nature04417. PubMed DOI

Carlson A.E., Quill T.A., Westenbroek R.E., Schuh S.M., Hill B., Babcock D.F. Identical Phenotypes of CatSper1 and CatSper2 Null Sperm. J. Biol. Chem. 2005;280:32238–32244. doi: 10.1074/jbc.M501430200. PubMed DOI

Costello S., Michelangeli F., Nash K., Lefievre L., Morris J., Machado-Oliveira G., Barratt C., Kirkman-Brown J., Publicover S. Ca2+-stores in Sperm: Their Identities and Functions. Reproduction. 2009;138:425–437. doi: 10.1530/REP-09-0134. PubMed DOI PMC

Yeste M. Recent Advances in Boar Sperm Cryopreservation: State of the Art and Current Perspectives. Reprod. Domest. Anim. 2015;50:71–79. doi: 10.1111/rda.12569. PubMed DOI

Chang H., Suarez S.S. Two Distinct Ca2+ Signaling Pathways Modulate Sperm Flagellar Beating Patterns in Mice. Biol. Reprod. 2011;85:296–305. doi: 10.1095/biolreprod.110.089789. PubMed DOI PMC

Kojima A., Matsushita Y., Ogura Y., Ishikawa S., Noda T., Murase T., Harayama H. Roles of Extracellular Ca2+ in the Occurrence of Full-type Hyperactivation in Boar Ejaculated Spermatozoa Pre-incubated to Induce cAMP-triggered Events. Andrology. 2015;3:321–331. doi: 10.1111/andr.12005. PubMed DOI

Mizuno Y., Isono A., Kojima A., Arai M.M., Noda T., Sakase M., Fukushima M., Harayama H. Distinct Segment-specific Functions of Calyculin A-sensitive Protein Phosphatases in the Regulation of cAMP-triggered Events in Ejaculated Bull Spermatozoa. Mol. Reprod. Dev. 2015;82:232–250. doi: 10.1002/mrd.22465. PubMed DOI

Otsuka N., Harayama H. Characterization of Extracellular Ca2+-dependent Full-type Hyperactivation in Ejaculated Boar Spermatozoa Pre-incubated With a cAMP Analog. Mol. Reprod. Dev. 2017;84:1203–1217. doi: 10.1002/mrd.22921. PubMed DOI

Chang H., Suarez S.S. Unexpected Flagellar Movement Patterns and Epithelial Binding Behavior of Mouse Sperm in the Oviduct. Biol. Reprod. 2012;86:1–8. doi: 10.1095/biolreprod.111.096578. PubMed DOI PMC

Suarez S.S. Control of Hyperactivation in Sperm. Hum. Reprod. Update. 2008;14:647–657. doi: 10.1093/humupd/dmn029. PubMed DOI

Visconti P.E. Sperm Bioenergetics in a Nutshell. Biol. Reprod. 2012;87:72. doi: 10.1095/biolreprod.112.104109. PubMed DOI PMC

Bailey J.L., Tardif S., Dubé C., Beaulieu M., Reyes-Moreno C., Lefièvre L., Leclerc P. Use of Phosphoproteomics to Study Tyrosine Kinase Activity in Capacitating Boar Sperm. Theriogenology. 2005;63:599–614. doi: 10.1016/j.theriogenology.2004.09.034. PubMed DOI

Yanagimachi R. Requirement of Extracellular Calcium Ions for Various Stages of Fertilization and Fertilization-related Phenomena in the Hamster. Gamete Res. 1982;5:323–344. doi: 10.1002/mrd.1120050404. DOI

Fraser L.R. Minimum and Maximum Extracellular Ca2+ Requirements During Mouse Sperm Capacitation and Fertilization In Vitro. Reproduction. 1987;81:77–89. doi: 10.1530/jrf.0.0810077. PubMed DOI

Mortimer S.T., De Jonge C.J. Encyclopedia of Reproduction. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2018. CASA—Computer-aided Sperm Analysis; pp. 59–63. DOI

Boyers S.P., Ravis R.O., Katz D.F. Automated Semen Analysis. Curr. Probl. Obstet. Gynecol. Fertil. 1989;12:165–200.

van der Horst G., Maree L., du Plessis S.S. Current Perspectives of CASA Applications in Diverse Mammalian Spermatozoa. Reprod. Fertil. Dev. 2018;30:875–888. doi: 10.1071/RD17468. PubMed DOI

Mortimer D. Handbook of Laboratory Diagnosis and Treatment of Infertility. CRC Press; Boca Raton, FL, USA: 1990. Objective Analysis of Sperm Motility and Kinematics; pp. 97–133. DOI

van der Horst G. Computer Aided Sperm Analysis (CASA) in Domestic Animals: Current Status, Three-Dimensional Tracking, and Flagellar Analysis. Anim. Reprod. Sci. 2020;220:106350. doi: 10.1016/j.anireprosci.2020.106350. PubMed DOI

Boe-Hansen G.B., Satake N. An Update on Boar Semen Assessments by Flow Cytometry and CASA. Theriogenology. 2019;137:93–103. doi: 10.1016/j.theriogenology.2019.05.043. PubMed DOI

Tanga B.M., Qamar A.Y., Raza S., Bang S., Fang X., Yoon K., Cho J. Semen Evaluation: Methodological Advancements in Sperm Quality-specific Fertility Assessment—A Review. Anim. Biosci. 2021;34:1253–1270. doi: 10.5713/ab.21.0072. PubMed DOI PMC

Mortimer S.T., van der Horst G., Mortimer D. The Future of Computer-aided Sperm Analysis. Asian J. Androl. 2015;17:545–553. doi: 10.4103/1008-682X.154312. PubMed DOI PMC

Soler C., Cooper T.G., Valverde A., Yániz J.L. Afterword to Sperm Morphometrics Today and Tomorrow Special Issue. Asian J. Androl. 2016;18:895–897. doi: 10.4103/1008-682X.188451. PubMed DOI PMC

Mortimer D., Gagnon C. Controls of Sperm Motility. 1st ed. CRC Press; Boca Raton, FL, USA: 2020. Semen Analysis and Sperm Washing Techniques; pp. 263–284.

Valverde A., Barquero V., Soler C. The Application of Computer-assisted Semen Analysis (CASA) Technology to Optimize Semen Evaluation: A Review. J. Anim. Feed. Sci. 2020;29:189–198. doi: 10.22358/jafs/127691/2020. DOI

Mortimer S.T. CASA—Practical Aspects. J. Androl. 2000;21:515–524. doi: 10.1002/j.1939-4640.2000.tb02116.x. PubMed DOI

Lu J.C., Huang Y.F., Lü N.Q. Computer-aided Sperm Analysis: Past, Present, and Future. Andrologia. 2014;46:329–338. doi: 10.1111/and.12093. PubMed DOI

Urbano L.F., Masson P., VerMilyea M., Kam M. Automatic Tracking and Motility Analysis of Human Sperm in Time-lapse Images. IEEE Trans. Med. Imaging. 2017;36:792–801. doi: 10.1109/TMI.2016.2630720. PubMed DOI

Hamilton Thorne, Inc. HT CASA II Animal Breeder Software Manual. Hamilton Thorne, Inc.; Beverly, MA, USA: 2020.

Srivastava N., Pande M. Protocols in Semen Biology (Comparing Assays) Springer; Singapore: 2017. Estimates of Sperm Motility; pp. 43–55. DOI

Kay V. Hyperactivated Motility of Human Spermatozoa: A Review of Physiological Function and Application in Assisted Reproduction. Hum. Reprod. Update. 1998;4:776–786. doi: 10.1093/humupd/4.6.776. PubMed DOI

Gallagher M.T., Cupples G., Ooi E.H., Kirkman-Brown J.C., Smith D.J. Rapid Sperm Capture: High-throughput Flagellar Waveform Analysis. Hum. Reprod. 2019;34:1173–1185. doi: 10.1093/humrep/dez056. PubMed DOI PMC

Martínez-Pastor F. What Is the Importance of Sperm Subpopulations? Anim. Reprod. Sci. 2022;246:106844. doi: 10.1016/j.anireprosci.2021.106844. PubMed DOI

Schmidt H., Kamp G. Induced Hyperactivity in Boar Spermatozoa and Its Evaluation by Computer-assisted Sperm Analysis. Reproduction. 2004;128:171–179. doi: 10.1530/rep.1.00153. PubMed DOI

Mbizvo M.T., Burkman J.L., Alexander N.J. Human Follicular Fluid Stimulates Hyperactivated Motility in Human Sperm. Fertil. Steril. 1990;54:708–712. doi: 10.1016/S0015-0282(16)53834-5. PubMed DOI

Mortimer S.T. A Critical Review of the Physiological Importance and Analysis of Sperm Movement in Mammals. Hum. Reprod. Update. 1997;3:403–439. doi: 10.1093/humupd/3.5.403. PubMed DOI

Mortimer S.T., Swan M.A., Mortimer D. Fractal Analysis of Capacitating Human Spermatozoa. Hum. Reprod. 1996;11:1049–1054. doi: 10.1093/oxfordjournals.humrep.a019295. PubMed DOI

Mortimer S.T., Maxwell W.M. Effect of Medium on the Kinematics of Frozen-thawed Ram Spermatozoa. Reproduction. 2004;127:285–291. doi: 10.1530/rep.1.00075. PubMed DOI

Mircu C., Cernescu H., Igna V., Knip R., Frunza I., Ardelean V., Bonca G.H., Otava G., Zarcula S., Korodi G., et al. Boar semen evaluation using CASA and its relation to fertility. Med. Vet. 2010;41:203–212.

Broekhuijse M.L.W.J., Šoštarić E., Feitsma H., Gadella B.M. Application of computer-assisted semen analysis to explain variations in pig fertility. J. Anim. Sci. 2012;90:779–789. doi: 10.2527/jas.2011-4311. PubMed DOI

Martin-Hidalgo D., Hurtado de Llera A., Yeste M., Gil M.C., Bragado M.J., Garcia-Marin L.J. Adenosine monophosphate-activated kinase, AMPK, is involved in the maintenance of the quality of extended boar semen during long-term storage. Theriogenology. 2013;80:285–294. doi: 10.1016/j.theriogenology.2013.02.015. PubMed DOI

Ramón M., Jiménez-Rabadán P., García-Álvarez O., Maroto-Morales A., Soler A.J., Fernández-Santos M.R., Pérez-Guzmán M.D., Garde J.J. Understanding sperm heterogeneity: Biological and practical implications. Reprod. Domest. Anim. 2014;49:30–36. doi: 10.1111/rda.12404. PubMed DOI

Amann R.P., Hammerstedt R.H. In vitro evaluation of sperm quality: An opinion. J. Androl. 1993;14:397–406. doi: 10.1002/j.1939-4640.1993.tb03247.x. PubMed DOI

Soler C., Contell J., Bori L., Sancho M., García-Molina A., Valverde A., Segarvall J. Sperm kinematic, head morphometric and kinetic-morphometric subpopulations in the blue fox (Alopex lagopus) Asian J. Androl. 2017;19:154–159. doi: 10.4103/1008-682X.188445. PubMed DOI PMC

Caldeira C., García-Molina A., Valverde A., Bompart D., Hassane M., Martin P., Soler C. Comparison of sperm motility subpopulation structure among wild anadromous and farmed male Atlantic salmon (Salmo salar) parr using a CASA system. Reprod. Fertil. Dev. 2018;30:897–906. doi: 10.1071/RD17466. PubMed DOI

Yániz J.L., Palacín I., Caycho K.S., Soler C., Silvestre M.A., Santolaria P. Determining the relationship between bull sperm kinematic subpopulations and fluorescence groups using an integrated sperm quality analysis technique. Reprod. Fertil. Dev. 2018;30:919–923. doi: 10.1071/RD17441. PubMed DOI

Martínez-Pastor F., Tizado E.J., Garde J.J., Anel L., de Paz P. Statistical Series: Opportunities and challenges of sperm motility subpopulation analysis. Theriogenology. 2011;75:783–795. doi: 10.1016/j.theriogenology.2010.11.034. PubMed DOI

Ibanescu I., Leiding C., Bollwein H. Cluster analysis reveals seasonal variation of sperm subpopulations in extended boar semen. J. Reprod. Dev. 2018;64:33–39. doi: 10.1262/jrd.2017-083. PubMed DOI PMC

Basioura A., Tsousis G., Boscos C., Lymberopoulos A., Tsakmakidis I. Method agreement between three different chambers for comparative boar semen computer-assisted sperm analysis. Reprod. Domest. Anim. 2019;54:41–45. doi: 10.1111/rda.13494. PubMed DOI

O’Meara C., Henrotte E., Kupisiewicz K., Latour C., Broekhuijse M., Camus A., Gavin-Plagne L., Sellem E. The effect of adjusting settings within a computer-assisted sperm analysis (CASA) system on bovine sperm motility and morphology results. Anim. Reprod. 2022;19:e20210077. doi: 10.1590/1984-3143-ar2021-0077. PubMed DOI PMC

Jorge-Neto P.N., Francisco F.d.M., Carneiro M.D.D., Santos S.R.B., Requena L.A., Ramos S.D., de Goés M.F., Valle R.F., Padilha F.L.A., Colbachini H., et al. Specific setup and methodology for computer-assisted sperm analysis (CASA) in evaluating elasmobranch sperm. Theriogenol. Wild. 2024;4:100091. doi: 10.1016/j.therwi.2024.100091. DOI

Camus A., Rouillon C., Gavin-Plagne L., Schmitt E. The Motility Ratio method as a novel approach to qualify semen assessment. Sci. Rep. 2024;14:27932. doi: 10.1038/s41598-024-79500-1. PubMed DOI PMC

Sloter E., Schmid T.E., Marchetti F., Eskenazi B., Nath J., Wyrobek A.J. Quantitative effects of male age on sperm motion. Hum. Reprod. 2006;21:2868–2875. doi: 10.1093/humrep/del250. PubMed DOI

Murphy E.M., Kelly A.K., O’Meara C., Eivers B., Lonergan P., Fair S. Influence of bull age, ejaculate number, and season of collection on semen production and sperm motility parameters in Holstein Friesian bulls in a commercial artificial insemination centre. J. Anim. Sci. 2018;96:2408–2418. doi: 10.1093/jas/sky130. PubMed DOI PMC

Hoflack G., Opsomer G., Rijsselaere T., Van Soom A., Maes D., De Kruif A., Duchateau L. Comparison of computer-assisted sperm motility analysis parameters in semen from Belgian Blue and Holstein–Friesian bulls. Reprod. Domest. Anim. 2007;42:153–161. doi: 10.1111/j.1439-0531.2006.00745.x. PubMed DOI

Tremoen N.H., Gaustad A.H., Andersen-Ranberg I., van Son M., Zeremichael T.T., Frydenlund K., Grindflek E., Våge D.I., Myromslien F.D. Relationship between sperm motility characteristics and ATP concentrations, and association with fertility in two different pig breeds. Anim. Reprod. Sci. 2018;193:226–234. doi: 10.1016/j.anireprosci.2018.04.075. PubMed DOI

Valverde A., Arnau S., García-Molina A., Bompart D., Campos M., Roldán E.R.S., Soler C. Dog sperm swimming parameters analysed by computer-assisted semen analysis of motility reveal major breed differences. Reprod. Domest. Anim. 2019;54:795–803. doi: 10.1111/rda.13420. PubMed DOI

Bompart D., García-Molina A., Valverde A., Caldeira C., Yániz J., de Murga M.N., Soler C. CASA-Mot technology: How results are affected by the frame rate and counting chamber. Reprod. Fertil. Dev. 2018;30:810–819. doi: 10.1071/RD17551. PubMed DOI

Valverde A., Areán H., Fernández A., Bompart D., García-Molina A., López-Viana J., Soler C. Combined effect of type and capture area of counting chamber and diluent on Holstein bull sperm kinematics. Andrologia. 2019;51:e13223. doi: 10.1111/and.13223. PubMed DOI

Coetzee K., Menkveld R. Validation of a new disposable counting chamber. Arch. Androl. 2001;47:153–156. doi: 10.1080/014850101316901361. PubMed DOI

Del Gallego R., Sadeghi S., Blasco E., Soler C., Yániz J.L., Silvestre M.A. Effect of chamber characteristics, loading and analysis time on motility and kinetic variables analysed with the CASA-mot system in goat sperm. Anim. Reprod. Sci. 2017;177:97–104. doi: 10.1016/j.anireprosci.2016.12.010. PubMed DOI

Dardmeh F., Heidari M., Alipour H. Comparison of commercially available chamber slides for computer-aided analysis of human sperm. Syst. Biol. Reprod. Med. 2021;67:168–175. doi: 10.1080/19396368.2020.1850907. PubMed DOI

Christensen P., Stryhn H., Hansen C. Discrepancies in the determination of sperm concentration using Bürker-Türk, Thoma and Makler counting chambers. Theriogenology. 2005;63:992–1003. doi: 10.1016/j.theriogenology.2004.05.026. PubMed DOI

Contri A., Valorz C., Faustin M., Wegher L., Carluccio A. Effect of semen preparation on CASA motility results in cryopreserved bull spermatozoa. Theriogenology. 2010;74:424–435. doi: 10.1016/j.theriogenology.2010.02.025. PubMed DOI

Palacín I., Vicente-Fiel S., Santolaria P., Yániz J.L. Standardization of CASA sperm motility assessment in the ram. Small Rumin. Res. 2013;112:128–135. doi: 10.1016/j.smallrumres.2012.12.014. DOI

Hoogewijs M.K., De Vliegher S.P., Govaere J.L., De Schauwer C., De Kruif A., Van Soom A. Influence of counting chamber type on CASA outcomes of equine semen analysis. Equine Vet. J. 2012;44:542–549. doi: 10.1111/j.2042-3306.2011.00523.x. PubMed DOI

Lenz R.W., Kjelland M.E., VonderHaar K., Swannack T.M., Moreno J.F. A comparison of bovine seminal quality assessments using different viewing chambers with a computer-assisted semen analyzer. J. Anim. Sci. 2011;89:383–388. doi: 10.2527/jas.2010-3056. PubMed DOI

Gączarzewicz D. Influence of chamber type integrated with computer-assisted semen analysis (CASA) system on the results of boar semen evaluation. Pol. J. Vet. Sci. 2015;18:817–824. doi: 10.1515/pjvs-2015-0106. PubMed DOI

Gloria A., Carlucci A., Contri A., Wegher L., Valorz C., Robbe D. The effect of the chamber on kinetic results in cryopreserved bull spermatozoa. Andrology. 2013;1:879–885. doi: 10.1111/j.2047-2927.2013.00121.x. PubMed DOI

Lannou D.L., Griveau J.F., Pichon J.P.L., Quero J.C. Effects of chamber depth on the motion pattern of human spermatozoa in semen or in capacitating medium. Hum. Reprod. 1992;7:1417–1421. doi: 10.1093/oxfordjournals.humrep.a137585. PubMed DOI

Soler C., Picazo-Bueno J.Á., Micó V., Valverde A., Bompart D., Blasco F.J., Álvarez J.G., García-Molina A. Effect of counting chamber depth on the accuracy of lensless microscopy for the assessment of boar sperm motility. Reprod. Fertil. Dev. 2018;30:924–934. doi: 10.1071/RD17467. PubMed DOI

Su T.-W., Xue L., Ozcan A. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc. Natl. Acad. Sci. USA. 2012;109:16018–16022. doi: 10.1073/pnas.1212506109. PubMed DOI PMC

Su T.-W., Choi I., Feng J., Huang K., McLeod E., Ozcan A. Sperm Trajectories Form Chiral Ribbons. Sci. Rep. 2013;3:1664. doi: 10.1038/srep01664. PubMed DOI PMC

Merola F., Miccio L., Memmolo P., Di Caprio G., Galli A., Puglisi R., Balduzzi D., Coppola G., Netti P., Ferraro P. Digital holography as a method for 3D imaging and estimating the biovolume of motile cells. Lab. Chip. 2013;13:4512–4516. doi: 10.1039/c3lc50515d. PubMed DOI

Memmolo P., Miccio L., Paturzo M., Caprio G.D., Coppola G., Netti P.A., Ferraro P. Recent advances in holographic 3D particle tracking. Adv. Opt. Photon. 2015;7:713–755. doi: 10.1364/AOP.7.000713. DOI

Rijsselaere T., Van Soom A., Maes D., de Kruif A. Effect of technical settings on canine semen motility parameters measured by the Hamilton-Thorne analyzer. Theriogenology. 2003;60:1553–1568. doi: 10.1016/S0093-691X(03)00171-7. PubMed DOI

Kuster C. Sperm concentration determination between hemacytometric and CASA systems: Why they can be different. Theriogenology. 2005;64:614–617. doi: 10.1016/j.theriogenology.2005.05.047. PubMed DOI

Tomlinson M.J., Pooley K., Simpson T., Newton T., Hopkisson J., Jayaprakasan K., Jayaprakasan R., Naeem A., Pridmore T. Validation of a novel computer-assisted sperm analysis (CASA) system using multitarget-tracking algorithms. Fertil. Steril. 2010;93:1911–1920. doi: 10.1016/j.fertnstert.2008.12.064. PubMed DOI

Douglas-Hamilton D.H., Smith N.G., Kuster C.E., Vermeiden J.P.W., Althouse G.C. Capillary-loaded particle fluid dynamics: Effect on estimation of sperm concentration. J. Androl. 2005;26:115–122. doi: 10.1002/j.1939-4640.2005.tb02880.x. PubMed DOI

Ratnawati A., Luthfi M. Comparative study of sperms motility analysis with CASA by using leja and microscope slide. J. Reprod. Biol. 2020;12:123–130. doi: 10.21776/ub.jiip.2020.030.02.03. DOI

Robinson J.A., Smith K.L., Doe J.B. Sperm Motility Assessment Using Computer-Assisted Semen Analysis (CASA): A Comparison of Standard Microscope Slides and Coverslips and the 20 µm MicroCell™. J. Reprod. Stem Cell Biotechnol. 2018;7:1–8.

Peng N., Zou X., Li L. Comparison of different counting chambers using a computer-assisted semen analyzer. Syst. Biol. Reprod. Med. 2015;61:307–313. doi: 10.3109/19396368.2015.1063175. PubMed DOI

Nöthling J.O., Dos Santos I.P. Which fields under a coverslip should one assess to estimate sperm motility? Theriogenology. 2012;77:1686–1697. doi: 10.1016/j.theriogenology.2011.12.014. PubMed DOI

Sevilla F., Murillo L., Araya-Zúñiga I., Silvestre M.A., Saborío-Montero A., Vargas-Leitón B., Valverde A. Effect of age, season, breed composition, and sperm counting chamber on boar semen quality in tropics. Preprints. 2024:2024081546. doi: 10.20944/preprints202408.1546.v1. DOI

Verstegen J., Iguer-Ouada M., Onclin K. Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology. 2002;57:149–179. doi: 10.1016/S0093-691X(01)00664-1. PubMed DOI

Gómez-Fernández J., Gómez-Izquierdo E., Tomás C., Mocé E., de Mercado E. Effect of different monosaccharides and disaccharides on boar sperm quality after cryopreservation. Anim. Reprod. Sci. 2012;133:109–116. doi: 10.1016/j.anireprosci.2012.06.010. PubMed DOI

Spiropoulos J. Computerized Semen Analysis (CASA): Effect of semen concentration and chamber depth on measurements. Arch. Androl. 2009;46:37–42. doi: 10.1080/01485010117848. PubMed DOI

Hayden S.S., Blanchard T.L., Brinsko S.P., Varner D.D., Hinrichs K., Love C.C. The “dilution effect” in stallion sperm. Theriogenology. 2015;83:772–777. doi: 10.1016/j.theriogenology.2014.11.012. PubMed DOI

Quirino M., Pereira V.N., Tamanini M.d.S.C., Ulguim R.d.R., Schulze M., Mellagi A.P.G., Bortolozzo F.P. Sperm concentration of boar semen doses and sperm quality: Novel perspectives based on the extender type and sperm resilience. Anim. Reprod. Sci. 2023;255:107293. doi: 10.1016/j.anireprosci.2023.107293. PubMed DOI

Henning H., Franz J., Batz-Schott J., Le Thi X., Waberski D. Assessment of Chilling Injury in Boar Spermatozoa by Kinematic Patterns and Competitive Sperm-Oviduct Binding In Vitro. Animals. 2022;12:712. doi: 10.3390/ani12060712. PubMed DOI PMC

Michos I., Tsantarliotou M., Boscos C.M., Tsousis G., Basioura A., Tzika E.D., Tassis P.D., Lymberopoulos A.G., Tsakmakidis I.A. Effect of Boar Sperm Proteins and Quality Changes on Field Fertility. Animals. 2021;11:1813. doi: 10.3390/ani11061813. PubMed DOI PMC

Parrilla I., del Olmo D., Sijses L., Martinez-Alborcia M.J., Cuello C., Vazquez J.M., Martinez E.A., Roca J. Differences in the ability of spermatozoa from individual boar ejaculates to withstand different semen-processing techniques. Anim. Reprod. Sci. 2012;132:66–73. doi: 10.1016/j.anireprosci.2012.04.003. PubMed DOI

Qu X., Han Y., Chen X., Lv Y., Zhang Y., Cao L., Zhang J., Jin Y. Inhibition of 26S proteasome enhances AKAP3-mediated cAMP-PKA signaling during boar sperm capacitation. Anim. Reprod. Sci. 2022;247:107079. doi: 10.1016/j.anireprosci.2022.107079. PubMed DOI

Hackerova L., Klusackova B., Zigo M., Zelenkova N., Havlikova K., Krejcirova R., Sedikova M., Sutovsky P., Komrskova K., Postlerova P., et al. Modulatory effect of MG-132 proteasomal inhibition on boar sperm motility during in vitro capacitation. Front. Vet. Sci. 2023;10:1116891. doi: 10.3389/fvets.2023.1116891. PubMed DOI PMC

Melanda C.A.A., de Almeida A.B.M., Hidalgo M.M.T., Souza A.K., Trautwein L.G.C., Neta J.H., dos Santos R., Dearo A.C.d.O., Martins M.I.M. Sperm filtration as an alternative technique for seminal plasma separation in boars. Semin. Cienc. Agrar. 2021;42:2439–2452. doi: 10.5433/1679-0359.2021v42n4p2439. DOI

Carvajal G., Cuello C., Ruiz M., Vázquez J.M., Martínez E.A., Roca J. Effects of Centrifugation Before Freezing on Boar Sperm Cryosurvival. J. Androl. 2004;25:389–396. doi: 10.1002/j.1939-4640.2004.tb02805.x. PubMed DOI

Bury O., McRae V., Len J., Plush K., Kirkwood R.N. Effects of centrifugation and removal of seminal plasma on motility of fresh boar sperm. Thai J. Vet. Med. 2017;47:557–562. doi: 10.56808/2985-1130.2870. DOI

Alvarez J.G., Lasso J.L., Blasco L., Nuñez R.C., Heyner S., Caballero P.P., Storey B.T. Centrifugation of human spermatozoa induces sublethal damage; separation of human spermatozoa from seminal plasma by a dextran swim-up procedure without centrifugation extends their motile lifetime. Hum. Reprod. 1993;8:1087–1092. doi: 10.1093/oxfordjournals.humrep.a138198. PubMed DOI

Dirican E.K., Özgün O.D., Akarsu S., Akın K.O., Ercan Ö., Uğurlu M., Çamsarı Ç., Kanyılmaz O., Kaya A., Ünsal A. Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J. Assist. Reprod. Genet. 2008;25:375–381. doi: 10.1007/s10815-008-9250-1. PubMed DOI PMC

Iwasaki A., Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil. Steril. 1992;57:409–416. doi: 10.1016/S0015-0282(16)54855-9. PubMed DOI

Shekarriz M., Thomas A.J., Agarwal A. Effects of Time and Sperm Concentration on Reactive Oxygen Species Formation in Human Semen. Arch. Androl. 2009;34:69–75. doi: 10.3109/01485019508987833. PubMed DOI

Neila-Montero M., Riesco M.F., Alvarez M., Montes-Garrido R., Boixo J.C., de Paz P., Anel-Lopez L., Anel L. Centrifugal force assessment in ram sperm: Identifying species-specific impact. Acta Vet. Scand. 2021;63:42. doi: 10.1186/s13028-021-00609-8. PubMed DOI PMC

Salam L.M., Rahim A.I., Al-Kawaz U. Which is matter in centrifugation based Reactive Oxygen Species (ROS) production? force or time? Eurasia. J. Biosci. 2020;14:6405–6408.

Henkel R.R., Schill W.-B. Sperm preparation for ART. Reprod. Biol. Endocrinol. 2003;1:108. doi: 10.1186/1477-7827-1-108. PubMed DOI PMC

Rodriguez-Martinez H., Larsson B., Pertoft H. Evaluation of sperm damage and techniques for sperm clean-up. Reprod. Fertil. Dev. 1997;9:297–308. doi: 10.1071/R96081. PubMed DOI

Morrell J.M. Update on Semen Technologies for Animal Breeding. Reprod. Domest. Anim. 2006;41:63–67. doi: 10.1111/j.1439-0531.2006.00621.x. PubMed DOI

Godja G., Marc S., Horia C., Dobře M., Ardelean V., Otava G., Tulcan C., Patras I., Hutu I. Comparative boar and bull semen evaluation after percoll treatment. Med. Vet. 2016;59:167–173. doi: 10.13140/RG.2.2.15444.76168. DOI

Serrano-Albal M., Aquilina M.C., Kiazim L.G., Zak L.J., Griffin D.K., Ellis P.J. Effect of Two Different Sperm Selection Methods on Boar Sperm Parameters and In Vitro Fertilisation Outcomes. Animals. 2024;14:2544. doi: 10.3390/ani14172544. PubMed DOI PMC

Noguchi M., Yoshioka K., Hikono H., Iwagami G., Suzuki C., Kikuchi K. Centrifugation on Percoll density gradient enhances motility, membrane integrity and in vitro fertilizing ability of frozen–thawed boar sperm. Zygote. 2015;23:68–75. doi: 10.1017/S0967199413000208. PubMed DOI

Oshio S., Kaneko S., Iizuka R., Mohri H. Effects of Gradient Centrifugation on Human Sperm. Arch. Androl. 2009;19:85–93. doi: 10.3109/01485018708986804. PubMed DOI

Agarwal A., Sharma R., Beydola T. Sperm Preparation and Selection Techniques. In: Ashok A., Botros R., Nabil A., Sabanegh E. Jr., editors. Medical and Surgical Management of Male Infertility. 1st ed. Jaypee Brothers Medical Publishers; New Delhi, India: 2014. p. 244. DOI

Takeshima T., Yumura Y., Kuroda S., Kawahara T., Uemura H., Iwasaki A. Effect of density gradient centrifugation on reactive oxygen species in human semen. Syst. Biol. Reprod. Med. 2017;63:192–198. doi: 10.1080/19396368.2017.1294214. PubMed DOI

Malvezzi H., Sharma R., Agarwal A., Abuzenadah A.M., Abu-Elmagd M. Sperm quality after density gradient centrifugation with three commercially available media: A controlled trial. Reprod. Biol. Endocrinol. 2014;12:121. doi: 10.1186/1477-7827-12-121. PubMed DOI PMC

Berger T., Parker K. Modification of the zona-free hamster ova bioassay of boar sperm fertility and correlation with in vivo fertility. Gamete Res. 1989;22:385–397. doi: 10.1002/mrd.1120220405. PubMed DOI

Grant S.A., Long S.E., Parkinson T.J. Fertilizability and structural properties of boar spermatozoa prepared by Percoll gradient centrifugation. Reproduction. 1994;100:477–483. doi: 10.1530/jrf.0.1000477. PubMed DOI

Waberski D., Magnus F., Ardón F., Petrunkina A.M., Weitze K.F., Töpfer-Petersen E. Binding of boar spermatozoa to oviductal epithelium in vitro in relation to sperm morphology and storage time. Reproduction. 2006;131:311–318. doi: 10.1530/rep.1.00814. PubMed DOI

Horan R., Powell R., McQuaid S., Gannon F., Houghton J.A. Association of Foreign DNA with Porcine Spermatozoa. Arch. Androl. 2009;26:83–92. doi: 10.3109/01485019108987631. PubMed DOI

Matás C., Vieira L., García-Vázquez F.A., Avilés-López K., López-Úbeda R., Carvajal J.A., Gadea J. Effects of centrifugation through three different discontinuous Percoll gradients on boar sperm function. Anim. Reprod. Sci. 2011;127:62–72. doi: 10.1016/j.anireprosci.2011.06.009. PubMed DOI

Aitken R.J., Clarkson J.S. Significance of Reactive Oxygen Species and Antioxidants in Defining the Efficacy of Sperm Preparation Techniques. J. Androl. 1988;9:367–376. doi: 10.1002/j.1939-4640.1988.tb01067.x. PubMed DOI

Nosrati R., Graham P.J., Zhang B., Riordon J., Lagunov A., Hannam T.G., Escobedo C., Jarvi K., Sinton D. Microfluidics for sperm analysis and selection. Nat. Rev. Urol. 2017;14:707–730. doi: 10.1038/nrurol.2017.175. PubMed DOI

Harrison R.A.P., Dott H.M., Foster G.C. Effect of ionic strength, serum albumin and other macromolecules on the maintenance of motility and the surface of mammalian spermatozoa in a simple medium. Reproduction. 1978;52:65–73. doi: 10.1530/jrf.0.0520065. PubMed DOI

Estienne M.J., Harper A.F., Day J.L. Characteristics of sperm motility in boar semen diluted in different extenders and stored for seven days at 18 degrees C. Reprod. Biol. 2007;7:221–231. PubMed

Dziekońska A., Świąder K., Koziorowska-Gilun M., Mietelska K., Zasiadczyk Ł., Kordan W. Effect of boar ejaculate fraction, extender type and time of storage on quality of spermatozoa. Pol. J. Vet. Sci. 2017;20:77–84. doi: 10.1515/pjvs-2017-0011. PubMed DOI

Chaves B.R., Pavaneli A.P.P., Blanco-Prieto O., Pinart E., Bonet S., Zangeronimo M.G., Rodríguez-Gil J.E., Yeste M. Exogenous Albumin Is Crucial for Pig Sperm to Elicit In Vitro Capacitation Whereas Bicarbonate Only Modulates Its Efficiency. Biology. 2021;10:1105. doi: 10.3390/biology10111105. PubMed DOI PMC

Signorelli J., Diaz E.S., Morales P. Kinases, phosphatases and proteases during sperm capacitation. Cell. Tissue. Res. 2012;349:765–782. doi: 10.1007/s00441-012-1370-3. PubMed DOI

Lacalle E., Consuegra C., Martínez C.A., Hidalgo M., Dorado J., Martínez-Pastor F., Álvarez-Rodríguez M., Rodríguez-Martínez H. Bicarbonate-Triggered In Vitro Capacitation of Boar Spermatozoa Conveys an Increased Relative Abundance of the Canonical Transient Receptor Potential Cation (TRPC) Channels 3, 4, 6 and 7 and of CatSper-γ Subunit mRNA Transcripts. Animals. 2022;12:1012. doi: 10.3390/ani12081012. PubMed DOI PMC

Uysal O., Bucak M.N. Effects of Oxidized Glutathione, Bovine Serum Albumin, Cysteine and Lycopene on the Quality of Frozen-Thawed Ram Semen. Acta Vet. Brno. 2007;76:383–390. doi: 10.2754/avb200776030383. DOI

Zhang X.-G., Yan G.-J., Hong J.-Y., Su Z.-Z., Yang G.-S., Li Q.-W., Hu J.-H. Effects of Bovine Serum Albumin on Boar Sperm Quality During Liquid Storage at 17 °C. Reprod. Domest. Anim. 2015;50:263–269. doi: 10.1111/rda.12481. PubMed DOI

Waberski D., Weitze K.F., Rath D., Sallmann H.P. Wirkung von bovinem Serumalbumin und Zwitterionenpuffer auf flüssigkonservierten Ebersamen. Reprod. Domest. Anim. 1989;24:128–133. doi: 10.1111/j.1439-0531.1989.tb00430.x. DOI

Fu J., Li Y., Wang L., Zhen L., Yang Q., Li P., Li X. Bovine serum albumin and skim-milk improve boar sperm motility by enhancing energy metabolism and protein modifications during liquid storage at 17 °C. Theriogenology. 2017;102:87–97. doi: 10.1016/j.theriogenology.2017.07.020. PubMed DOI

Dudkiewicz S., Peris-Frau P., Nieto-Cristóbal H., Santiago-Moreno J., de Mercado E., Álvarez-Rodríguez M. Bicarbonate and BSA increase the capacitation pattern and acrosomal exocytosis in boar sperm after 120 min of incubation. Reprod. Domest. Anim. 2024;59:e14505. doi: 10.1111/rda.14505. PubMed DOI

Gadella B.M., Tsai P., Boerke A., Brewis I.A. Sperm head membrane reorganisation during capacitation. Int. J. Dev. Biol. 2008;52:473–480. doi: 10.1387/ijdb.082583bg. PubMed DOI

Sutovsky P., Kerns K., Zigo M., Zuidema D. Boar semen improvement through sperm capacitation management, with emphasis on zinc ion homeostasis. Theriogenology. 2019;137:50–55. doi: 10.1016/j.theriogenology.2019.05.037. PubMed DOI

Ramió-Lluch L., Fernández-Novell J.M., Peña A., Colás C., Cebrián-Pérez J.A., Muiño-Blanco T., Ramírez A., Concha I.I., Rigau T., Rodríguez-Gil J.E. ‘In Vitro’ Capacitation and Acrosome Reaction are Concomitant with Specific Changes in Mitochondrial Activity in Boar Sperm: Evidence for a Nucleated Mitochondrial Activation and for the Existence of a Capacitation-Sensitive Subpopulational Structure. Reprod. Domest. Anim. 2011;46:664–673. doi: 10.1111/j.1439-0531.2010.01725.x. PubMed DOI

Wennemuth G., Carlson A.E., Harper A.J., Babcock D.F. Bicarbonate actions on flagellar and Ca2+-channel responses: Initial events in sperm activation. Development. 2003;130:1317–1326. doi: 10.1242/dev.00353. PubMed DOI

Tajima Y., Okamura N., Sugita Y. The activating effects of bicarbonate on sperm motility and respiration at ejaculation. Biochim. Biophys. Acta Gen. Subj. 1987;924:519–529. doi: 10.1016/0304-4165(87)90168-1. PubMed DOI

Holt W.V., Satake N. Making the most of sperm activation responses: Experiments with boar spermatozoa and bicarbonate. Reprod. Fertil. Dev. 2018;30:842–849. doi: 10.1071/RD17476. PubMed DOI

Holt W.V., Harrison R.A.P. Bicarbonate Stimulation of Boar Sperm Motility via a Protein Kinase A—Dependent Pathway: Between-Cell and Between-Ejaculate Differences Are Not Due to Deficiencies in Protein Kinase A Activation. J. Androl. 2002;23:557–565. doi: 10.1002/j.1939-4640.2002.tb02279.x. PubMed DOI

Soriano-Úbeda C., Romero-Aguirregomezcorta J., Matás C., Visconti P.E., García-Vázquez F.A. Manipulation of bicarbonate concentration in sperm capacitation media improves in vitro fertilisation output in porcine species. J. Anim. Sci. Biotechnol. 2019;10:19. doi: 10.1186/s40104-019-0324-y. PubMed DOI PMC

Rocco M., Betarelli R., Placci A., Fernandey-Novell J.M., Spinaci A., Rigau S., Bonet S., Castillo-Martin M., Yeste M., Rodrigey-Gil J.E. Melatonin affects the motility and adhesiveness of in vitro capacitated boar spermatozoa via a mechanism that does not depend on intracellular ROS levels. Andrology. 2018;6:720–736. doi: 10.1111/andr.12504. PubMed DOI

Teijeiro J.M., Marini P.E., Bragado M.J., Garcia-Marin L.J. Protein kinase C activity in boar sperm. Andrology. 2017;5:381–391. doi: 10.1111/andr.12312. PubMed DOI

Harayama H., Miyake M., Shidara O., Iwamoto E., Kato S. Effects of calcium and bicarbonate on head-to-head agglutination in ejaculated boar spermatozoa. Reprod. Fertil. Dev. 1998;10:445–450. doi: 10.1071/RD98124. PubMed DOI

Finkelstein M., Etkovitz N., Breitbart H. Ca2+ signaling in mammalian spermatozoa. Mol. Cell. Endocrinol. 2020;516:110953. doi: 10.1016/j.mce.2020.110953. PubMed DOI

Hwang J.Y. Analysis of Ca2+-mediated sperm motility to evaluate the functional normality of the sperm-specific Ca2+ channel, CatSper. Front. Cell Dev. Biol. 2024;12:1284988. doi: 10.3389/fcell.2024.1284988. PubMed DOI PMC

Li X., Wang L., Li Y., Zhao N., Zhen L., Fu J., Yang Q. Calcium regulates motility and protein phosphorylation by changing cAMP and ATP concentrations in boar sperm in vitro. Anim. Reprod. Sci. 2016;172:39–51. doi: 10.1016/j.anireprosci.2016.07.001. PubMed DOI

Tourmente M., Villar-Moya P., Rial E., Roldan E.R.S. Differences in ATP Generation Via Glycolysis and Oxidative Phosphorylation and Relationships with Sperm Motility in Mouse Species. J. Biol. Chem. 2015;290:20613–20626. doi: 10.1074/jbc.M115.664813. PubMed DOI PMC

Takei G.L., Miyashiro D., Mukai C., Okuno M. Glycolysis plays an important role in energy transfer from the base to the distal end of the flagellum in mouse sperm. J. Exp. Biol. 2014;217:1876–1886. doi: 10.1242/jeb.090985. PubMed DOI

Rodríguez-Gil J.E., Bonet S. Current knowledge on boar sperm metabolism: Comparison with other mammalian species. Theriogenology. 2016;85:4–11. doi: 10.1016/j.theriogenology.2015.05.005. PubMed DOI

Marin S., Chiang K., Bassilian S., Lee W.-N.P., Boros L.G., Fernández-Novell J.M., Centelles J.J., Medrano A., Rodriguez-Gil J.E., Cascante M. Metabolic strategy of boar spermatozoa revealed by a metabolomic characterization. FEBS Lett. 2003;554:342–346. doi: 10.1016/S0014-5793(03)01185-2. PubMed DOI

Prieto O.B., Algieri C., Spinaci M., Trombetti F., Nesci S., Bucci D. Cell bioenergetics and ATP production of boar spermatozoa. Theriogenology. 2023;210:162–168. doi: 10.1016/j.theriogenology.2023.07.018. PubMed DOI

Dziekońska A., Kinder M., Fraser L., Strzeżek J., Kordan W. Metabolic activity of boar semen stored in different extenders supplemented with ostrich egg yolk lipoproteins. J. Vet. Res. 2017;61:127–133. doi: 10.1515/jvetres-2017-0016. PubMed DOI PMC

Medrano A., García-Gil N., Ramió L., Rivera M.M., Fernández-Novell J.M., Ramírez A., Peña A., Briz M.D., Pinart E., Concha I.I., et al. Hexose-specificity of hexokinase and ADP-dependence of pyruvate kinase play important roles in the control of monosaccharide utilization in freshly diluted boar spermatozoa. Mol. Rep. Dev. 2006;73:1179–1194. doi: 10.1002/mrd.20480. PubMed DOI

Singh A.K., Kumar A., Bisla A. Computer-assisted sperm analysis (CASA) in veterinary science: A review. Indian. J. Anim. Sci. 2021;91:419–429. doi: 10.56093/ijans.v91i6.115435. DOI

Vincent P., Underwood S.L., Dolbec C., Bouchard N., Kroetsch T., Blondin P. Bovine semen quality control in artificial insemination centres. Anim. Rep. 2012;9:153–165. doi: 10.1002/9781118833971.ch74. DOI

González-Abreu D., García-Martínez S., Fernández-Espín V., Romar R., Gadea J. Incubation of boar spermatozoa in viscous media by addition of methylcellulose improves sperm quality and penetration rates during in vitro fertilization. Theriogenology. 2017;92:14–23. doi: 10.1016/j.theriogenology.2017.01.016. PubMed DOI

Contri A., Gloria A., Robbe D., Valorz C., Wegher L., Carluccio A. Kinematic study on the effect of pH on bull sperm function. Anim. Reprod. Sci. 2013;136:252–259. doi: 10.1016/j.anireprosci.2012.11.008. PubMed DOI

Cornwall G.A. New insights into epididymal biology and function. Hum. Reprod. Update. 2008;15:213–227. doi: 10.1093/humupd/dmn055. PubMed DOI PMC

Rodriguez-Martinez H., Ekstedt E., Einarsson S. Acidification of epididymal fluid in the boar. Int. J. Androl. 1990;13:238–243. doi: 10.1111/j.1365-2605.1990.tb00982.x. PubMed DOI

James E.R., Carrell D.T., Aston K.I., Jenkins T.G., Yeste M., Salas-Huetos A. The Role of the Epididymis and the Contribution of Epididymosomes to Mammalian Reproduction. Int. J. Mol. Sci. 2020;21:5377. doi: 10.3390/ijms21155377. PubMed DOI PMC

Vyt P., Maes D., Dejonckheere E., Castryck F., Van Soom A. Comparative Study on Five Different Commercial Extenders for Boar Semen. Reprod. Domest. Anim. 2004;39:8–12. doi: 10.1046/j.1439-0531.2003.00468.x. PubMed DOI

Yeste M. State-of-the-art of boar sperm preservation in liquid and frozen state. Anim. Reprod. 2017;14:69–81. doi: 10.21451/1984-3143-AR895. DOI

Frunză I., Cernescu H., Korodi K. Physical and chemical parameters of boar sperm. Lucr. Stiinţ., Ser. Med. Vet. 2008;41:634–640.

Nichol R., Hunter R.H., Cooke G.M. Oviduct fluid pH in intact and unilaterally ovariectomized pigs. Can. J. Physiol. Pharmacol. 1997;75:1069–1074. doi: 10.1139/y97-115. PubMed DOI

Rivas C.U., Ayala M.E., Aragón A. Effect of various pH levels on the sperm kinematic parameters of boars. S. Afr. J. Anim. Sci. 2022;52:693–704. doi: 10.4314/sajas.v52i5.13. DOI

Gatti J.-L., Chevrier C., Paquignon M., Dacheux J.-L. External ionic conditions, internal pH and motility of ram and boar spermatozoa. Reproduction. 1993;98:439–449. doi: 10.1530/jrf.0.0980439. PubMed DOI

Johnson L.A., Weitze K.F., Fiser P., Maxwell W.M.C. Storage of boar semen. Anim. Reprod. Sci. 2000;62:143–172. doi: 10.1016/S0378-4320(00)00157-3. PubMed DOI

Jonex J.M., Bavister B.D. Acidification of Intracellular pH in Bovine Spermatozoa Suppresses Motility and Extends Viable Life. J. Androl. 2000;21:616–624. doi: 10.1002/j.1939-4640.2000.tb02128.x. PubMed DOI

Gadea J. Review: Semen extenders used in the artificial inseminarion of swine. Span. J. Agric. Res. 2003;1:17–27. doi: 10.5424/sjar/2003012-17. DOI

Fair S., Romero-Aguirregomezcorta J. Implications of boar sperm kinematics and rheotaxis for fertility after preservation. Theriogenology. 2019;137:15–22. doi: 10.1016/j.theriogenology.2019.05.032. PubMed DOI

Mishra A.K., Kumar A., Swain D.K., Yadav S., Nigam R. Insights into pH regulatory mechanisms in mediating spermatozoa functions. Vet. World. 2018;11:852–858. doi: 10.14202/vetworld.2018.852-858. PubMed DOI PMC

Hyakutake T., Suzuki H., Yamamoto S. Effect of non-Newtonian fluid properties on bovine sperm motility. J. Biomech. 2015;48:2941–2947. doi: 10.1016/j.jbiomech.2015.08.005. PubMed DOI

Hyun N., Chandsawangbhuwana C., Zhu Q., Shi L.Z., Yang-Wong C., Berns M.W. Effects of viscosity on sperm motility studied with optical tweezers. J. Biomed. Opt. 2012;17:025005. doi: 10.1117/1.JBO.17.2.025005. PubMed DOI

Kirkman-Brown J.C., Smith D.J. Sperm motility: Is viscosity fundamental to progress? Mol. Hum. Reprod. 2011;17:539–544. doi: 10.1093/molehr/gar043. PubMed DOI

Yazdan Parast F., Gaikwad A.S., Prabhakar R., O’Bryan M.K., Nosrati R. The cooperative impact of flow and viscosity on sperm flagellar energetics in biomimetic environments. Cell Rep. Phys. Sci. 2023;4:101646. doi: 10.1016/j.xcrp.2023.101646. DOI

De Leeuw F.F., Colenbrander B., Verkleij A. The role membrane damage plays in cold shock and freezing injury. Reprod. Domest. Anim. 1990;1:95–104.

Robertson L., Watso P.F., Plummer J.M. Prior incubation reduces calcium uptake and membrane disruption in boar spermatozoa subjected to cold shock. Cryo Lett. 1988;9:286–293.

López Rodríguez A., Rijsselaere T., Vyt P., Van Soom A., Maes D. Effect of Dilution Temperature on Boar Semen Quality. Reprod. Domest. Anim. 2012;47:e63–e66. doi: 10.1111/j.1439-0531.2011.01938.x. PubMed DOI

Waberski D. Critical steps from semen collection to insemination; Proceedings of the Annual Meeting of the EU-AI-Vets; Ghent, Belgium. 9–12 September 2009; pp. 66–69.

Schulze M., Henning H., Rüdiger K., Wallner U., Waberski D. Temperature management during semen processing: Impact on boar sperm quality under laboratory and field conditions. Theriogenology. 2013;80:990–998. doi: 10.1016/j.theriogenology.2013.07.026. PubMed DOI

Henning H., Petrunkina A.M., Harrison R.A.P., Waberski D. Bivalent response to long-term storage in liquid-preserved boar semen: A flow cytometric analysis. Cytom. Part A. 2012;81A:576–587. doi: 10.1002/cyto.a.22058. PubMed DOI

Boryshpolets S., Pérez-Cerezales S., Eisenbach M. Behavioral mechanism of human sperm in thermotaxis: A role for hyperactivation. Hum. Reprod. 2015;30:884–892. doi: 10.1093/humrep/dev002. PubMed DOI

Hamano K., Kawanishi T., Mizuno A., Suzuki M., Takagi Y. Involvement of Transient Receptor Potential Vanilloid (TRPV) 4 in mouse sperm thermotaxis. J. Reprod. Dev. 2016;62:415–422. doi: 10.1262/jrd.2015-106. PubMed DOI PMC

Perrett J., Harris I.T., Maddock C., Farnworth M., Pyatt A.Z., Sumner R.N. Systematic Analysis of Breed, Methodological, and Geographical Impact on Equine Sperm Progressive Motility. Animals. 2021;11:3088. doi: 10.3390/ani11113088. PubMed DOI PMC

Saravia F., Núñez-Martínez I., Morán J.M., Soler C., Muriel A., Rodríguez-Martínez H., Peña F.J. Differences in boar sperm head shape and dimensions recorded by computer-assisted sperm morphometry are not related to chromatin integrity. Theriogenology. 2007;68:196–203. doi: 10.1016/j.theriogenology.2007.04.052. PubMed DOI

Dresdner R.D., Katz D.F. Relationships of Mammalian Sperm Motility and Morphology to Hydrodynamic Aspects of Cell Function. Biol. Reprod. 1981;25:920–930. doi: 10.1095/biolreprod25.5.920. PubMed DOI

Baqir S., Orabah A.B., Al-Zeheimi N., Al-Shakaili Y., Gartley C.J., Mastromonaco G. Computer assisted sperm analysis (CASA) in the critically endangered captive Arabian leopard (Panthera pardus nimr): A multivariate clustering analysis. J. Vet. Sci. Technol. 2018;9:1000526. doi: 10.4172/2157-7579.1000526. DOI

Nagy Á., Polichronopoulos T., Gáspárdy A., Solti L., Cseh S. Correlation between bull fertility and sperm cell velocity parameters generated by computer-assisted semen analysis. Acta Vet. Hung. 2015;63:370–381. doi: 10.1556/004.2015.035. PubMed DOI

Barquero V., Roldan E.R., Soler C., Vargas-Leitón B., Sevilla F., Camacho M., Valverde A. Relationship between fertility traits and kinematics in clusters of boar ejaculates. Biology. 2021;10:595. doi: 10.3390/biology10070595. PubMed DOI PMC

Savić R., Radojković D., Gogić M., Popovac M., Petrović A., Radović Č. Do Motility and Sperm Dose Count Affect In Vivo Fertility in Boar? Chem. Proc. 2022;10:10. doi: 10.3390/IOCAG2022-12213. DOI

de Araújo G.R., Jorge-Neto P.N., Salmão-Júnior J.A., da Silva M.C.C., Zanella R., Csermak-Júnior A.C., Fabio De Moraes F., Araujo T., Pizzutto C.S. Pharmacological semen collection in giant anteaters (Myrmecophaga tridactyla): A feasible option for captive and free-living animals. Theriogenol. Wild. 2023;2:100030. doi: 10.1016/j.therwi.2023.100030. DOI

Holt W.V., O’Brien J., Abaigar T. Applications and interpretation of computer-assisted sperm analyses and sperm sorting methods in assisted breeding and comparative research. Reprod. Fertil. Dev. 2007;19:709–718. doi: 10.1071/RD07037. PubMed DOI

Gacem S., Bompart D., Valverde A., Catalán J., Miró J., Soler C. Optimal frame rate when there were stallion sperm motility evaluations and determinations for kinematic variables using CASA-Mot analysis in different counting chambers. Anim. Reprod. Sci. 2020;223:106643. doi: 10.1016/j.anireprosci.2020.106643. PubMed DOI

Mortimer D., Serres C., Mortimer S.T., Jouannet P. Influence of image sampling frequency on the perceived movement characteristics of progressively motile human spermatozoa. Gamete Res. 1988;20:313–327. doi: 10.1002/mrd.1120200307. PubMed DOI

Mortimer S.T. Effect of image sampling frequency on established and smoothing-independent kinematic values of capacitating human spermatozoa. Hum. Reprod. 1999;14:997–1004. doi: 10.1093/humrep/14.4.997. PubMed DOI

Castellini C., Dal Bosco A., Ruggeri S., Collodel G. What is the best frame rate for evaluation of sperm motility in different species by computer-assisted sperm analysis? Fertil. Steril. 2011;96:24–27. doi: 10.1016/j.fertnstert.2011.04.096. PubMed DOI

Mortimer S.T. Practical application of computer-aided sperm analysis (CASA); Proceedings of the 9th International Symposium on Spermatology; Cape Town, South Africa. 6–11 October 2002; pp. 233–238.

Bompart D., Vázquez R.F., Gómez R., Valverde A., Roldán E.R.S., García-Molina A., Soler C. Combined effects of type and depth of counting chamber, and rate of image frame capture, on bull sperm motility and kinematics. Anim. Reprod. Sci. 2019;209:106169. doi: 10.1016/j.anireprosci.2019.106169. PubMed DOI

Barquero V., Sevilla F., Calderón-Calderón J., Madrigal-Valverde M., Camacho M., Cucho H., Valverde Abarca A. Optimal conditions for casa-mot analysis of boar semen: Effect of frame rate for different chambers and sperm count fields. Rev. Investig. Vet. Perú. 2021;32:e19832. doi: 10.15381/rivep.v32i5.19832. DOI

Boryshpolets S., Kowalski R.K., Dietrich G.J., Dzyuba B., Ciereszko A. Different computer-assisted sperm analysis (CASA) systems highly influence sperm motility parameters. Theriogenology. 2013;80:758–765. doi: 10.1016/j.theriogenology.2013.06.019. PubMed DOI

Yániz J.L., Soler C., Alquézar-Baeta C., Santolaria P. Toward an integrative and predictive sperm quality analysis in Bos taurus. Anim. Reprod. Sci. 2017;181:108–114. doi: 10.1016/j.anireprosci.2017.03.022. PubMed DOI

Peña A.I., Adán S., Quintela L.A., Becerra J.J., Herradón P.G. Relationship between motile sperm subpopulations identified in frozen-thawed dog semen samples and their ability to bind to the zona pellucida of canine oocytes. Reprod. Domest. Anim. 2018;53:14–22. doi: 10.1111/rda.13349. PubMed DOI

Zasiadczyk L., Fraser L., Kordan W., Wasilewska K. Individual and seasonal variations in the quality of fractionated boar ejaculates. Theriogenology. 2015;83:1287–1303. doi: 10.1016/j.theriogenology.2015.01.015. PubMed DOI

Fraser L., Strzeżek J., Filipowicz K., Mogielnicka-Brzozowska M., Zasiadczyk L. Age and seasonal-dependent variations in the biochemical composition of boar semen. Theriogenology. 2016;86:806–816. doi: 10.1016/j.theriogenology.2016.02.035. PubMed DOI

Pinart E., Puigmulé M. Boar Reproduction. Springer; Berlin/Heidelberg, Germany: 2013. Factors Affecting Boar Reproduction, Testis Function, and Sperm Quality; pp. 109–202. DOI

Fraser L., Filipowicz K., Kordan W. Seasonal effect on sperm motility characteristics and plasma membrane integrity in boar ejaculate fractions. Biosci. Proc. 2013;19:85–86. doi: 10.1530/biosciprocs.19.0012. DOI

Ibanescu I., Roșca P., Neculai-Văleanu S., Drugociu D. The influence of season on kinetic parameters of boar extended semen. Lucr. Stiintifice—Univ. De Stiinte Agric. Banat. Timis. Med. Vet. 2015;48:61–69.

Knecht D., Środoń S., Szulc K., Duziński K. The effect of photoperiod on selected parameters of boar semen. Livest. Sci. 2013;157:364–371. doi: 10.1016/j.livsci.2013.06.027. DOI

Knecht D., Jankowska-Mąkosa A., Duziński K. The effect of age, interval collection and season on selected semen parameters and prediction of AI boars productivity. Livest. Sci. 2017;201:13–21. doi: 10.1016/j.livsci.2017.04.013. DOI

Bravo J.A., Montanero J., Calero R., Roy T.J. Identification of sperm subpopulations with defined motility characteristics in ejaculates from Ile de France rams. Anim. Reprod. Sci. 2011;129:22–29. doi: 10.1016/j.anireprosci.2011.10.005. PubMed DOI

Peña A.I., Barrio M., Becerra J.J., Quintela L.A., Herradón P.G. Motile sperm subpopulations in frozen–thawed dog semen: Changes after incubation in capacitating conditions and relationship with sperm survival after osmotic stress. Anim. Reprod. Sci. 2012;133:214–223. doi: 10.1016/j.anireprosci.2012.06.016. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...