The larval gut of Spodoptera frugiperda harbours culturable bacteria with metabolic versatility after insecticide exposure
Status Publisher Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
32360705
National Natural Science Foundation of China
31960555
National Natural Science Foundation of China
GCC[2023]070
Guizhou Provincial Science and Technology Program
HZJD[2022]001
Guizhou Provincial Science and Technology Program
2019-1410
Guizhou Provincial Science and Technology Program
[2023]1-4
Guiyang Science and Technology Program
D20023
Program for Introducing Talents to Chinese Universities
PubMed
39952648
DOI
10.1111/imb.12983
Knihovny.cz E-zdroje
- Klíčová slova
- bacterial communities, gut microbiome, insect microbiome, insecticide toxicity, microbial diversity, microbial interactions, pest management, synthetic insecticides,
- Publikační typ
- časopisecké články MeSH
Spodoptera frugiperda (fall armyworm) poses a substantial risk to crops worldwide, resulting in considerable economic damage. The gut microbiota of insects plays crucial roles in digestion, nutrition, immunity, growth and, sometimes, the degradation of insecticides. The current study examines the effect of synthetic insecticides on the gut microbiome of third instar S. frugiperda larvae using both culture-dependent techniques and 16S rRNA gene sequencing for bacterial community profiling and diversity analysis. In untreated larvae, the sequencing approach revealed a diverse microbiome dominated by the phyla Firmicutes, Proteobacteria and Bacteroidota, with key genera including Bacteroides, Faecalibacterium and Pelomonas. In parallel, 323 bacterial strains were isolated and assigned to the orders Bacillales, Burkholderiales, Enterobacterales, Flavobacteriales, Lactobacillales, Micrococcales, Neisseriaies, Pseudomonadales, Sphingobacteriales and Xanthomonadales. The prevailing culturable species included Serratia marcescens, Klebsiella variicola and Enterobacter quasiroggenkampii. Treatment with sublethal concentrations of three insecticides (broflanilide, spinosad and indoxacarb) caused significant changes in gut microbiome diversity and composition. Treated larvae showed a shift towards increased Proteobacteria abundance and decreased Firmicutes. Specifically, Acinetobacter and Rhodococcus were dominant in treated samples. Functional predictions highlighted significant metabolic versatility involving nutrient processing, immune response, detoxification, xenobiotic metabolism, and stress response, suggesting microbial adaptation to insecticide exposure. Network correlation analysis highlighted disrupted microbial interactions and altered community structures under insecticide treatment. These findings enhance our understanding of how insecticides impact the gut microbiota in S. frugiperda and may inform future strategies for managing pest resistance through microbiome-based approaches.
College of Agriculture College of Life Sciences Guizhou University Guiyang China
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
Department of Biology Vrije Universiteit Brussel Brussels Belgium
Department of Entomology University of Agriculture Faisalabad Pakistan
Department of Plants and Crops Ghent University Ghent Belgium
Zobrazit více v PubMed
Ahmad, M. & Hollingworth, R.M. (2004) Synergism of insecticides provides evidence of metabolic mechanisms of resistance in the obliquebanded leafroller Choristoneura rosaceana (Lepidoptera: Tortricidae). Pest Management Science, 60, 465–473.
Akami, M., Andongma, A.A., Zhengzhong, C., Nan, J., Khaeso, K., Jurkevitch, E. et al. (2019) Intestinal bacteria modulate the foraging behavior of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae). PLoS One, 14, e0210109.
Al Naggar, Y., Singavarapu, B., Paxton, R.J. & Wubet, T. (2022) Bees under interactive stressors: the novel insecticides flupyradifurone and sulfoxaflor along with the fungicide azoxystrobin disrupt the gut microbiota of honey bees and increase opportunistic bacterial pathogens. Science of the Total Environment, 849, 157941. Available from: https://doi.org/10.1016/j.scitotenv.2022.157941
Chang, C.T., Negi, S., Rani, A., Hu, A.H., Pan, S.Y. & Kumar, S. (2022) Food waste and soybean curd residue composting by black soldier fly. Environmental Research, 214, 113792. Available from: https://doi.org/10.1016/J.ENVRES.2022.113792
Chang, H., Guo, J., Qi, G., Gao, Y., Wang, S., Wang, X. et al. (2023) Comparative analyses of the effects of sublethal doses of emamectin benzoate and tetrachlorantraniliprole on the gut microbiota of Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Insect Science, 23, 1–10. Available from: https://doi.org/10.1093/jisesa/iead039
Chen, B., Yu, T., Xie, S., Du, K., Liang, X., Lan, Y. et al. (2018) Comparative shotgun metagenomic data of the silkworm Bombyx mori gut microbiome. Scientific Data, 5, 1–10.
Chen, B., Zhang, N., Xie, S., Zhang, X., He, J., Muhammad, A. et al. (2020) Gut bacteria of the silkworm Bombyx mori facilitate host resistance against the toxic effects of organophosphate insecticides. Environmental International, 143, 105886. Available from: https://doi.org/10.1016/j.envint.2020.105886
Chen, J., Ma, Y., Huang, S., Li, J., Zhang, Y., Wang, H. et al. (2023) The dynamics of the microbial community in fall armyworm Spodoptera frugiperda during a life cycle. Entomologia Experimentalis et Applicata, 171, 502–513.
Cui, L., Wang, Q., Qi, H., Wang, Q., Yuan, H. & Rui, C. (2018) Resistance selection of indoxacarb in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae): cross‐resistance, biochemical mechanisms and associated fitness costs. Pest Management Science, 74, 2636–2644. Available from: https://doi.org/10.1002/ps.5056
de Almeida, L.G., de Moraes, L.A.B., Trigo, J.R., Omoto, C. & Cônsoli, F.L. (2017) The gut microbiota of insecticide‐resistant insects houses insecticide‐degrading bacteria: a potential source for biotechnological exploitation. PLoS One, 12, e0174754. Available from: https://doi.org/10.1371/journal.pone.0174754
de Oliveira, N.C. & Cônsoli, F.L. (2023) Dysbiosis of the larval gut microbiota of Spodoptera frugiperda strains feeding on different host plants. Symbiosis, 89, 197–211. Available from: https://doi.org/10.1007/s13199-023-00907-x
Derecka, K., Blythe, M.J., Malla, S., Genereux, D.P., Guffanti, A., Pavan, P. et al. (2013) Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae. PLoS One, 8, e68191.
Dongbiao, L., Dong, Y., Yan, Z., Liu, X., Zhang, Y., Yang, D. et al. (2023) Dynamics of gut microflora across the life cycle of Spodoptera frugiperda and its effects on the feeding and growth of larvae. Pest Management Science, 79, 173–182. Available from: https://doi.org/10.1002/ps.7186
Dos Santos, H.R.M., Argolo, C.S., Argôlo‐Filho, R.C. & Loguercio, L.L. (2019) A 16S rDNA PCR‐based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. BMC Microbiology, 19, 1–14.
Duran‐Bedolla, J., Garza‐Ramos, U., Rodríguez‐Medina, N., Aguilar Vera, A. & Barrios‐Camacho, H. (2021) Exploring the environmental traits and applications of Klebsiella variicola. Brazilian Journal of Microbiology, 52, 1–13.
El Khoury, S., Giovenazzo, P. & Derome, N. (2022) Endogenous honeybee gut microbiota metabolize the pesticide clothianidin. Microorganisms, 10, 1–15. Available from: https://doi.org/10.3390/microorganisms10030493
FAO. (2022) The global action for fall armyworm control: a resource mobilization guide. Rome: The Food and Agriculture Organization of the United Nations, p. 38. Available from: https://doi.org/10.4060/cb8910en
Flint, H.J., Scott, K.P., Duncan, S.H., Louis, P. & Forano, E. (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 3, 289–306. Available from: https://doi.org/10.4161/gmic.19897
Gao, M., Mu, W., Wang, W., Zhou, C. & Li, X. (2014) Resistance mechanisms and risk assessment regarding indoxacarb in the beet armyworm, Spodoptera exigua. Phytoparasitica, 42, 585–594. Available from: https://doi.org/10.1007/s12600-014-0396-3
Gao, X., Li, W., Luo, J., Zhang, L., Ji, J., Zhu, X. et al. (2019) Biodiversity of the microbiota in Spodoptera exigua (Lepidoptera: Noctuidae). Journal of Applied Microbiology, 126, 1199–1208.
Gichuhi, J., Sevgan, S., Khamis, F., Van den Berg, J., du Plessis, H., Ekesi, S. et al. (2020) Diversity of fall armyworm, Spodoptera frugiperda and their gut bacterial community in Kenya. PeerJ, 8, e8701.
Gomes, A.F.F., de Almeida, L.G. & Cônsoli, F.L. (2023) Comparative genomics of pesticide‐degrading Enterococcus symbionts of Spodoptera frugiperda (Lepidoptera: Noctuidae) leads to the identification of two new species and the reappraisal of insect‐associated Enterococcus species. Microbial Ecology, 86, 2583–2605. Available from: https://doi.org/10.1007/s00248-023-02264-0
Gomes, A.F.F., Omoto, C. & Cônsoli, F.L. (2020) Gut bacteria of field‐collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory‐selected resistant strains. Journal of Pest Science, 93, 833–851. Available from: https://doi.org/10.1007/s10340-020-01202-0
Gong, W., Linghu, J.‐H., Xu, H.‐M., Luo, L.‐L., Smagghe, G., Liu, T.‐X. et al. (2024) Neuropeptide natalisin regulates reproductive behaviors in Spodoptera frugiperda. Scientific Reports, 14, 15122. Available from: https://doi.org/10.1038/s41598-024-66031-y
González‐Serrano, F., Pérez‐Cobas, A.E., Rosas, T., Baixeras, J., Latorre, A. & Moya, A. (2020) The gut microbiota composition of the moth Brithys crini reflects insect metamorphosis. Microbial Ecology, 79, 960–970. Available from: https://doi.org/10.1007/S00248-019-01460-1
Gouda, M.N.R., Jeevan, H. & Shashank, H.G. (2024) CRISPR/Cas9: a cutting‐edge solution for combatting the fall armyworm, Spodoptera frugiperda. Molecular Biology Reports, 51, 13.
Greub, G. (2012) Culturomics: a new approach to study the human microbiome. Clinical Microbiology and Infection, 18(12), 1157–1159. Available from: https://doi.org/10.1111/1469-0691.12032
Gur Özdal, Ö. & Algur, Ö.F. (2020) Isolation and identification of the pyrethroid insecticide deltamethrin degrading bacteria from insects. European Journal of Science and Technology, (18), 905–910. Available from: https://doi.org/10.31590/ejosat.677008
Hafeez, M., Li, X., Ullah, F., Zhang, Z., Zhang, J., Huang, J. et al. (2021) Behavioral and physiological plasticity provides insights into molecular based adaptation mechanism to strain shift in Spodoptera frugiperda. International Journal of Molecular Sciences, 22, 10284. Available from: https://doi.org/10.3390/ijms221910284
Howe, S., Liu, Z., Zuo, B. & Zhao, J. (2024) Culturomics: a critical approach in studying the roles of human and animal microbiota. Animal Nutriomics, 1, e6. Available from: https://doi.org/10.1017/anr.2024.6
Hs, C. & Kkalia, V. (2022) Gut symbionts: hidden players of pesticide, resistance in insects. Indian Journal of Entomology, 84, 1–6.
Huang, Y., Chen, S.F., Chen, W.J., Zhu, X., Mishra, S., Bhatt, P. et al. (2023) Efficient biodegradation of multiple pyrethroid pesticides by Rhodococcus pyridinivorans strain Y6 and its degradation mechanism. Chemical Engineering Journal, 469, 143863. Available from: https://doi.org/10.1016/J.CEJ.2023.143863
Ibrahim, S., Gupta, R.K., War, A.R., Hussain, B., Kumar, A., Sofi, T. et al. (2021) Degradation of chlorpyriphos and polyethylene by endosymbiotic bacteria from citrus mealybug. Saudi Journal of Biological Sciences, 28, 3214–3224. Available from: https://doi.org/10.1016/j.sjbs.2021.03.058
Idrees, A., Qadir, Z.A., Afzal, A., Ranran, Q. & Li, J. (2022) Laboratory efficacy of selected synthetic insecticides against second instar invasive fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. PLoS One, 17(5), e0265265. Available from: https://doi.org/10.1371/journal.pone.0265265
Jupatanakul, N., Pengon, J., Selisana, S.M.G., Choksawangkarn, W., Jaito, N., Saeung, A. et al. (2020) Serratia marcescens secretes proteases and chitinases with larvicidal activity against Anopheles dirus. Acta Tropica, 212, 105686.
Kumar, N. & Mohan, D. (2021) Sustainable apparel purchase intention: collectivist cultural orientation and price sensitivity in extended TPB model. Journal of Revenue and Pricing Management, 20(2), 149–161. Available from: https://doi.org/10.1057/s41272-021-00297-z
Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.
Lagier, J.‐C., Armougom, F., Million, M., Hugon, P., Pagnier, I., Robert, C. et al. (2012) Microbial culturomics: paradigm shift in the human gut microbiome study. Clinical Microbiology and Infection, 18(12), 1185–1193. Available from: https://doi.org/10.1111/1469-0691.12023
Li, D.D., Li, J.Y., Hu, Z.Q., Liu, T.X. & Zhang, S.Z. (2022) Fall armyworm gut bacterial diversity associated with different developmental stages, environmental habitats, and diets. Insects, 13, 762. Available from: https://doi.org/10.3390/insects13090762
Li, F., Li, M., Mao, T., Wang, H., Chen, J., Lu, Z. et al. (2020) Ecotoxicology and environmental safety effects of phoxim exposure on gut microbial composition in the silkworm, Bombyx mori. Ecotoxicology and Environmental Safety, 189, 110011. Available from: https://doi.org/10.1016/j.ecoenv.2019.110011
Liu, J., Zhou, Y., Zhu, H., Ma, H., Deng, X., Zhou, X. et al. (2016) Monitoring of insecticide resistance in Spodoptera litura (Lepidoptera: Noctuidae) and the effect of indoxacarb on its detoxification enzymes. Acta Entomologica Sinica, 59, 1254–1262.
Lv, C., Huang, Y.Z. & Luan, J.B. (2024) Insect–microbe symbiosis‐based strategies offer a new avenue for the management of insect pests and their transmitted pathogens. Crop Health, 2, 18. Available from: https://doi.org/10.1007/s44297-024-00038-9
Lv, D., Liu, X., Dong, Y., Yan, Z., Zhang, X., Wang, P. et al. (2021) Comparison of gut bacterial communities of fall armyworm (Spodoptera frugiperda) reared on different host plants. International Journal of Molecular Sciences, 22, 11266. Available from: https://doi.org/10.3390/ijms222011266
Lv, N., Ma, K., Li, R., Liang, P., Liang, P. & Gao, X. (2021) Sublethal and lethal effects of the imidacloprid on the metabolic characteristics based on high‐throughput non‐targeted metabolomics in Aphis gossypii Glover. Ecotoxicology and Environmental Safety, 212, 111969.
Madhusudan, S., Jalali, S.K. & Sibi, G. (2021) Molecular identification of insecticide degradation by gut bacteria isolated from Helicoverpa armigera of cotton plants. Journal of Applied and Natural Science, 13, 641–653. Available from: https://doi.org/10.31018/JANS.V13I2.2678
Mains, J.W., Kelly, P.H., Dobson, K.L., Petrie, W.D. & Dobson, S.L. (2019) Localized control of Aedes aegypti (Diptera: Culicidae) in Miami, FL, via inundative releases of Wolbachia‐infected male mosquitoes. Journal of Medical Entomology, 56(5), 1296–1303. Available from: https://doi.org/10.1093/jme/tjz051
Malathi, V.M., More, R.P., Anandham, R., Gracy, G.R., Mohan, M., Venkatesan, T. et al. (2018) Gut bacterial diversity of insecticide‐susceptible and ‐resistant nymphs of the brown planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) and elucidation of their putative functional roles. Journal of Microbiology and Biotechnology, 28, 976–986. Available from: https://doi.org/10.4014/jmb.1711.11039
Mannaa, M., Mansour, A., Park, I., Lee, D.W. & Seo, Y.S. (2024) Insect‐based agri‐food waste valorization: agricultural applications and roles of insect gut microbiota. Environmental Science and Ecotechnology, 17, 100287. Available from: https://doi.org/10.1016/j.ese.2023.100287
Mason, C.J. (2020) Complex relationships at the intersection of insect gut microbiomes and plant defenses. Journal of Chemical Ecology, 46, 793–807.
Mason, C.J., Hoover, K. & Felton, G.W. (2021) Effects of maize (Zea mays) genotypes and microbial sources in shaping fall armyworm (Spodoptera frugiperda) gut bacterial communities. Scientific Reports, 11, 1–10. Available from: https://doi.org/10.1038/s41598-021-83497-2
Mondal, S., Somani, J., Roy, S., Babu, A. & Pandey, A.K. (2023) Insect microbial symbionts: ecology, interactions, and biological significance. Microorganisms, 11, 2665. Available from: https://doi.org/10.3390/microorganisms11112665
Nakao, T. & Banba, S. (2016) Broflanilide: a meta‐diamide insecticide with a novel mode of action. Bioorganic & Medicinal Chemistry, 24, 372–377.
Okuma, D.M., Bernardi, D., Horikoshi, R.J., Bernardi, O., Silva, A.P. & Omoto, C. (2018) Inheritance and fitness costs of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to spinosad in Brazil. Pest Management Science, 74, 1441–1448. Available from: https://doi.org/10.1002/PS.4829
Osorio, A., Martínez, A.M., Schneider, M.I., Díaz, O., Corrales, J.L., Avilés, M.C. et al. (2008) Monitoring of beet armyworm resistance to spinosad and methoxyfenozide in Mexico. Pest Management Science, 64, 1001–1007. Available from: https://doi.org/10.1002/PS.1594
Paniagua Voirol, L.R., Frago, E., Kaltenpoth, M., Hilker, M. & Fatouros, N.E. (2018) Bacterial symbionts in Lepidoptera: their diversity, transmission, and impact on the host. Frontiers in Microbiology, 9, 556. Available from: https://doi.org/10.3389/fmicb.2018.00556
Porter, J. & Sullivan, W. (2023) The cellular lives of Wolbachia. Nature Reviews Microbiology, 21(11), 750–766. Available from: https://doi.org/10.1038/s41579-023-00918-x
Ramya, S.L., Venkatesan, T., Srinivasa Murthy, K.S., Jalali, S.K. & Verghese, A. (2016) Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation. Brazilian Journal of Microbiology, 47, 327–336. Available from: https://doi.org/10.1016/j.bjm.2016.01.012
Raymann, K. & Moran, N.A. (2018) The role of the gut microbiome in health and disease of adult honey bee workers. Current Opinion in Insect Science, 26, 97–104. Available from: https://doi.org/10.1016/j.cois.2018.02.012
Ross, P.A., Turelli, M. & Hoffmann, A.A. (2019) Evolutionary ecology of Wolbachia releases for disease control. Annual Review of Genetics, 53, 93–116. Available from: https://doi.org/10.1146/annurev-genet-112618-043609
Rouzé, R., Moné, A., Delbac, F., Belzunces, L. & Blot, N. (2019) The honeybee gut microbiota is altered after chronic exposure to different families of insecticides and infection by Nosema ceranae. Microbes and Environments, 34, 226–233. Available from: https://doi.org/10.1264/jsme2.ME18169
Roy, A., Houot, B., Kushwaha, S. & Anderson, P. (2023) Impact of transgenerational host switch on gut bacterial assemblage in generalist pest, Spodoptera littoralis (Lepidoptera: Noctuidae). Frontiers in Microbiology, 14, 1172601. Available from: https://doi.org/10.3389/fmicb.2023.1172601
Rozadilla, G., Cabrera, N.A., Virla, E.G., Greco, N.M. & McCarthy, C.B. (2020) Gut microbiota of Spodoptera frugiperda (J.E. Smith) larvae as revealed by metatranscriptomic analysis. Journal of Applied Entomology, 144, 351–363. Available from: https://doi.org/10.1111/jen.12742
Sahani, S.K., Saha, T., Kumari, K. & Ansar, M. (2023) Diversity of bacterial communities associated with the gut of the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) in Eastern India. Phytoparasitica, 51, 447–460.
Shi, L., Shi, Y., Zhang, Y. & Liao, X. (2019) A systemic study of indoxacarb resistance in Spodoptera litura revealed complex expression profiles and regulatory mechanism. Scientific Reports, 9, 1–13. Available from: https://doi.org/10.1038/s41598-019-51234-5
Shono, T., Zhang, L. & Scott, J.G. (2004) Indoxacarb resistance in the house fly, Musca domestica. Pesticide Biochemistry and Physiology, 80, 106–112. Available from: https://doi.org/10.1016/j.pestbp.2004.06.004
Siddiqui, J.A., Khan, M.M., Bamisile, B.S., Hafeez, M., Qasim, M., Rasheed, M.T. et al. (2022) Role of insect gut microbiota in pesticide degradation: a review. Frontiers in Microbiology, 13, 870462. Available from: https://doi.org/10.3389/fmicb.2022.870462
Stara, J. & Hubert, J. (2023) Does Leptinotarsa decemlineata larval survival after pesticide treatment depend on microbiome composition? Pest Management Science, 79, 4921–4930. Available from: https://doi.org/10.1002/ps.7694
Tang, T., Hu, F., Wang, P., Fu, W. & Liu, X. (2021) Broflanilide effectively controls Helicoverpa armigera and Spodoptera exigua exhibiting diverse susceptibilities to chlorantraniliprole and emamectin benzoate. Pest Management Science, 77, 1262–1272. Available from: https://doi.org/10.1002/ps.6139
Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position‐specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680. Available from: https://doi.org/10.1093/nar/22.22.4673
Tong, H., Su, Q., Zhou, X. & Bai, L. (2013) Field resistance of Spodoptera litura (Lepidoptera: Noctuidae) to organophosphates, pyrethroids, carbamates and four newer chemistry insecticides in Hunan, China. Journal of Pest Science, 86, 599–609. Available from: https://doi.org/10.1007/s10340-013-0505-y
Ugwu, J.A., Liu, M., Sun, H. & Asiegbu, F.O. (2020) Microbiome of the larvae of Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) from maize plants. Journal of Applied Entomology, 144, 764–776. Available from: https://doi.org/10.1111/jen.12821
van den Bosch, T.J.M. & Welte, C.U. (2017) Detoxifying symbionts in agriculturally important pest insects. Microbial Biotechnology, 10, 531–540. Available from: https://doi.org/10.1111/1751-7915.12483
Wang, C., Li, X.X., Jin, D., Gong, P., Li, Q., Zhang, Y. et al. (2022) Implications of environmentally shaped microbial communities for insecticide resistance in Sitobion miscanthi. Environmental Research, 215, 114409. Available from: https://doi.org/10.1016/j.envres.2022.114409
Wang, D., Qiu, X., Ren, X., Niu, F. & Wang, K. (2009) Resistance selection and biochemical characterization of spinosad resistance in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pesticide Biochemistry and Physiology, 95, 90–94. Available from: https://doi.org/10.1016/j.pestbp.2009.07.003
Wang, H., Bagnoud, A., Ponce‐Toledo, R.I., Kerou, M., Weil, M., Schleper, C. & Urich, T. (2021) Linking 16S rRNA gene classification to amoA gene taxonomy reveals environmental distribution of ammonia‐oxidizing archaeal clades in peatland soils. MSystems, 6(4), 11266. Available from: https://doi.org/10.1128/msystems.00546-21
Wang, X., Huang, Q., Hao, Q., Ran, S., Wu, Y., Cui, P. et al. (2018) Insecticide resistance and enhanced cytochrome P450 monooxygenase activity in field populations of Spodoptera litura from Sichuan, China. Crop Protection, 106, 110–116. Available from: https://doi.org/10.1016/j.cropro.2017.12.020
Wang, X., Shi, T., Tang, P., Liu, S., Hou, B., Jiang, D. et al. (2023) Baseline susceptibility of Helicoverpa armigera, Plutella xylostella, and Spodoptera frugiperda to the meta‐diamide insecticide broflanilide. Insect Science, 30, 1118–1128. Available from: https://doi.org/10.1111/1744-7917.13142
Wang, X., Su, W., Zhang, J., Yang, Y., Dong, K. & Wu, Y. (2016) Two novel sodium channel mutations associated with resistance to indoxacarb and metaflumizone in the diamondback moth, Plutella xylostella. Insect Science, 23, 50–58. Available from: https://doi.org/10.1111/1744-7917.12226
Werren, J.H., Baldo, L. & Clark, M.E. (2008) Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology, 6(10), 741–751. Available from: https://doi.org/10.1038/nrmicro1969
Xia, X., Sun, B., Gurr, G.M., Vasseur, L., Xue, M. & You, M. (2018) Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Frontiers in Microbiology, 9, 25. Available from: https://doi.org/10.3389/fmicb.2018.00025
Xia, X., Zheng, D., Zhong, H., Qin, B., Gurr, G.M., Vasseur, L. et al. (2013) DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS One, 8, e68852. Available from: https://doi.org/10.1371/journal.pone.0068852
Xia, X.J., Wu, W., Chen, J.P. & Shan, H.W. (2023) The gut bacterium Serratia marcescens mediates detoxification of organophosphate pesticide in Riptortus pedestris by microbial degradation. Journal of Applied Entomology, 147, 406–415. Available from: https://doi.org/10.1111/JEN.13122
Yang, Y., Liu, X., Xu, H., Liu, Y. & Lu, Z. (2022) Effects of host plant and insect generation on shaping of the gut microbiota in the rice leaffolder, Cnaphalocrocis medinalis. Frontiers in Microbiology, 13, 824224. Available from: https://doi.org/10.3389/FMICB.2022.824224
Yang, L. & Yang, K. (2020) Biological function of Klebsiella variicola and its effect on the rhizosphere soil of maize seedlings. PeerJ, 8, e9894. Available from: https://doi.org/10.7717/peerj.9894
Zeng, J., Wu, D., Shi, Z., Yang, J., Zhang, G. & Zhang, J. (2020) Influence of dietary aconitine and nicotine on the gut microbiota of two lepidopteran herbivores. Archives of Insect Biochemistry and Physiology, 104, e21676. Available from: https://doi.org/10.1002/arch.21676
Zhang, J., Zhang, Y., Li, J., Liu, M. & Liu, Z. (2016) Midgut transcriptome of the cockroach Periplaneta americana and its microbiota: digestion, detoxification and oxidative stress response. PLoS One, 11, e0155254. Available from: https://doi.org/10.1371/journal.pone.0155254
Zhang, N., He, J., Shen, X., Sun, C., Muhammad, A. & Shao, Y. (2021) Contribution of sample processing to gut microbiome analysis in the model Lepidoptera, silkworm Bombyx mori. Computational and Structural Biotechnology Journal, 19, 4658–4668. Available from: https://doi.org/10.1016/j.csbj.2021.08.020
Zhang, Q., Wang, Q., Zhai, Y., Zheng, H. & Wang, X. (2022) Impacts of imidacloprid and flupyradifurone insecticides on the gut microbiota of Bombus terrestris. Agriculture, 12, 389. Available from: https://doi.org/10.3390/agriculture12030389
Zhang, X., Feng, H., He, J., Muhammad, A., Zhang, F. & Lu, X. (2022) Features and colonization strategies of Enterococcus faecalis in the gut of Bombyx mori. Frontiers in Microbiology, 13, 1–15. Available from: https://doi.org/10.3389/fmicb.2022.921330