Functional Connectivity in Chronic Schizophrenia: An EEG Resting-State Study with Corrected Imaginary Phase-Locking
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
2016/23/B/HS6/00286
National Science Centre Poland
2021/41/B/HS6/02967
National Science Centre Poland
215712
Swiss National Science Foundation (SNSF)
PubMed
40079512
PubMed Central
PMC11905041
DOI
10.1002/brb3.70370
Knihovny.cz E-zdroje
- Klíčová slova
- EEG, functional connectivity, phase locking value, power spectrum, resting‐state, schizophrenia,
- MeSH
- chronická nemoc MeSH
- dospělí MeSH
- elektroencefalografie * metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozek patofyziologie diagnostické zobrazování MeSH
- nervová síť patofyziologie diagnostické zobrazování MeSH
- odpočinek fyziologie MeSH
- průřezové studie MeSH
- schizofrenie * patofyziologie diagnostické zobrazování MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Schizophrenia is a complex disorder characterized by altered brain functional connectivity, detectable during both task and resting state conditions using different neuroimaging methods. To this day, electroencephalography (EEG) studies have reported inconsistent results, showing both hyper- and hypo-connectivity with diverse topographical distributions. Interpretation of these findings is complicated by volume-conduction effects, where local brain activity fluctuations project simultaneously to distant scalp regions (zero-phase lag), inducing spurious inter-electrode correlations. AIM: In the present study, we explored the network dynamics of schizophrenia using a novel functional connectivity metric-corrected imaginary phase locking value (ciPLV)-which is insensitive to changes in amplitude as well as interactions at zero-phase lag. This method, which is less prone to volume conduction effects, provides a more reliable estimate of sensor-space functional network connectivity in schizophrenia. METHODS: We employed a cross-sectional design, utilizing resting state EEG recordings from two adult groups: individuals diagnosed with chronic schizophrenia (n = 30) and a control group of healthy participants (n = 30), all aged between 18 and 55 years old. RESULTS: Our observations revealed that schizophrenia is characterized by a prevalence of excess theta (4-8 Hz) power localized to centroparietal electrodes. This was accompanied by significant alterations in inter- and intra-hemispheric functional network connectivity patterns, mainly between frontotemporal regions within the theta band and frontoparietal regions within beta/gamma bands. CONCLUSIONS: Our findings suggest that patients with schizophrenia demonstrate long-range electrophysiological connectivity abnormalities that are independent of spectral power (i.e., volume conduction). Overall, distinct hemispheric differences were present in frontotemporo-parietal networks in theta and beta/gamma bands. While preliminary, these alterations could be promising new candidate biomarkers of chronic schizophrenia.
Center for Biomedical Imaging Geneva Lausanne Switzerland
Department of Clinical Neuroscience University of Geneva Geneva Switzerland
Doctoral School in the Social Sciences Jagiellonian University Krakow Poland
Institute of Psychology Jagiellonian University Krakow Poland
Life Quality Research Centre Sport Science School of Rio Maior Rio Maior Portugal
Zobrazit více v PubMed
Andreou, C. , Leicht G., Nolte G., et al. 2015. “Resting‐State Theta‐Band Connectivity and Verbal Memory in Schizophrenia and in the High‐Risk State.” Schizophrenia Research 161, no. 2–3: 299–307. 10.1016/j.schres.2014.12.018. PubMed DOI
Andreou, C. , Nolte G., Leicht G., et al. 2015. “Increased Resting‐State Gamma‐Band Connectivity in First‐Episode Schizophrenia.” Schizophrenia Bulletin 41, no. 4: 930–939. 10.1093/schbul/sbu121. PubMed DOI PMC
Baradits, M. , Kakuszi B., Balint S., et al. 2019. “Alterations in Resting‐State Gamma Activity in Patients with Schizophrenia: A High‐Density EEG Study.” European Archives of Psychiatry and Clinical Neuroscience 269, no. 4: 429–437. 10.1007/s00406-018-0889-z. PubMed DOI
Bastos, A. M. , and Schoffelen J. M.. 2015. “A Tutorial Review of Functional Connectivity Analysis Methods and Their Interpretational Pitfalls.” Frontiers in Systems Neuroscience 9: 175. 10.3389/fnsys.2015.00175. PubMed DOI PMC
Bigdely‐Shamlo, N. , Kreutz‐Delgado K., Kothe C., and Makeig S.. 2013. “EyeCatch: Data‐Mining Over Half a Million EEG Independent Components to Construct a Fully‐Automated Eye‐Component Detector.” In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), edited by Bigdely‐Shamlo N., Kreutz‐Delgado K., Kothe C., and Makeig S., 5845–5848. IEEE. PubMed PMC
Bigdely‐Shamlo, N. , Mullen T., Kothe C., Su K.‐M., and Robbins K. A.. 2015. “The PREP Pipeline: Standardized Preprocessing for Large‐Scale EEG Analysis.” Frontiers in Neuroinformatics 9: 16. 10.3389/fninf.2015.00016. PubMed DOI PMC
Bowie, C. R. , Reichenberg A., Patterson T. L., Heaton R. K., and Harvey P. D.. 2006. “Determinants of Real‐World Functional Performance in Schizophrenia Subjects: Correlations With Cognition, Functional Capacity, and Symptoms.” American Journal of Psychiatry 163, no. 3: 418–425. 10.1176/appi.ajp.163.3.418. PubMed DOI
Bruna, R. , Maestu F., and Pereda E.. 2018. “Phase Locking Value Revisited: Teaching New Tricks to an Old Dog.” Journal of Neural Engineering 15, no. 5: 056011. 10.1088/1741-2552/aacfe4. PubMed DOI
Buzsaki, G. , and Draguhn A.. 2004. “Neuronal Oscillations in Cortical Networks.” Science 304, no. 5679: 1926–1929. 10.1126/science.1099745. PubMed DOI
Cao, Y. , Han C., Peng X., et al. 2022. “Correlation Between Resting Theta Power and Cognitive Performance in Patients With Schizophrenia.” Frontiers in Human Neuroscience 16: 853994. 10.3389/fnhum.2022.853994. PubMed DOI PMC
Castellanos, N. P. , and Makarov V. A.. 2006. “Recovering EEG Brain Signals: Artifact Suppression With Wavelet Enhanced Independent Component Analysis.” Journal of Neuroscience Methods 158, no. 2: 300–312. 10.1016/j.jneumeth.2006.05.033. PubMed DOI
Chang, Y. , Wang X., Liao J., et al. 2024. “Temporal Hyper‐Connectivity and Frontal Hypo‐Connectivity Within Gamma Band in Schizophrenia: A Resting State EEG Study.” Schizophrenia Research 264: 220–230. 10.1016/j.schres.2023.12.017. PubMed DOI
de Cheveigné, A. 2020. “ZapLine: A Simple and Effective Method to Remove Power Line Artifacts.” Neuroimage 207: 116356. 10.1016/j.neuroimage.2019.116356. PubMed DOI
di Lorenzo, G. , Daverio A., Ferrentino F., et al. 2015. “Altered Resting‐State EEG Source Functional Connectivity in Schizophrenia: The Effect of Illness Duration.” Frontiers in Human Neuroscience 9: 234. 10.3389/fnhum.2015.00234. PubMed DOI PMC
Fingelkurts, A. A. , Fingelkurts A. A., and Kahkonen S.. 2005. “Functional Connectivity in the Brain–Is It an Elusive Concept?” Neuroscience and Biobehavioral Reviews 28, no. 8: 827–836. 10.1016/j.neubiorev.2004.10.009. PubMed DOI
Ford, J. M. , Palzes V. A., Roach B. J., and Mathalon D. H.. 2014. “Did I Do That? Abnormal Predictive Processes in Schizophrenia When Button Pressing to Deliver a Tone.” Schizophrenia Bulletin 40, no. 4: 804–812. 10.1093/schbul/sbt072. PubMed DOI PMC
Ford, J. M. , Roach B. J., Palzes V. A., and Mathalon D. H.. 2016. “Using Concurrent EEG and fMRI to Probe the State of the Brain in Schizophrenia.” NeuroImage: Clinical 12: 429–441. 10.1016/j.nicl.2016.08.009. PubMed DOI PMC
Fornito, A. , Zalesky A., and Breakspear M.. 2015. “The Connectomics of Brain Disorders.” Nature Reviews Neuroscience 16, no. 3: 159–172. 10.1038/nrn3901. PubMed DOI
Fries, P. 2015. “Rhythms for Cognition: Communication Through Coherence.” Neuron 88, no. 1: 220–235. 10.1016/j.neuron.2015.09.034. PubMed DOI PMC
Friston, K. J. , and Frith C. D.. 1995. “Schizophrenia: a Disconnection Syndrome?” Clinical Neuroscience 3, no. 2: 89–97. https://www.ncbi.nlm.nih.gov/pubmed/7583624. PubMed
He, B. , Dai Y., Astolfi L., Babiloni F., Yuan H., and Yang L.. 2011. “eConnectome: a MATLAB Toolbox for Mapping and Imaging of Brain Functional Connectivity.” Journal of Neuroscience Methods 195, no. 2: 261–269. 10.1016/j.jneumeth.2010.11.015. PubMed DOI PMC
Hinkley, L. B. , Vinogradov S., Guggisberg A. G., Fisher M., Findlay A. M., and Nagarajan S. S.. 2011. “Clinical Symptoms and Alpha Band Resting‐State Functional Connectivity Imaging in Patients With Schizophrenia: Implications for Novel Approaches to Treatment.” Biological Psychiatry 70, no. 12: 1134–1142. 10.1016/j.biopsych.2011.06.029. PubMed DOI PMC
Hirano, Y. , Oribe N., Kanba S., Onitsuka T., Nestor P. G., and Spencer K. M.. 2015. “Spontaneous Gamma Activity in Schizophrenia.” JAMA Psychiatry 72, no. 8: 813–821. 10.1001/jamapsychiatry.2014.2642. PubMed DOI PMC
Iglesias‐Tejedor, M. , Díez Á., Llorca‐Bofí V., et al. 2022. “Relation Between EEG Resting‐State Power and Modulation of P300 Task‐Related Activity in Theta Band in Schizophrenia.” Progress in Neuro‐Psychopharmacology and Biological Psychiatry 116: 110541. 10.1016/j.pnpbp.2022.110541. PubMed DOI
Kam, J. W. , Bolbecker A. R., O'Donnell B. F., Hetrick W. P., and Brenner C. A.. 2013. “Resting State EEG Power and Coherence Abnormalities in Bipolar Disorder and Schizophrenia.” Journal of Psychiatric Research 47, no. 12: 1893–1901. 10.1016/j.jpsychires.2013.09.009. PubMed DOI PMC
Kikuchi, M. , Hashimoto T., Nagasawa T., et al. 2011. “Frontal Areas Contribute to Reduced Global Coordination of Resting‐State Gamma Activities in Drug‐Naive Patients With Schizophrenia.” Schizophrenia Research 130, no. 1‐3: 187–194. 10.1016/j.schres.2011.06.003. PubMed DOI
Kirino, E. , Tanaka S., Fukuta M., et al. 2017. “Simultaneous Resting‐State Functional MRI and Electroencephalography Recordings of Functional Connectivity in Patients With Schizophrenia.” Psychiatry and Clinical Neurosciences 71, no. 4: 262–270. 10.1111/pcn.12495. PubMed DOI
Kirkpatrick, B. , Strauss G. P., Nguyen L., et al. 2011. “The Brief Negative Symptom Scale: Psychometric Properties.” Schizophrenia Bulletin 37, no. 2: 300–305. 10.1093/schbul/sbq059. PubMed DOI PMC
Knyazeva, M. G. , Jalili M., Meuli R., Hasler M., de Feo O., and Do K. Q.. 2008. “Alpha Rhythm and Hypofrontality in Schizophrenia.” Acta Psychiatrica Scandinavica 118, no. 3: 188–199. 10.1111/j.1600-0447.2008.01227.x. PubMed DOI
Koessler, L. , Maillard L., Benhadid A., et al. 2009. “Automated Cortical Projection of EEG Sensors: Anatomical Correlation via the International 10‐10 System.” Neuroimage 46, no. 1: 64–72. 10.1016/j.neuroimage.2009.02.006. PubMed DOI
Korthauer, K. , Kimes P. K., Duvallet C., et al. 2019. “A Practical Guide to Methods Controlling False Discoveries in Computational Biology.” Genome Biology 20, no. 1: 118. 10.1186/s13059-019-1716-1. PubMed DOI PMC
Landis, J. 1977. “The Measurement of Observer Agreement for Categorical Data.” Biometrics 33, no. 1: 159–174. 10.2307/2529310. PubMed DOI
Mahjoory, K. , Nikulin V. V., Botrel L., Linkenkaer‐Hansen K., Fato M. M., and Haufe S.. 2017. “Consistency of EEG Source Localization and Connectivity Estimates.” Neuroimage 152: 590–601. 10.1016/j.neuroimage.2017.02.076. PubMed DOI
McGrath, J. , Saha S., Chant D., and Welham J.. 2008. “Schizophrenia: A Concise Overview of Incidence, Prevalence, and Mortality.” Epidemiologic Reviews 30, no. 1: 67–76. 10.1093/epirev/mxn001. PubMed DOI
McLoughlin, G. , Gyurkovics M., Palmer J., and Makeig S.. 2022. “Midfrontal Theta Activity in Psychiatric Illness: An Index of Cognitive Vulnerabilities Across Disorders.” Biological Psychiatry 91, no. 2: 173–182. 10.1016/j.biopsych.2021.08.020. PubMed DOI
Meyer, M. , Lamers D., Kayhan E., Hunnius S., and Oostenveld R.. 2021. “Enhancing Reproducibility in Developmental EEG Research: BIDS, Cluster‐Based Permutation Tests, and Effect Sizes.” Developmental Cognitive Neuroscience 52: 101036. 10.1016/j.dcn.2021.101036. PubMed DOI PMC
Michel, C. M. , and Brunet D.. 2019. “EEG Source Imaging: A Practical Review of the Analysis Steps.” Frontiers in Neurology 10: 325. 10.3389/fneur.2019.00325. PubMed DOI PMC
Nasreddine, Z. S. , Phillips N. A., Bedirian V., et al. 2005. “The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment.” Journal of the American Geriatrics Society 53, no. 4: 695–699. 10.1111/j.1532-5415.2005.53221.x. PubMed DOI
Newson, J. J. , and Thiagarajan T. C.. 2018. “EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies.” Frontiers in Human Neuroscience 12: 521. 10.3389/fnhum.2018.00521. PubMed DOI PMC
Nolan, H. , Whelan R., and Reilly R. B.. 2010. “FASTER: Fully Automated Statistical Thresholding for EEG Artifact Rejection.” Journal of Neuroscience Methods 192, no. 1: 152–162. 10.1016/j.jneumeth.2010.07.015. PubMed DOI
Nolte, G. , Bai O., Wheaton L., Mari Z., Vorbach S., and Hallett M.. 2004. “Identifying True Brain Interaction From EEG Data Using the Imaginary Part of Coherency.” Clinical Neurophysiology 115, no. 10: 2292–2307. 10.1016/j.clinph.2004.04.029. PubMed DOI
Northoff, G. , and Duncan N. W.. 2016. “How Do Abnormalities in the Brain's Spontaneous Activity Translate Into Symptoms in Schizophrenia? From an Overview of Resting State Activity Findings to a Proposed Spatiotemporal Psychopathology.” Progress in Neurobiology 145: 26–45. 10.1016/j.pneurobio.2016.08.003. PubMed DOI
Northoff, G. , and Qin P.. 2011. “How Can the Brain's Resting State Activity Generate Hallucinations? A ‘Resting State Hypothesis’ of Auditory Verbal Hallucinations.” Schizophrenia Research 127, no. 1–3: 202–214. 10.1016/j.schres.2010.11.009. PubMed DOI
Nunez, P. L. , Silberstein R. B., Cadusch P. J., Wijesinghe R. S., Westdorp A. F., and Srinivasan R.. 1994. “A Theoretical and Experimental Study of High Resolution EEG Based on Surface Laplacians and Cortical Imaging.” Electroencephalography and Clinical Neurophysiology 90, no. 1: 40–57. 10.1016/0013-4694(94)90112-0. PubMed DOI
Peirce, J. W. 2008. “Generating Stimuli for Neuroscience Using PsychoPy.” Frontiers in Neuroinformatics 2: 10. 10.3389/neuro.11.010.2008. PubMed DOI PMC
Peirce, J. W. , Gray J. R., Simpson S., et al. 2019. “PsychoPy2: Experiments in Behavior Made Easy.” Behavior Research Methods 51: 195–203. 10.3758/s13428-018-01193-y. PubMed DOI PMC
Pettersson‐Yeo, W. , Allen P., Benetti S., McGuire P., and Mechelli A.. 2011. “Dysconnectivity in Schizophrenia: Where Are We Now?” Neuroscience & Biobehavioral Reviews 35, no. 5: 1110–1124. 10.1016/j.neubiorev.2010.11.004. PubMed DOI
Pion‐Tonachini, L. , Kreutz‐Delgado K., and Makeig S.. 2019. “ICLabel: An Automated Electroencephalographic Independent Component Classifier, Dataset, and Website.” Neuroimage 198: 181–197. 10.1016/j.neuroimage.2019.05.026. PubMed DOI PMC
Ranlund, S. , Nottage J., Shaikh M., et al. 2014. “Resting EEG in Psychosis and At‐Risk Populations—A Possible Endophenotype?” Schizophrenia Research 153, no. 1–3: 96–102. 10.1016/j.schres.2013.12.017. PubMed DOI PMC
Schaefer, J. , Giangrande E., Weinberger D. R., and Dickinson D.. 2013. “The Global Cognitive Impairment in Schizophrenia: Consistent Over Decades and Around the World.” Schizophrenia Research 150, no. 1: 42–50. 10.1016/j.schres.2013.07.009. PubMed DOI PMC
Shin, Y. W. , O'Donnell B. F., Youn S., and Kwon J. S.. 2011. “Gamma Oscillation in Schizophrenia.” Psychiatry Investigation 8, no. 4: 288–296. 10.4306/pi.2011.8.4.288. PubMed DOI PMC
Sponheim, S. R. , Clementz B. A., Iacono W. G., and Beiser M.. 2000. “Clinical and Biological Concomitants of Resting state EEG Power Abnormalities in Schizophrenia.” Biological Psychiatry 48, no. 11: 1088–1097. 10.1016/s0006-3223(00)00907-0. PubMed DOI
Srinath, R. , and Ray S.. 2014. “Effect of Amplitude Correlations on Coherence in the Local Field Potential.” Journal of Neurophysiology 112, no. 4: 741–751. 10.1152/jn.00851.2013. PubMed DOI PMC
Stam, C. J. , Nolte G., and Daffertshofer A.. 2007. “Phase Lag Index: Assessment of Functional Connectivity From Multi Channel EEG and MEG With Diminished Bias From Common Sources.” Human Brain Mapping 28, no. 11: 1178–1193. 10.1002/hbm.20346. PubMed DOI PMC
Stephan, K. E. , Friston K. J., and Frith C. D.. 2009. “Dysconnection in Schizophrenia: From Abnormal Synaptic Plasticity to Failures of Self‐Monitoring.” Schizophrenia Bulletin 35, no. 3: 509–527. 10.1093/schbul/sbn176. PubMed DOI PMC
Tandon, R. , Gaebel W., Barch D. M., et al. 2013. “Definition and Description of Schizophrenia in the DSM‐5.” Schizophrenia Research 150, no. 1: 3–10. 10.1016/j.schres.2013.05.028. PubMed DOI
Tauscher, J. , Fischer P., Neumeister A., Rappelsberger P., and Kasper S.. 1998. “Low Frontal Electroencephalographic Coherence in Neuroleptic‐Free Schizophrenic Patients.” Biological Psychiatry 44, no. 6: 438–447. 10.1016/S0006-3223(97)00428-9. PubMed DOI
Uhlhaas, P. J. , and Singer W.. 2010. “Abnormal Neural Oscillations and Synchrony in Schizophrenia.” Nature Reviews Neuroscience 11, no. 2: 100–113. 10.1038/nrn2774. PubMed DOI
Uhlhaas, P. J. , and Singer W.. 2012. “Neuronal Dynamics and Neuropsychiatric Disorders: Toward a Translational Paradigm for Dysfunctional Large‐Scale Networks.” Neuron 75, no. 6: 963–980. 10.1016/j.neuron.2012.09.004. PubMed DOI
van der Gaag, M. , Hoffman T., Remijsen M., et al. 2006. “The Five‐factor Model of the Positive and Negative Syndrome Scale II: A Ten‐Fold Cross‐Validation of a Revised Model.” Schizophrenia Research 85, no. 1‐3: 280–287. 10.1016/j.schres.2006.03.021. PubMed DOI
van Os, J. , and Kapur S.. 2009. “Schizophrenia.” Lancet 374, no. 9690: 635–645. 10.1016/S0140-6736(09)60995-8. PubMed DOI
Venables, N. C. , Bernat E. M., and Sponheim S. R.. 2009. “Genetic and Disorder‐Specific Aspects of Resting State EEG Abnormalities in Schizophrenia.” Schizophrenia Bulletin 35, no. 4: 826–839. 10.1093/schbul/sbn021. PubMed DOI PMC
Whitfield‐Gabrieli, S. , and Ford J. M.. 2012. “Default Mode Network Activity and Connectivity in Psychopathology.” Annual Review of Clinical Psychology 8: 49–76. 10.1146/annurev-clinpsy-032511-143049. PubMed DOI
Winterer, G. , Egan M. F., Rädler T., Hyde T., Coppola R., and Weinberger D. R.. 2001. “An Association Between Reduced Interhemispheric EEG Coherence in the Temporal Lobe and Genetic Risk for Schizophrenia.” Schizophrenia Research 49, no. 1‐2: 129–143. 10.1016/S0920-9964(00)00128-6. PubMed DOI
World Medical Association . 2013. “World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects.” Jama 310, no. 20: 2191–2194. 10.1001/jama.2013.281053. PubMed DOI
Xiao, Y. , Liao W., Long Z., et al. 2022. “Subtyping Schizophrenia Patients Based on Patterns of Structural Brain Alterations.” Schizophrenia Bulletin 48, no. 1: 241–250. 10.1093/schbul/sbab110. PubMed DOI PMC
Yadav, S. , Haque Nizamie S., Das B., Das J., and Tikka S. K.. 2021. “Resting State Quantitative Electroencephalogram Gamma Power Spectra in Patients With First Episode Psychosis: An Observational Study.” Asian Journal of Psychiatry 57: 102550. 10.1016/j.ajp.2021.102550. PubMed DOI