Developing Benign Ni/g-C3N4 Catalysts for CO2 Hydrogenation: Activity and Toxicity Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35938051
PubMed Central
PMC9344432
DOI
10.1021/acs.iecr.2c00452
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This research discusses the CO2 valorization via hydrogenation over the non-noble metal clusters of Ni and Cu supported on graphitic carbon nitride (g-C3N4). The Ni and Cu catalysts were characterized by conventional techniques including XRD, AFM, ATR, Raman imaging, and TPR and were tested via the hydrogenation of CO2 at 1 bar. The transition-metal-based catalyst designed with atom-economy principles presents stable activity and good conversions for the studied processes. At 1 bar, the rise in operating temperature during CO2 hydrogenation increases the CO2 conversion and the selectivity for CO and decreases the selectivity for methanol on Cu/CN catalysts. For the Ni/CN catalyst, the selectivity to light hydrocarbons, such as CH4, also increased with rising temperature. At 623 K, the conversion attained ca. 20%, with CH4 being the primary product of the reaction (CH4 yield >80%). Above 700 K, the Ni/CN activity increases, reaching almost equilibrium values, although the Ni loading in Ni/CN is lower by more than 90% compared to the reference NiREF catalyst. The presented data offer a better understanding of the effect of the transition metals' small metal cluster and their coordination and stabilization within g-C3N4, contributing to the rational hybrid catalyst design with a less-toxic impact on the environment and health. Bare g-C3N4 is shown as a good support candidate for atom-economy-designed catalysts for hydrogenation application. In addition, cytotoxicity to the keratinocyte human HaCaT cell line revealed that low concentrations of catalysts particles (to 6.25 μg mL-1) did not cause degenerative changes.
Zobrazit více v PubMed
Gac W.; Zawadzki W.; Rotko M.; Greluk M.; Słowik G.; Kolb G. Effects of support composition on the performance of nickel catalysts in CO2methanation reaction. Catal. Today 2020, 357, 468.10.1016/j.cattod.2019.07.026. DOI
Müller K.; Fleige M.; Rachow F.; Schmeißer D. Sabatier based CO2-methanation of flue gas emitted byconventional power plants. Energy Proc. 2013, 40, 240.10.1016/j.egypro.2013.08.028. DOI
Frontera P.; Macario A.; Ferraro M.; Antonucci P. Supported Catalysts for CO2Methanation: A Review. Catalysts 2017, 7, 59.10.3390/catal7020059. DOI
Pieta I. S.; Epling W. S.; Kazmierczuk A.; Lisowski P.; Nowakowski R.; Serwicka E. M. Waste into Fuel—Catalyst and Process Development for MSW Valorisation. Catalysts 2018, 8 (3), 113.10.3390/catal8030113. DOI
Pieta I. S.; Michalik A.; Kraleva E.; Mrdenovic D.; Sek A.; Wahaczyk E.; Lewalska-Graczyk A.; Krysa M.; Sroka-Bartnicka A.; Pieta P.; Nowakowski R.; Lew A.; Serwicka E. M. Bio-DEE Synthesis and Dehydrogenation Coupling of Bio-Ethanol to Bio-Butanol over Multicomponent Mixed Metal Oxide Catalysts. Catalysts 2021, 11 (6), 660.10.3390/catal11060660. DOI
National Energy Technology Laboratory . Great Plains Synfuels Plant, https://www.netl.doe.gov/research/Coal/energy-systems/gasification/gasifipedia/great-plains accessed Feb 15, 2021.
Pieta I. S.The method and installation for continuous multi-parameter analysis of gaseous fuel conversion including reforming and measurement of post-reaction gas pollutants nitrogen, carbon and sulfur oxides and chlorine. Polish Patent, 2015, P-412277.
Pieta I. S.; Pieta P.; Nowakowski R.. Nickel-vanadium catalyst for the valorization of carbon dioxide, a method of obtaining a nickel-vanadium catalyst and the use of a nickel-vanadium catalyst in the processes of carbon dioxide hydrogenation and reforming. Polish Patent 2020, P.434122.
Ye R.-P.; Ding J.; Gong W.; Argyle M. D.; Zhong Q.; Wang Y.; Russell C. K.; Xu Z.; Russell A. G.; Li Q.; Fan M.; Yuan-Gen Y. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat. Commun. 2019, 10, 5698.10.1038/s41467-019-13638-9. PubMed DOI PMC
González-Gil R.; Herrera C.; Larrubia M. Á.; Kowalik P.; Pieta I. S.; Alemany L. J. Hydrogen production by steam reforming of DME over Ni-based catalysts modified with vanadium. Int. J. Hydrog. Energy 2016, 41 (43), 19781.10.1016/j.ijhydene.2016.05.074. DOI
González-Gil R.; Kowalik P.; Antoniak-Jurak K.; Lewalska-Graczyk A.; Herrera C.; Larrubia M. Á.; Pieta P.; Nowakowski R.; Pieta I. S.; Alemany L. J. The role of Lewis acidic vanadium centers in DME steam reforming over V-Ni catalysts. Chem. Eng. J. 2021, 423, 129996.10.1016/j.cej.2021.129996. DOI
He Z.; Cui M.; Qian Q.; Zhang J.; Liu H.; Ha B. Synthesis of liquid fuel via direct hydrogenation of CO2. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 12654.10.1073/pnas.1821231116. PubMed DOI PMC
Pieta I. S.; Kadam R. G.; Pieta P.; Mrdenovic D.; Nowakowski R.; Bakandritsos A.; Tomanec O.; Petr M.; Otyepka M.; Kostecki R.; Robert Kostecki; Majeed Khan M. A.; Zboril R.; Gawande M. B. The Hallmarks of Copper Single Atom Catalysts in Direct Alcohol Fuel Cells and Electrochemical CO2 Fixation. Adv. Mater. Interfaces 2021, 8 (8), 2001822.10.1002/admi.202001822. DOI
Garbarino G.; Kowalik P.; Riani P.; Antoniak-Jurak K.; Pieta P.; Lewalska-Graczyk A.; Lisowski W.; Nowakowski R.; Busca G.; Pieta I. S. Improvement of Ni/Al2O3 Catalysts for Low-Temperature CO2Methanation by Vanadium and Calcium Oxide Addition. Ind. Eng. Chem. Res. 2021, 60 (18), 6554.10.1021/acs.iecr.0c05556. DOI
Pieta I. S.; Rathi A.; Pieta P.; Nowakowski R.; Hołdynski M.; Pisarek M.; Kaminska A.; Gawande M. B.; Zboril R. Electrocatalytic methanol oxidation over Cu, Ni and bimetallic Cu-Ni nanoparticles supported on graphitic carbon nitride. Appl. Catal. B-Environmental 2019, 244, 272.10.1016/j.apcatb.2018.10.072. DOI
Pieta I. S.; Lewalska-Graczyk A.; Kowalik P.; Antoniak-Jurak K.; Krysa M.; Sroka-Bartnicka A.; Gajek A.; Lisowski W.; Mrdenovic D.; Pieta P.; Nowakowski R.; Lew A.; Serwicka E. M. CO2 Hydrogenation to Methane over Ni-Catalysts: The Effect of Support and Vanadia Promoting. Catalysts 2021, 11 (4), 433.10.3390/catal11040433. DOI
Homlamai K.; Maihom T.; Choomwattana S.; Sawangphruk M.; Limtrakul J. Single-atoms supported (Fe, Co, Ni, Cu) on graphitic carbon nitride for CO2 adsorption and hydrogenation to formic acid: First-principles insights. Appl. Surf. Sci. 2020, 499, 143928.10.1016/j.apsusc.2019.143928. DOI
Li S.; Guo S.; Gong D.; Kang N.; Fang K.-G.; Liu Y. Nano composite composed of MoOx-La2O3Ni on SiO2 for storing hydrogen into CH4 via CO2 methanation. Int. J. Hydrog. Energy 2019, 44 (3), 1597.10.1016/j.ijhydene.2018.11.130. DOI
Shinde G. Y.; Mote A. S.; Gawande M. B. Recent Advances of Photocatalytic Hydrogenation of CO2 to Methanol. Catalysts 2022, 12 (1), 94.10.3390/catal12010094. DOI
dos Santos K. R.; Silva J. S.; Gonçalves J. P.; Andrade H. M. C. Stabilization/Solidification of Toxic Elements in Cement Pastes Containing a Spent FCC Catalyst. Water, Air, & Soil Pollution 2021, 232 (2), 48.10.1007/s11270-021-05015-4. DOI
Xu J.; Zhang T. Fabrication of spent FCC catalyst composites by loaded V2O5 and TiO2 and their comparative photocatalytic activities. Sci. Rep. 2019, 9 (1), 11099.10.1007/s11270-021-05015-4. PubMed DOI PMC
Clariant . Catalysts and Adsorbents for Syngas. https://www.clariant.com/en/Business-Units/Catalysts/Syngas-Catalysts, accessed April 2021.
Lemonidou A. A.; Goula M. A.; Vasalos I. A. Carbon dioxide reforming of methane over 5 wt.% nickelcalcium aluminate catalysts ± effect of preparation method. Catal. Today 1998, 46, 175.10.1016/S0920-5861(98)00339-3. DOI
Matthey J.Catalysts for Olefin Processes. https://matthey.com/-/media/files/markets/jm-catalysts-for-olefin-processes.pdf, accessed April 2021.
INS PULAWY Commercial Methanation Catalysts. http://www.ins.pulawy.pl/index.php/en/products/catalysts-and-sorbents/methanation accessed June, 3, 2021.
Kuna E.; Mrdenovic D.; Jönsson-Niedziółka M.; Pieta P.; Pieta I. S. Bimetallic nanocatalysts supported on graphitic carbon nitride for sustainable energy development: the shape-structure-activity relation. Nanoscale Adv. 2021, 3 (5), 1342.10.1039/D0NA01063D. PubMed DOI PMC
Sharma P.; Kumar S.; Tomanec O.; Petr M.; Zhu Chen J.; Miller J. T.; Varma R. S.; Gawande M. B.; Zbořil R. Carbon Nitride-Based Ruthenium Single Atom Photocatalyst for CO2 Reduction to Methanol. Small 2021, 17 (16), 2006478.10.1002/smll.202006478. PubMed DOI
Álvarez A.; Bansode A.; Urakawa A.; Bavykina A. V.; Wezendonk T. A.; Makkee M.; Gascon J.; Kapteijn F. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes. Chem. Rev. 2017, 117 (14), 9804.10.1021/acs.chemrev.6b00816. PubMed DOI PMC
Lv X.; Lu G.; Wang Z.-Q.; Xu Z.-N.; Guo G.-C. Computational Evidence for Lewis Base-Promoted CO2 Hydrogenation to Formic Acid on Gold Surfaces. ACS Catal. 2017, 7 (7), 4519.10.1021/acscatal.7b00277. DOI
Gawande M. B.; Goswami A.; Felpin F.-X.; Asefa T.; Huang X.; Silva R.; Zou X.; Zboril R.; Varma R. S. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem. Rev. 2016, 116 (6), 3722.10.1021/acs.chemrev.5b00482. PubMed DOI
Gebretsadik F. B.; Ruiz-Martinez J.; González M. D.; Salagre P.; Cesteros Y. Cu boosting the collaborative effect of Ni and H+ in alloyed NiCu/saponite catalysts for hydrogenolysis of glycidol. Dalton Trans. 2021, 50 (26), 9198.10.1039/D1DT01189H. PubMed DOI
Grabow L. C.; Mavrikakis M. Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation. ACS Catal. 2011, 1 (4), 365.10.1021/cs200055d. DOI
Díez-Ramírez J.; Dorado F.; de la Osa A. R.; Valverde J. L.; Sánchez P. Hydrogenation of CO2 to Methanol at Atmospheric Pressure over Cu/ZnO Catalysts: Influence of the Calcination, Reduction, and Metal Loading. Ind. Eng. Chem. Res. 2017, 56 (8), 1979.10.1021/acs.iecr.6b04662. DOI
Guo Q. X.; Xie Y.; Wang X. J.; Lv S. C.; Hou T.; Liu X. M. Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures. Chem. Phys. Lett. 2003, 380, 84.10.1016/j.cplett.2003.09.009. DOI
Miller T. S.; Jorge A. B.; Suter T. M.; Sella A.; Cora F.; McMillan P. F. Carbon nitrides: synthesis and characterization of a new class of functional materials. Phys. Chem. Chem. Phys. 2017, 19, 15613.10.1039/C7CP02711G. PubMed DOI
Vedrine J. Acid-base characterization of heterogeneous catalysts: an up-to-date overview. Res. Chem. Intermed. 2015, 41, 9387.10.1007/s11164-015-1982-9. DOI
Zhu M.; Zhai C.; Sun M.; Hu Y.; Yan B. Ultrathin graphitic C3N4 nanosheet as a promising visible-light-activated support for boosting photoelectrocatalytic methanol oxidation. Appl. Catal. B: Environ. 2017, 203, 108.10.1016/j.apcatb.2016.10.012. DOI
Lewalska-Graczyk A.; Pieta P.; Garbarino G.; Busca G.; Holdynski M.; Kalisz G.; Sroka-Bartnicka A.; Nowakowski R.; Naushad M.; Gawande M. B.; Zboril R.; Pieta I. S. Graphitic Carbon Nitride-Nickel Catalyst: From Material Characterization to Efficient Ethanol Electrooxidation. ACS Sustain. Chem. Eng. 2020, 8, 7244.10.1021/acssuschemeng.0c02267. DOI
Kowalik P.; Antoniak-Jurak K.; Błesznowski M.; Herrera M.C.; Larrubia M.A.; Alemany L.J.; Pieta I.S. Biofuel steam reforming catalyst for fuel cell application. Catal. Today 2015, 254, 129.10.1016/j.cattod.2015.03.002. DOI
Liu Z.; Zhang S.; Li J.; Zhu J.; Ma L. Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NOx by NH3. Appl. Catal. B: Environ. 2014, 158–159, 11.10.1016/j.apcatb.2014.03.049. DOI
Liu Q.; Fan C.; Tang H.; Sun X.; Yang J.; Cheng X. One-pot synthesis of g-C3N4/V2O5 composites for visible light-driven photocatalytic activity. Appl. Surf. Sci. 2015, 358, 188.10.1016/j.apsusc.2015.09.010. DOI
Inagaki M.; Tsumura T.; Kinumoto T.; Toyoda M. Graphitic carbon nitrides (g-C3N4) with comparative discussion to carbon materials. Carbon 2019, 141, 580.10.1016/j.carbon.2018.09.082. DOI
Wang X.; Blechert S.; Antonietti M. Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis. ACS Catal. 2012, 2 (8), 1596.10.1021/cs300240x. DOI
Guo Q. X.; Xie Y.; Wang X. J.; Lv S. C.; Hou T.; Liu X. M. Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures. Chem. Phys. Lett. 2003, 380, 84.10.1016/j.cplett.2003.09.009. DOI
Miller T. S.; Jorge A. B.; Suter T. M.; Sella A.; Cora F.; McMillan P. F. Carbon nitrides: synthesis and characterization of a new class of functional materials. Phys. Chem. Chem. Phys. 2017, 19, 15613.10.1039/C7CP02711G. PubMed DOI
Busca G.; Lorenzelli V. Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Mater. Chem. 1982, 7, 89.10.1016/0390-6035(82)90059-1. DOI
Yang C.; Zhao Z.-Y.; Wei H.-T.; Deng X.-Y.; Liu Q.-J. DFT calculations for single-atom confinement effects of noble metals on monolayer g-C3N4 for photocatalytic applications. RSC Adv. 2021, 11 (7), 4276.10.1039/D0RA09815A. PubMed DOI PMC
Scheffer B.; Molhoek P.; Moulijn J. A. Temperature-programmed reduction of NiOsingle bondWO3/Al2O3 Hydrodesulphurization catalysts. Appl. Catal. 1989, 46, 11.10.1016/S0166-9834(00)81391-3. DOI
Li G.; Hu L.; Hill J. M. Comparison of reducibility and stability of alumina-supported Ni catalysts prepared by impregnation and co-precipitation. Appl. Catal. A: General 2006, 301, 16.10.1016/j.apcata.2005.11.013. DOI
Zhu T.; Song H.; Li F.; Chen Y. Hydrodeoxygenation of Benzofuran over Bimetallic Ni-Cu/γ-Al2O3 Catalysts. Catalysts 2020, 10 (3), 274.10.3390/catal10030274. DOI
Zhao D.; Zhang G.; Yan L.; Kong L.; Zheng H.; Mi J.; Li Z. Carbon nanotube-supported Cu-based catalysts for oxidative carbonylation of methanol to methyl carbonate: effect of nanotube pore size. Catal. Sci. Technol. 2020, 10 (8), 2615.10.1039/C9CY02407G. DOI
Peng G.; Sibener S. J.; Schatz G. C.; Ceyer S. T.; Mavrikakis M. CO2 Hydrogenation to Formic Acid on Ni(111). J. Phys. Chem. C 2012, 116 (4), 3001.10.1021/jp210408x. DOI
Darensbourg D. J.; Bauch Ch.; Ovalles C. Mechanistic aspects of catalytic carbon dioxide methanation. Rev. Inorg. Chem. 1985, 7 (4), 315.10.1515/REVIC.1985.7.4.315. DOI
Callaghan C. A.Kinetics and Catalysis of the Water-Gas-Shift Reaction: A Microkinetic and Graph Theoretic Approach. Worcester Polytechnic Institute, 2006.
Kouva S.; Honkala K.; Lefferts L.; Kanervo J. Review: monoclinic zirconia, its surface sites and their interaction with carbon monoxide. Catal. Sci. Technol. 2015, 5 (7), 3473.10.1039/C5CY00330J. DOI
Grabow L. C.; Gokhale A. A.; Evans S. T.; Dumesic J. A.; Mavrikakis M. Mechanism of the Water Gas Shift Reaction on Pt: First Principles, Experiments, and Microkinetic Modeling. J. Phys. Chem. C 2008, 112 (12), 4608.10.1021/jp7099702. DOI
Jung K.-D.; Bell A. T. Role of Hydrogen Spillover in Methanol Synthesis over Cu/ZrO2. J. Catal. 2000, 193 (2), 207.10.1006/jcat.2000.2881. DOI
Graf P. O.; de Vlieger D. J. M.; Mojet B. L.; Lefferts L. New insights in reactivity of hydroxyl groups in water gas shift reaction on Pt/ZrO2. J. Catal. 2009, 262 (2), 181.10.1016/j.jcat.2008.12.015. DOI
Bianchi D.; Chafik T.; Khalfallah M.; Teichner S. J. Intermediate species on zirconia supported methanol aerogel catalysts: II. Adsorption of carbon monoxide on pure zirconia and on zirconia containing zinc oxide. Appl. Catal. A: General 1993, 105 (2), 223.10.1016/0926-860X(93)80250-T. DOI
Koh G.; Zhang Y.-W.; Pan H. First-principles study on hydrogen storage by graphitic carbon nitride nanotubes. Int. J. Hydrog. Energy 2012, 37 (5), 4170.10.1016/j.ijhydene.2011.11.109. DOI
Ji Y.; Dong H.; Lin H.; Zhang L.; Hou T.; Li Y. Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane. RSC Adv. 2016, 6 (57), 52377.10.1039/C6RA06425F. DOI
Bonura G.; Cordaro M.; Cannilla C.; Arena F.; Frusteri F. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol. Appl. Catal. B-Environmental 2014, 152, 152.10.1016/j.apcatb.2014.01.035. DOI
Qiu M.; Tao H.; Li Y.; Zhang Y. Insight into the mechanism of CO2 and CO methanation over Cu(100) and Co-modified Cu(100) surfaces: A DFT study. Appl. Surf. Sci. 2019, 495, 143457.10.1016/j.apsusc.2019.07.199. DOI
Ma Y.; Sun Q.; Wu D.; Fan W.-H.; Zhang Y.-L.; Deng J.-F. A practical approach for the preparation of high activity Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation. Appl. Catal. AGeneral 1998, 171, 93328105.10.1016/S0926-860X%2898%2900079-9. DOI
Landsiedel R.; Fabian E.; Ma-Hock L.; Wohlleben W.; Wiench K.; Oesch F.; van Ravenzwaay B. Toxico-/biokinetics of nanomaterials. Arch. Toxicol. 2012, 86 (7), 1021.10.1007/s00204-012-0858-7. PubMed DOI
Donaldson K.; Schinwald A.; Murphy F.; Cho W.-S.; Duffin R.; Tran L.; Poland C. The Biologically Effective Dose in Inhalation Nanotoxicology. Acc. Chem. Res. 2013, 46 (3), 723.10.1021/ar300092y. PubMed DOI
Kermanizadeh A.; Balharry D.; Wallin H.; Loft S.; Møller P. Nanomaterial translocation-the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs-a review. Crit. Rev. Toxicol. 2015, 45 (10), 837.10.3109/10408444.2015.1058747. PubMed DOI
Ahamed M.; Alhadlaq H. A. Nickel nanoparticle-induced dose-dependent cyto-genotoxicity in human breast carcinoma MCF-7 cells. OncoTargets and Ther. 2014, 7, 269.10.2147/OTT.S58044. PubMed DOI PMC
Ahamed M.; Ali D.; Alhadlaq H. A.; Akhtar M. J. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Chemosphere 2013, 93 (10), 2514.10.1016/j.chemosphere.2013.09.047. PubMed DOI
Poornavaishnavi C.; Gowthami R.; Srikanth K.; Bramhachari P. V.; Venkatramaiah N. Nickel nanoparticles induces cytotoxicity, cell morphology and oxidative stress in bluegill sunfish (BF-2) cells. Appl. Surf. Sci. 2019, 483, 1174.10.1016/j.apsusc.2019.03.255. DOI
Pietruska J. R.; Liu X.; Smith A.; McNeil K.; Weston P.; Zhitkovich A.; Hurt R.; Kane A. B. Bioavailability, Intracellular Mobilization of Nickel, and HIF-1α Activation in Human Lung Epithelial Cells Exposed to Metallic Nickel and Nickel Oxide Nanoparticles. Toxicol. Sci. 2011, 124 (1), 138.10.1093/toxsci/kfr206. PubMed DOI PMC
Åkerlund E.; Islam M. S.; McCarrick S.; Alfaro-Moreno E.; Karlsson H. L. Inflammation and (secondary) genotoxicity of Ni and NiO nanoparticles. Nanotoxicol. 2019, 13 (8), 1060.10.1080/17435390.2019.1640908. PubMed DOI
Glista-Baker E. E.; Taylor A. J.; Sayers B. C.; Thompson E. A.; Bonner J. C. Nickel nanoparticles enhance platelet-derived growth factor-induced chemokine expression by mesothelial cells via prolonged mitogen-activated protein kinase activation. Am. J. Respir. Cell Mol. 2012, 47 (4), 552.10.1165/rcmb.2012-0023OC. PubMed DOI PMC
Hahn A.; Fuhlrott J.; Loos A.; Barcikowski S. Cytotoxicity and ion release of alloy nanoparticles. J. Nanopart. Res. 2012, 14 (1), 686.10.1007/s11051-011-0686-3. PubMed DOI PMC
Ada K.; Turk M.; Oguztuzun S.; Kilic M.; Demirel M.; Tandogan N.; Ersayar E.; Latif O. Cytotoxicity and apoptotic effects of nickel oxide nanoparticles in cultured HeLa cells. Folia Histochem. Cytobiol. 2010, 48 (4), 524.10.2478/v10042-010-0045-8. PubMed DOI
Guo D.; Wu C.; Li X.; Jiang H.; Wang X.; Chen B. In vitro cellular uptake and cytotoxic effect of functionalized nickel nanoparticles on leukemia cancer cells. J. Nanosci. Nanotechnol. 2008, 8 (5), 2301.10.1166/jnn.2008.18272. PubMed DOI
Felix L. P.; Perez J. E.; Contreras M. F.; Ravasi T.; Kosel J. Cytotoxic effects of nickel nanowires in human fibroblasts. Toxicol. Rep. 2016, 3, 373.10.1016/j.toxrep.2016.03.004. PubMed DOI PMC
Chakraborty R.; Basu T. Metallic copper nanoparticles induce apoptosis in a human skin melanoma A-375 cell line. Nanotechnology 2017, 28 (10), 105101.10.1088/1361-6528/aa57b0. PubMed DOI
Benguigui M.; Weitz I. S.; Timaner M.; Kan T.; Shechter D.; Perlman O.; Sivan S.; Raviv Z.; Azhari H.; Shaked Y. Copper oxide nanoparticles inhibit pancreatic tumor growth primarily by targeting tumor initiating cells. Sci. Rep. 2019, 9 (1), 12613.10.1038/s41598-019-48959-8. PubMed DOI PMC
Jing X.; Park J. H.; Peters T. M.; Thorne P. S. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air-liquid interface compared with in vivo assessment. Toxicol. In Vitro 2015, 29 (3), 502.10.1016/j.tiv.2014.12.023. PubMed DOI PMC
Chung I. M.; Abdul Rahuman A.; Marimuthu S.; Kirthi A. V.; Anbarasan K.; Padmini P.; Rajakumar G. Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp. Ther. Med. 2017, 14 (1), 18.10.3892/etm.2017.4466. PubMed DOI PMC
Prasad P. R.; Kanchi S.; Naidoo E. B. In-vitro evaluation of copper nanoparticles cytotoxicity on prostate cancer cell lines and their antioxidant, sensing and catalytic activity: One-pot green approach. J. Photochem. Photobiol. B: Biol. 2016, 161, 375.10.1016/j.jphotobiol.2016.06.008. PubMed DOI
Chaudhary J.; Tailor G.; Yadav B. L.; Michael O. Synthesis and biological function of Nickel and Copper nanoparticles. Heliyon 2019, 5 (6), e0187810.1016/j.heliyon.2019.e01878. PubMed DOI PMC
Argueta-Figueroa L.; Morales-Luckie R. A.; Scougall-Vilchis R. J.; Olea-Mejía O. F. Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu-Ni nanoparticles for potential use in dental materials. Prog. Nat. Sci. 2014, 24 (4), 321.10.1016/j.pnsc.2014.07.002. DOI
Kalińska A.; Jaworski S.; Wierzbicki M.; Gołȩbiewski M. Silver and Copper Nanoparticles-An Alternative in Future Mastitis Treatment and Prevention?. Int. J. Mol. Sci. 2019, 20 (7), 1672.10.3390/ijms20071672. PubMed DOI PMC
Guo H.; Liu H.; Wu H.; Cui H.; Fang J.; Zuo Z.; Deng J.; Li Y.; Wang X.; Zhao L. Nickel Carcinogenesis Mechanism: DNA Damage. Int. J. Mol. Sci. 2019, 20 (19), 4690.10.3390/ijms20194690. PubMed DOI PMC
Kasprzak K. S.; Sunderman F. W.; Salnikow K. Nickel carcinogenesis. Mutat. Res. - Fundam. Mol. Mech. Mutagen. 2003, 533 (1), 67.10.1016/j.mrfmmm.2003.08.021. PubMed DOI
Gunawan C.; Teoh W. Y.; Marquis C. P.; Amal R. Cytotoxic Origin of Copper(II) Oxide Nanoparticles: Comparative Studies with Micron-Sized Particles, Leachate, and Metal Salts. ACS Nano 2011, 5 (9), 7214.10.1021/nn2020248. PubMed DOI