Distinct microbial communities supported by iron oxidation
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
UNCE/24/SCI/006
University Research Centres (UNCE) at Charles University
23-06568S
Grantová Agentura České Republiky
PubMed
39389910
DOI
10.1111/1462-2920.16706
Knihovny.cz E-zdroje
- MeSH
- Archaea metabolismus klasifikace genetika MeSH
- Bacteria * klasifikace metabolismus genetika MeSH
- biodiverzita MeSH
- ekosystém MeSH
- fylogeneze MeSH
- hornictví MeSH
- koncentrace vodíkových iontů MeSH
- mikrobiota MeSH
- oxidace-redukce * MeSH
- železo * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- železo * MeSH
Microbial biostalactites and streamers commonly grow at iron seepages in abandoned mines worldwide. This study addresses the diversity and composition of these simple prokaryotic communities, which thrive in pH ranges from 2.4 to 6.6 across six different mines. Our analysis of 85 communities reveals that a pH of approximately 3.2 is a critical threshold where alpha and beta diversity change discretely. Below this pH, the average number of ASVs per sample is 2.91 times lower than above this boundary. Autotrophs, heterotrophs, and symbionts of eukaryotes originate from nearly non-overlapping species pools in the two habitat types that differ only in pH. Communities below pH 3.2 further divide into two distinct groups, differing in diversity, taxonomic, and functional composition. Both types of communities coexist within the same stalactites, likely corresponding to zones where the capillary structure of the stalactite is either perfused or clogged. These findings indicate that microbial community structure can be significantly influenced by the intricate spatial organization of the ecosystem, rather than solely by measurable environmental parameters.
Department of Ecology Faculty of Science Charles University Prague Czechia
Department of Philosophy and History of Science Faculty of Science Charles University Prague Czechia
Department of Zoology Faculty of Science Charles University Prague Czechia
Zobrazit více v PubMed
Andersen, T., Carstensen, J., Hernández‐García, E. & Duarte, C.M. (2008) Ecological thresholds and regime shifts: approaches to identification. Trends in Ecology & Evolution, 24, 49–57.
Aronesty, E. (2011) ea‐utils: “Command‐line tools for processing biological sequencing data”. https://github.com/ExpressionAnalysis/ea-utils
Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L. & Wolf, M. (1996) Schwertmannite and the chemical modelling of iron in acid sulfate waters. Geochimica et Cosmochimica Acta, 60, 2111–2121.
Bond, P.L., Smriga, S.P. & Banfield, J.F. (2000) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Applied and Environmental Microbiology, 66, 3842–3849.
Brown, J.F., Jones, D.S., Mills, D.B., Macalady, J.L. & Burgos, W.D. (2011) Application of a depositional facies model to an acid mine drainage site. Applied and Environmental Microbiology, 77, 545–554.
Burgaud, C., Rouchon, V., Wattiaux, A., Bleton, J., Sabot, R. & Refait, P. (2010) Determination of the Fe(II)/Fe(III) ratio in iron gall inks by potentiometry: a preliminary study. Journal of Electroanalytical Chemistry, 650, 16–23.
Burkartová, K., Dresler, J., Rídl, J. & Falteisek, L. (2022) Population genomics of microbial biostalactites: non‐recombinogenic genome islands and microdiversification by transposons. Frontiers in Microbiology, 13, 828531.
Caley, M.J. & Schluter, D. (1997) The relationship between local and regional diversity. Ecology, 78, 70–80.
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A. & Holmes, S.P. (2016) DADA2: high‐resolution sample inference from Illumina amplicon data. Nature Methods, 13, 581–583.
Chan, C.S., McAllister, S.M., Leavitt, A.H., Glazer, B.T., Krepski, S.T. & Emerson, D. (2016) The architecture of iron microbial mats reflects the adaptation of chemolithotrophic iron oxidation in fresh water and marine environments. Frontiers in Microbiology, 7, 796.
Chen, J., Bittinger, K., Charlson, E.S., Hoffmann, C., Lewis, J., Wu, G.D. et al. (2012) Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics, 28, 2106–2113.
Comolli, L.R., Luef, B. & Chan, C.S. (2011) High‐resolution 2D and 3D cryo‐TEM reveals structural adaptations of two stalk‐forming bacteria to an Fe‐oxidizing lifestyle. Environmental Microbiology, 13, 2915–2929.
Cui, Y., Chen, J., Zhang, Y., Peng, D., Huang, T. & Sun, C. (2019) pH‐dependent leaching characteristics of major and toxic elements from red mud. International Journal of Environmental Research and Public Health, 16, 2046.
Denef, V.J., Mueller, R.S. & Banfield, J.F. (2010) AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. The ISME Journal, 4, 599–610.
Druschel, G.K., Baker, B.J., Gihring, T.M. & Banfield, J.F. (2004) Acid mine drainage biogeochemistry at Iron Mountain, California. Geochemical Transactions, 5, 13–32.
Dvořák, Z., Gramblička, R., Radoň, M. & Števko, M. (2012) Rudní revír Hrob ‐ Mikulov v Krušných horách. Minerál, 20, 37–43.
Edwards, K.J., Bond, P.L., Gihring, T.M. & Banfield, J.F. (2000) An archaeal iron‐oxidizing extreme acidophile important in acid mine drainage. Science, 287, 1796–1799.
Faith, D.P., Lozupone, C.A., Nipperess, D. & Knight, R. (2009) The cladistic basis for the phylogenetic diversity (PD) measure links evolutionary features to environmental gradients and supports broad applications of microbial ecology's "phylogenetic beta diversity" framework. International Journal of Molecular Sciences, 10, 4723–4741.
Faith, D.P., Minchin, P.R. & Belbin, L. (1987) Compositional dissimilarity as a robust measure of ecological distance. Plant Ecology, 69, 57–68.
Fenchel, T. & Finlay, B.J. (2004) The ubiquity of small species: patterns of local and global diversity. Bioscience, 54, 777–784.
Fernandez‐Rojo, L., Casiot, C., Tardy, V., Laroche, E., Le Pape, P., Morin, G. et al. (2018) Hydraulic retention time affects bacterial community structure in an As‐rich acid mine drainage (AMD) biotreatment process. Applied Microbiology and Biotechnology, 102, 9803–9813.
Ferrier, S., Manion, G., Elith, J. & Richardson, K. (2007) Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions, 13, 252–264.
Goebel, B.M. & Stackebrandt, E. (1994) Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Applied and Environmental Microbiology, 60, 1614–1621.
González‐Toril, E., Aguilera, Á., Souza‐Egipsy, V., Pamo, E.L., España, J.S. & Amils, R. (2011) Geomicrobiology of La Zarza‐Perrunal acid mine effluent (Iberian Pyritic Belt, Spain). Applied and Environmental Microbiology, 77, 2685–2694.
Grettenberger, C.L., Pearce, A.R., Bibby, K.J., Jones, D.S., Burgos, W.D. & Macalady, J.L. (2017) Efficient low‐pH iron removal by a microbial iron oxide mound ecosystem at scalp level run. Applied and Environmental Microbiology, 83, e00015–e00017.
Hall, T.A. (1999) BioEdit: a user‐friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Aeries, 41, 95–98.
Hallberg, K.B., Coupland, K., Kimura, S. & Johnson, D.B. (2006) Macroscopic streamer growths in acidic, metal‐rich mine waters in North Wales consist of novel and remarkably simple bacterial communities. Applied and Environmental Microbiology, 72, 2022–2030.
Heinzel, E., Janneck, E., Glombitza, F., Schlömann, M. & Seifert, J. (2009) Population dynamics of iron‐oxidizing communities in pilot plants for the treatment of acid mine waters. Environmental Science and Technology, 43, 6138–6144.
Hulsen, T., de Vlieg, J. & Alkema, W. (2008) BioVenn—a web application for the comparison and visualization of biological lists using area‐proportional Venn diagrams. BMC Genomics, 9, 488.
Johnson, D.B., Hallberg, K.B. & Hedrich, S. (2014) Uncovering a microbial enigma: isolation and characterization of the streamer‐generating, iron‐oxidizing, acidophilic bacterium “Ferrovum myxofaciens”. Applied and Environmental Microbiology, 80, 672–680.
Jones, D.S., Kohl, C., Grettenberger, C., Larson, L.N., Burgos, W.D. & Macalady, J.L. (2015) Geochemical niches of iron‐oxidizing acidophiles in acidic coal mine drainage. Applied and Environmental Microbiology, 81, 1242–1250.
Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20, 1160–1166.
Kim, J., Kim, S. & Tazaki, K. (2002) Mineralogical characterization of microbial ferrihydrite and schwertmannite, and non‐biogenic Al‐sulfate precipitates from acid mine drainage in the Donghae mine area, Korea. Environmental Geology, 42, 19–31.
Kimura, S., Bryan, C.G., Hallberg, K.B. & Johnson, D.B. (2011) Biodiversity and geochemistry of an extremely acidic, low‐temperature subterranean environment sustained by chemolithotrophy. Environmental Microbiology, 13, 2092–2104.
Kuang, J.L., Huang, L.N., Chen, L.X., Hua, Z.S., Li, S.J., Hu, M. et al. (2013) Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. The ISME Journal, 7, 1038–1050.
Laidler, K.J. & Meiser, J.H. (1999) Physical chemistry, 3rd edition. Houghton Mifflin Company: Boston and New York, p. 294.
Liu, J., Hua, Z.S., Chen, L.X., Kuang, J.L., Li, S.J., Shu, W.S. et al. (2014) Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous environment of mine tailings. Applied and Environmental Microbiology, 80, 3677–3686.
Mangiafico, S. (2024) Rcompanion: functions to support extension. In: Education program evaluation. Version 2.4.35. New Brunswick, NJ: Rutgers Cooperative Extension. https://CRAN.R-project.org/package=rcompanion
Martin, M. (2011) Cutadapt removes adapter sequences from high‐throughput sequencing reads. EMBnet.Journal, 17, 10–12.
McMurdie, P.J. & Holmes, S. (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One, 8, e61217.
Nemergut, D.R., Costello, E.K., Hamady, M., Lozupone, C., Jiang, L., Schmidt, S.K. et al. (2011) Global patterns in the biogeography of bacterial taxa. Environmental Microbiology, 13, 135–144.
Nemergut, D.R., Schmidt, S.K., Fukami, T., O'Neill, S.P., Bilinski, T.M., Stanish, L.F. et al. (2013) Patterns and processes of microbial community assembly. Microbiology and Molecular Biology Reviews, 77, 342–356.
Okie, J.G. & Storch, D. (2023) The equilibrium theory of biodiversity dynamics: a general framework for scaling species 2 richness and community abundance along environmental gradients. bioRxiv. https://doi.org/10.1101/2023.07.17.549376
Paradis, E. & Schliep, K. (2019) Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526–528.
Pohlert, T. (2023) PMCMRplus: calculate pairwise multiple comparisons of mean rank sums extended. R Package Version 1.9.8, https://CRAN.R-project.org/package=PMCMRplus
Power, J.F., Carere, C.R., Lee, C.K., Wakerley, G.L.J., Evans, D.W., Button, M. et al. (2018) Microbial biogeography of 925 geothermal springs in New Zealand. Nature Communications, 9, 2876.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P. et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web‐based tools. Nucleic Acids Research, 41, D590–D596.
Rose, A.W. (2010) Advances in passive treatment of coal mine drainage 1998‐2009. Journal American Society of Mining and Reclamation, 2010, 847–887.
Sattran, V. (1957) Polymetallic mineralization in eastern Krušné hory Mts. Sborník Ústředního ústavu geologického: Oddíl geologický, 25, 135–185 (in Czech).
Soininnen, J. (2012) Macroecology of unicellular organisms—patterns and processes. Environmental Microbiology Reports, 4, 10–22.
Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post‐analysis of large phylogenies. Bioinformatics Applications, 30, 1312–1313.
Stegen, J.C., Lin, X., Konopka, A.E. & Fredrickson, J.K. (2012) Stochastic and deterministic assembly processes in subsurface microbial communities. The ISME Journal, 6, 1653–1664.
Tyson, G., Chapman, J., Hugenholtz, P., Allen, E.E., Ram, R.J., Richardson, P.M. et al. (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 428, 37–43.
Vaněček, M. (2004) Characteristic of the Zlaté Hory ore deposit and quantity of the polymetallic ore reserves. In: Pecina, V. & Večeřa, J. (Eds.) Zlaté Hory mine district, proceedings of international conference. Jeseník: Czech Geological Survey, pp. 50–53 (in Czech).
Větrovský, T., Baldrian, P. & Morais, D. (2018) SEED 2: a user‐friendly platform for amplicon high‐throughput sequencing data analyses. Bioinformatics, 34, 2292–2294.
Ziegler, S., Dolch, K., Geiger, K., Krause, S., Asskamp, M., Eusterhues, K. et al. (2013) Oxygen‐dependent niche formation of a pyrite‐dependent acidophilic consortium built by archaea and bacteria. The ISME Journal, 7, 1725–1737.