RENEB interlaboratory comparison for biological dosimetry based on dicentric chromosome analysis and cobalt-60 exposures higher than 2.5 Gy

. 2025 Feb 14 ; 15 (1) : 5485. [epub] 20250214

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid39952996
Odkazy

PubMed 39952996
PubMed Central PMC11828874
DOI 10.1038/s41598-025-89966-2
PII: 10.1038/s41598-025-89966-2
Knihovny.cz E-zdroje

In previous RENEB interlaboratory comparisons based on the manual scoring of dicentric chromosomes, a tendency for systematic overestimation for doses > 2.5 Gy was found. However, these exercises included only very few doses in the high dose range, and they were heterogeneous in terms of radiation quality and evaluation mode, and comparable only to a limited extent. Here, this presumed deviation was explored by investigating three doses > 2.5 Gy. Blood samples were irradiated (2.56, 3.41 and 4.54 Gy) using a 60Co source and sent to 14 member laboratories of the RENEB network, which performed the dicentric chromosome assay (manual and/or semi-automatic scoring) and reported dose estimates. Most participants provided estimates that agreed very well with the physical reference doses and all provided dose estimates were in the correct clinical category (> 2 Gy). The previously observed tendency for a systematic bias across all laboratories was not confirmed. However, tendencies for systematic underestimation were detected for dose estimations for reference doses given in terms of absorbed dose to blood and for some participants, a laboratory-specific trend of systematic under- or overestimation was observed. The importance of regularly performed quality checks for a broad dose range became obvious to avoid misinterpretation of results.

Bundeswehr Institute of Radiobiology Munich Germany

Center for Radiation Protection Research Department of Molecular Biosciences The Wenner Gren Institute Stockholm University Stockholm Sweden

Centro de Ciências e Tecnologias Nucleares Departamento de Engenharia e Ciências Nucleares Instituto Superior Técnico Universidade de Lisboa Lisboa Portugal

Department for Dosimetry for Radiation Therapy and Diagnostic Radiology Physikalisch Technische Bundesanstalt Braunschweig Germany

Department of Effects and Risks of Lonising and Non Ionising Radiation Federal Office for Radiation Protection Oberschleissheim Germany

Department of Radiation Biological Effects French Armed Forces Biomedical Research Institute Brétigny sur Orge France

Department of Radiobiology Military Faculty of Medicine University of Defence Hradec Kralove Czech Republic

Health Physics Radiobiology and Cytogenetics Laboratory Institute of Nuclear and Radiological Sciences and Technology Energy and Safety National Centre for Scientific Research 'Demokritos' Athens Greece

Institut de Radioprotection et de Sureté Nucléaire PSE SANTE SERAMED LRAcc Fontenay aux Roses F 92260 France

Laboratorio de Dosimetría Biológica Servicio de Oncología Radioterápica Hospital General Universitario Gregorio Marañon Madrid Spain

Radiation Effects Department UK Health Security Agency Radiation Chemicals Climate and Environmental Hazards Directorate Chilton UK

Radiobiology Department National Centre of Radiobiology and Radiation Protection Sofia Bulgaria

Radiobiology Lab Department of Human Structure and Repair Ghent University Gent Belgium

Service of Radiological Protection Clinical Area of Medical Image University and Polytechnic La Fe Hospital Valencia Spain

Unitat d'Antropologia Biològica Departament de Biologia Animal Biologia Vegetal i Ecologia Universitat Autònoma de Barcelona Bellaterra E 08193 Catalonia Spain

Zobrazit více v PubMed

Blakely, W. F. et al. WHO 1st Consultation on the development of a Global Biodosimetry Laboratories Network for Radiation Emergencies (BioDoseNet). Radiat. Res.171, 127–139 (2009). PubMed

ISO19238. in. ISO 19238:2023 (International Organization of Standardization, 2023).

ISO21243. in. ISO 21243:2022 (International Organization of Standardization, 2022).

IAEA. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies (INTERNATIONAL ATOMIC ENERGY AGENCY, 2011).

Biodosimetry, I. C. R. U. J. ICRU19, 26–45, doi:10.1177/1473669119893151 (2019).

Pernot, E. et al. Ionizing radiation biomarkers for potential use in epidemiological studies. Mutat. Res.751, 258–286. 10.1016/j.mrrev.2012.05.003 (2012). PubMed

Trompier, F. et al. Investigation of the influence of calibration practices on cytogenetic laboratory performance for dose estimation. Int. J. Radiat. Biol.93, 118–126. 10.1080/09553002.2016.1213455 (2017). PubMed

Kulka, U. et al. Radiat. Prot. Dosimetry182, 128–138, doi:10.1093/rpd/ncy137 (2018). PubMed

Kulka, U. et al. RENEB – running the European Network of biological dosimetry and physical retrospective dosimetry. Int. J. Radiat. Biol.93, 2–14. 10.1080/09553002.2016.1230239 (2017). PubMed

Oestreicher, U. et al. RENEB intercomparisons applying the conventional Dicentric chromosome assay (DCA). Int. J. Radiat. Biol.93, 20–29. 10.1080/09553002.2016.1233370 (2017). PubMed

Endesfelder, D. et al. RENEB inter-laboratory comparison 2021: the Dicentric chromosome assay. Radiat. Res.199, 556–570. 10.1667/RADE-22-00202.1 (2023). PubMed

Endesfelder, D. et al. What we have learned from RENEB inter-laboratory comparisons since 2012 with Focus on ILC 2021. Radiat. Res.199, 616–627 (2023). PubMed

Barquinero, J. F. et al. Establishment and validation of a dose-effect curve for γ-rays by cytogenetic analysis. Mutat. Research/Fundamental Mol. Mech. Mutagen.326, 65–69. 10.1016/0027-5107(94)00150-4 (1995). PubMed

Hernandez, A. et al. Biodose Tools: an R shiny application for biological dosimetry. Int. J. Radiat. Biol. 1–13. 10.1080/09553002.2023.2176564 (2023). PubMed

Deperas, J. et al. CABAS: a freely available PC program for fitting calibration curves in chromosome aberration dosimetry. Radiat. Prot. Dosimetry. 124, 115–123. 10.1093/rpd/ncm137 (2007). PubMed

Blakely, W. F., Port, M. & Abend, M. Early-response multiple-parameter biodosimetry and dosimetry: risk predictions. J. Radiol. Prot.4110.1088/1361-6498/ac15df (2021). PubMed

IAEA. Medical Management of Radiation Injuries (INTERNATIONAL ATOMIC ENERGY AGENCY, 2020).

Sullivan, J. M. et al. Assessment of biodosimetry methods for a mass-casualty radiological incident: medical response and management considerations. Health Phys.105, 540–554. 10.1097/HP.0b013e31829cf221 (2013). PubMed PMC

Wilkins, R. C., Lloyd, D. C., Maznyk, N. A. & Carr, Z. The international biodosimetry capacity, capabilities, needs and challenges: the 3rd WHO BioDoseNet survey results. Environ. Adv.8, 100202. 10.1016/j.envadv.2022.100202 (2022).

Romm, H. et al. Biological dosimetry by the triage dicentric chromosome assay: potential implications for treatment of acute radiation syndrome in radiological mass casualties. Radiat. Res.175, 397–404. 10.1667/rr2321.1 (2011). PubMed

García, O. et al. The latin American Biological Dosimetry Network (LBDNet). Radiat. Prot. Dosimetry. 171, 64–69. 10.1093/rpd/ncw209 (2016). PubMed

Endesfelder, D. et al. RENEB/EURADOS field exercise 2019: robust dose estimation under outdoor conditions based on the dicentric chromosome assay. Int. J. Radiat. Biol.97, 1181–1198. 10.1080/09553002.2021.1941380 (2021). PubMed

Gregoire, E. et al. RENEB inter-laboratory comparison 2017: limits and pitfalls of ILCs. Int. J. Radiat. Biol.97, 888–905. 10.1080/09553002.2021.1928782 (2021). PubMed

Jaworska, A. et al. Operational guidance for radiation emergency response organisations in Europe for using biodosimetric tools developed in EU MULTIBIODOSE project. Radiat. Prot. Dosimetry. 164, 165–169. 10.1093/rpd/ncu294 (2015). PubMed

Lloyd, D. C., Edwards, A. A., Moquet, J. E. & Guerrero-Carbajal, Y. C. The role of cytogenetics in early triage of radiation casualties. Appl. Radiat. Isot.52, 1107–1112. 10.1016/s0969-8043(00)00054-3 (2000). PubMed

Romm, H. et al. Web based scoring is useful for validation and harmonisation of scoring criteria within RENEB. Int. J. Radiat. Biol.93, 110–117. 10.1080/09553002.2016.1206228 (2017). PubMed

ISO4037-1. in. ISO 4037-1:2019 (International Organization of Standardization, 2019).

Kessler, C., Burns, D. T. & Büermann, L. Key comparison BIPM.RI(I)-K1 of the air-kerma standards of the PTB, Germany and the BIPM in 60Co gamma radiation. Metrologia51, 06012. 10.1088/0026-1394/51/1A/06012 (2014).

EGSnrc. Software for Monte Carlo Simulation of Ionizing Radiation EGSnrc: logiciel pour la Simulation Monte Carlo Du Rayonnement Ionisant (National Research Council of Canada Conseil national de recherches du Canada, 2021).

Di Giorgio, M. et al. Biological dosimetry intercomparison exercise: an evaluation of triage and routine mode results by robust methods. Radiat. Res.175, 638–649. 10.1667/RR2425.1 (2011). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...