RENEB interlaboratory comparison for biological dosimetry based on dicentric chromosome analysis and cobalt-60 exposures higher than 2.5 Gy
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, srovnávací studie
PubMed
39952996
PubMed Central
PMC11828874
DOI
10.1038/s41598-025-89966-2
PII: 10.1038/s41598-025-89966-2
Knihovny.cz E-zdroje
- Klíčová slova
- Biological dosimetry, Dicentric chromosome, Interlaboratory comparison, Ionising radiation, Network, Radiation accident,
- MeSH
- chromozomální aberace * účinky záření MeSH
- dávka záření MeSH
- laboratoře normy MeSH
- lidé MeSH
- radioizotopy kobaltu * MeSH
- radiometrie * metody MeSH
- vztah dávky záření a odpovědi MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- Cobalt-60 MeSH Prohlížeč
- radioizotopy kobaltu * MeSH
In previous RENEB interlaboratory comparisons based on the manual scoring of dicentric chromosomes, a tendency for systematic overestimation for doses > 2.5 Gy was found. However, these exercises included only very few doses in the high dose range, and they were heterogeneous in terms of radiation quality and evaluation mode, and comparable only to a limited extent. Here, this presumed deviation was explored by investigating three doses > 2.5 Gy. Blood samples were irradiated (2.56, 3.41 and 4.54 Gy) using a 60Co source and sent to 14 member laboratories of the RENEB network, which performed the dicentric chromosome assay (manual and/or semi-automatic scoring) and reported dose estimates. Most participants provided estimates that agreed very well with the physical reference doses and all provided dose estimates were in the correct clinical category (> 2 Gy). The previously observed tendency for a systematic bias across all laboratories was not confirmed. However, tendencies for systematic underestimation were detected for dose estimations for reference doses given in terms of absorbed dose to blood and for some participants, a laboratory-specific trend of systematic under- or overestimation was observed. The importance of regularly performed quality checks for a broad dose range became obvious to avoid misinterpretation of results.
Bundeswehr Institute of Radiobiology Munich Germany
Radiobiology Department National Centre of Radiobiology and Radiation Protection Sofia Bulgaria
Radiobiology Lab Department of Human Structure and Repair Ghent University Gent Belgium
Zobrazit více v PubMed
Blakely, W. F. et al. WHO 1st Consultation on the development of a Global Biodosimetry Laboratories Network for Radiation Emergencies (BioDoseNet). Radiat. Res.171, 127–139 (2009). PubMed
ISO19238. in. ISO 19238:2023 (International Organization of Standardization, 2023).
ISO21243. in. ISO 21243:2022 (International Organization of Standardization, 2022).
IAEA. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies (INTERNATIONAL ATOMIC ENERGY AGENCY, 2011).
Biodosimetry, I. C. R. U. J. ICRU19, 26–45, doi:10.1177/1473669119893151 (2019).
Pernot, E. et al. Ionizing radiation biomarkers for potential use in epidemiological studies. Mutat. Res.751, 258–286. 10.1016/j.mrrev.2012.05.003 (2012). PubMed
Trompier, F. et al. Investigation of the influence of calibration practices on cytogenetic laboratory performance for dose estimation. Int. J. Radiat. Biol.93, 118–126. 10.1080/09553002.2016.1213455 (2017). PubMed
Kulka, U. et al. Radiat. Prot. Dosimetry182, 128–138, doi:10.1093/rpd/ncy137 (2018). PubMed
Kulka, U. et al. RENEB – running the European Network of biological dosimetry and physical retrospective dosimetry. Int. J. Radiat. Biol.93, 2–14. 10.1080/09553002.2016.1230239 (2017). PubMed
Oestreicher, U. et al. RENEB intercomparisons applying the conventional Dicentric chromosome assay (DCA). Int. J. Radiat. Biol.93, 20–29. 10.1080/09553002.2016.1233370 (2017). PubMed
Endesfelder, D. et al. RENEB inter-laboratory comparison 2021: the Dicentric chromosome assay. Radiat. Res.199, 556–570. 10.1667/RADE-22-00202.1 (2023). PubMed
Endesfelder, D. et al. What we have learned from RENEB inter-laboratory comparisons since 2012 with Focus on ILC 2021. Radiat. Res.199, 616–627 (2023). PubMed
Barquinero, J. F. et al. Establishment and validation of a dose-effect curve for γ-rays by cytogenetic analysis. Mutat. Research/Fundamental Mol. Mech. Mutagen.326, 65–69. 10.1016/0027-5107(94)00150-4 (1995). PubMed
Hernandez, A. et al. Biodose Tools: an R shiny application for biological dosimetry. Int. J. Radiat. Biol. 1–13. 10.1080/09553002.2023.2176564 (2023). PubMed
Deperas, J. et al. CABAS: a freely available PC program for fitting calibration curves in chromosome aberration dosimetry. Radiat. Prot. Dosimetry. 124, 115–123. 10.1093/rpd/ncm137 (2007). PubMed
Blakely, W. F., Port, M. & Abend, M. Early-response multiple-parameter biodosimetry and dosimetry: risk predictions. J. Radiol. Prot.4110.1088/1361-6498/ac15df (2021). PubMed
IAEA. Medical Management of Radiation Injuries (INTERNATIONAL ATOMIC ENERGY AGENCY, 2020).
Sullivan, J. M. et al. Assessment of biodosimetry methods for a mass-casualty radiological incident: medical response and management considerations. Health Phys.105, 540–554. 10.1097/HP.0b013e31829cf221 (2013). PubMed PMC
Wilkins, R. C., Lloyd, D. C., Maznyk, N. A. & Carr, Z. The international biodosimetry capacity, capabilities, needs and challenges: the 3rd WHO BioDoseNet survey results. Environ. Adv.8, 100202. 10.1016/j.envadv.2022.100202 (2022).
Romm, H. et al. Biological dosimetry by the triage dicentric chromosome assay: potential implications for treatment of acute radiation syndrome in radiological mass casualties. Radiat. Res.175, 397–404. 10.1667/rr2321.1 (2011). PubMed
García, O. et al. The latin American Biological Dosimetry Network (LBDNet). Radiat. Prot. Dosimetry. 171, 64–69. 10.1093/rpd/ncw209 (2016). PubMed
Endesfelder, D. et al. RENEB/EURADOS field exercise 2019: robust dose estimation under outdoor conditions based on the dicentric chromosome assay. Int. J. Radiat. Biol.97, 1181–1198. 10.1080/09553002.2021.1941380 (2021). PubMed
Gregoire, E. et al. RENEB inter-laboratory comparison 2017: limits and pitfalls of ILCs. Int. J. Radiat. Biol.97, 888–905. 10.1080/09553002.2021.1928782 (2021). PubMed
Jaworska, A. et al. Operational guidance for radiation emergency response organisations in Europe for using biodosimetric tools developed in EU MULTIBIODOSE project. Radiat. Prot. Dosimetry. 164, 165–169. 10.1093/rpd/ncu294 (2015). PubMed
Lloyd, D. C., Edwards, A. A., Moquet, J. E. & Guerrero-Carbajal, Y. C. The role of cytogenetics in early triage of radiation casualties. Appl. Radiat. Isot.52, 1107–1112. 10.1016/s0969-8043(00)00054-3 (2000). PubMed
Romm, H. et al. Web based scoring is useful for validation and harmonisation of scoring criteria within RENEB. Int. J. Radiat. Biol.93, 110–117. 10.1080/09553002.2016.1206228 (2017). PubMed
ISO4037-1. in. ISO 4037-1:2019 (International Organization of Standardization, 2019).
Kessler, C., Burns, D. T. & Büermann, L. Key comparison BIPM.RI(I)-K1 of the air-kerma standards of the PTB, Germany and the BIPM in 60Co gamma radiation. Metrologia51, 06012. 10.1088/0026-1394/51/1A/06012 (2014).
EGSnrc. Software for Monte Carlo Simulation of Ionizing Radiation EGSnrc: logiciel pour la Simulation Monte Carlo Du Rayonnement Ionisant (National Research Council of Canada Conseil national de recherches du Canada, 2021).
Di Giorgio, M. et al. Biological dosimetry intercomparison exercise: an evaluation of triage and routine mode results by robust methods. Radiat. Res.175, 638–649. 10.1667/RR2425.1 (2011). PubMed