Transcriptional modulation of Porphyromonas gingivalis biofilms on titanium-copper implant surfaces

. 2025 Feb 15 ; () : . [epub] 20250215

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39955444
Odkazy

PubMed 39955444
DOI 10.1007/s12223-025-01246-8
PII: 10.1007/s12223-025-01246-8
Knihovny.cz E-zdroje

The healthcare sector is currently concerned about infections caused by Porphyromonas gingivalis biofilms due to their high frequency and incidence, particularly in patients with implanted medical devices. This study investigated biofilm formation and biofilm-related gene expression in P. gingivalis on titanium-copper discs and polycarbonate discs. P. gingivalis highly expressed biofilm-related genes were examined using quantitative real-time PCR during biofilm formation on the Ti-Cu surface. SEM analysis revealed various cellular components around the aggregated cells at various stages of biofilm formation. The Ti-Cu surface was colonized by P. gingivalis, as evidenced by biofilm formation levels that varied from ~ 103-104 CFU/cm2 after 2 days of incubation to ~ 105-107 CFU/cm2 after 7 days. Real-time expression analysis showed a significant increase in the expression of signaling molecules on Ti-Cu discs. Furthermore, genes linked to virulence (rgpA, rgpB, and Kgp, fimC, PorK, and PorP) and adhesion (mfa1, fimD, fimA, RpoN, rgpA, rgpBiKgp) demonstrate transcriptional alterations in signaling pathways impacting P. gingivalis biofilm on Ti-Cu surfaces. Scanning electron microscopy (SEM) and confocal microscopy correlated the results of the structural analysis with the expression from the qPCR data. This study adds significant value by advancing the understanding of biofilm formation on Ti-Cu implants.

Zobrazit více v PubMed

Abbas A, Adams C, Scully N, Glennon J, O’Gara F (2007) A role for TonB1 in biofilm formation and quorum sensing in Pseudomonas aeruginosa. FEMS Microbiol Lett 274(2):269–278. https://doi.org/10.1111/j.1574-6968.2007.00845.x PubMed DOI

Abdulkareem AA, Al-Taweel FB, Al-Sharqi AJ, Gul SS, Sha A, Chapple IL (2023) Current concepts in the pathogenesis of periodontitis: from symbiosis to dysbiosis. J Oral Microbiol 15(1):2197779. https://doi.org/10.1080/20002297.2023.2197779 PubMed DOI PMC

Airey P, Verran J (2007) Potential use of copper as a hygienic surface; problems associated with cumulative soiling and cleaning. J Hosp Infect 67(3):271–277.  https://doi.org/10.1016/j.jhin.2007.09.002

Bergemann C, Zaatreh S, Wegner K, Arndt K, Podbielski A, Bader R, Prinz C, Lembke U, Nebe JB (2017) Copper as an alternative antimicrobial coating for implants-an in vitro study. World J Transplant 7(3):193–202. https://doi.org/10.5500/wjt.v7.i3.193 PubMed DOI PMC

Berglundh T, Armitage G, Araujo MG, Avila-Ortiz G, Blanco J, Camargo PM, Chen S, Cochran D, Derks J, Figuero E, Hämmerle CHF, Heitz-Mayfield LJA, Huynh-Ba G, Iacono V, Koo KT, Lambert F, McCauley L, Quirynen M, Renvert S, Salvi GE, Schwarz F, Tarnow D, Tomasi C, Wang HL, Zitzmann N (2018) Peri-implant diseases and conditions: consensus report of workgroup 4 of the 2017 World Workshop on the classification of periodontal and peri-implant diseases and conditions. J Periodontol 89:S313–S318. https://doi.org/10.1002/JPER.17-0739 PubMed DOI

Berk V, Fong JC, Dempsey GT, Develioglu ON, Zhuang X, Liphardt J, Yildiz FH, Chu S (2012) Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science 337(6091):236–239. https://doi.org/10.1126/science.1222981 PubMed DOI PMC

Bowen WH, Burne RA, Wu H, Koo H (2018) Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol 26(3):229–242. https://doi.org/10.1016/j.tim.2017.09.008 PubMed DOI

Burgess NA, Kirke DF, Williams P, Winzer K, Hardie KR, Meyers NL, Aduse-Opoku J, Curtis MA, Cámara M (2002) LuxS-dependent quorum sensing in Porphyromonas gingivalis modulates protease and haemagglutinin activities but is not essential for virulence. Microbiology (Reading) 148(Pt 3):763–772. https://doi.org/10.1099/00221287-148-3-763 PubMed DOI

Cho YJ, Song HY, Ben Amara H, Choi BK, Eunju R, Cho YA, Seol Y, Lee Y, Ku Y, Rhyu IC, Koo KT (2016) In vivo inhibition of Porphyromonas gingivalis growth and prevention of periodontitis with quorum-sensing inhibitors. J Periodontol 87(9):1075–1082. https://doi.org/10.1902/jop.2016.160070 PubMed DOI

Chopra A, Bhat SG, Sivaraman K (2020) Porphyromonas gingivalis adopts intricate and unique molecular mechanisms to survive and persist within the host: a critical update. J Oral Microbiol 12(1):1801090. https://doi.org/10.1080/20002297.2020.1801090 PubMed DOI PMC

Ciuraszkiewicz J, Smiga M, Mackiewicz P, Gmiterek A, Bielecki M, Olczak M, Olczak T (2014) Fur homolog regulates Porphyromonas gingivalis virulence under low-iron/heme conditions through a complex regulatory network. Mol Oral Microbiol 29(6):333–353. https://doi.org/10.1111/omi.12077 PubMed DOI

Diaz PI, Slakeski N, Reynolds EC, Morona R, Rogers AH, Kolenbrander PE (2006) Role of oxyR in the oral anaerobe Porphyromonas gingivalis. J Bacteriol 188(7):2454–2462. https://doi.org/10.1128/JB.188.7.2454-2462.2006 PubMed DOI PMC

Eduok U, Szpunar J (2020) In vitro corrosion studies of stainless-steel dental substrates during Porphyromonas gingivalis biofilm growth in artificial saliva solutions: providing insights into the role of resident oral bacterium. RSC Adv 10(52):31280–31294. https://doi.org/10.1039/d0ra05500j PubMed DOI PMC

Enersen M, Nakano K, Amano A (2013) Porphyromonas gingivalis fimbriae. J Oral Microbiol 6:5. https://doi.org/10.3402/jom.v5i0.20265 DOI

Figuero E, Graziani F, Sanz I, Herrera D, Sanz M (2014) Management of peri-implant mucositis and peri-implantitis. Periodontol 66(1):255–273. https://doi.org/10.1111/prd.12049 DOI

Goeres DM, Loetterle LR, Hamilton MA, Murga R, Kirby DW, Donlan RM (2005) Statistical assessment of a laboratory method for growing biofilms. Microbiology 151:757–762. https://doi.org/10.1099/mic.0.27709-0 PubMed DOI

Gomes IB, Simões M, Simões LC (2020) Copper surfaces in biofilm control. Nanomaterials (Basel) 10(12):2491. https://doi.org/10.3390/nano10122491 PubMed DOI

Henry LG, McKenzie RM, Robles A, Fletcher HM (2012) Oxidative stress resistance in Porphyromonas gingivalis. Future Microbiol 7(4):497–512. https://doi.org/10.2217/fmb.12.17 PubMed DOI

James CE, Hasegawa Y, Park Y, Yeung V, Tribble GD, Kuboniwa M, Demuth DR, Lamont RJ (2006) LuxS involvement in the regulation of genes coding for hemin and iron acquisition systems in Porphyromonas gingivalis. Infect Immun 74(7):3834–3844. https://doi.org/10.1128/IAI.01768-05 PubMed DOI PMC

Kandavalli SR, Wang Q, Ebrahimi M, Gode C, Djavanroodi F, Attarilar S, Liu S (2021) A brief review on the evolution of metallic dental implants: history, design, and application. Front Mater 8:646383. https://doi.org/10.3389/fmats.2021.646383 DOI

Korotkov K, Sandkvist M, Hol W (2012) The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol 10:336–351. https://doi.org/10.1038/nrmicro2762 PubMed DOI PMC

Le Mauff F, Razvi E, Reichhardt C, Sivarajah P, Parsek MR, Howell PL, Sheppard DC (2022) The Pel polysaccharide is predominantly composed of a dimeric repeat of α-1,4 linked galactosamine and N-acetylgalactosamine. Commun Biol 5(1):502. https://doi.org/10.1038/s42003-022-03453-2 PubMed DOI PMC

Lee CT, Huang YW, Zhu L, Weltman R (2017) Prevalences of peri-implantitis and peri-implant mucositis: systematic review and meta-analysis. J Dent 62:1–12. https://doi.org/10.1016/j.jdent.2017.04.011 PubMed DOI

Lisa JA, Heitz-Mayfield (2024) Peri-implant mucositis and peri-implantitis: key features and differences. Abstract Br Dent J 236(10):791–794.  https://doi.org/10.1038/s41415-024-7402-z

Liu R, Memarzadeh K, Chang B, Zhang Y, Ma Z, Allaker RP, Ren L, Yang K (2016) Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis. Sci Rep 6:29985. https://doi.org/10.1038/srep29985 PubMed DOI PMC

Liu H, Tang Y, Zhang S, Liu H, Wang Z, Li Y, Wang X, Ren L, Yang K, Qin L (2021) Anti-infection mechanism of a novel dental implant made of titanium-copper (TiCu) alloy and its mechanism associated with oral microbiology. Bioact Mater 8:381–395. https://doi.org/10.1016/j.bioactmat.2021.05.053 PubMed DOI PMC

Lo AW, Seers CA, Boyce JD, Dashper SG, Slakeski N, Lissel JP, Reynolds EC (2009) Comparative transcriptomic analysis of Porphyromonas gingivalis biofilm and planktonic cells. BMC Microbiol 9:18. https://doi.org/10.1186/1471-2180-9-18 PubMed DOI PMC

Long C, Tong Z, Luo H, Qu Y, Gu X, Si Misi (2023) Titanium particles in peri implantitis: distribution pathogenesis and prospects. Abstract Int J Oral Sci 15(1).  https://doi.org/10.1038/s41368-023-00256-x

Mahmoudi P, Akbarpour MR, Lakeh HB, Jing F, Hadidi MR, Akhavan B (2022) Antibacterial Ti–cuimplants: a critical review on mechanisms of action. Mater Today Bio 17:100447.  https://doi.org/10.1016/j.mtbio.2022.100447

Markova JA, Anganova EV, Turskaya AL, Bybin VA, Savilov ED (2018) Regulation of Escherichia coli biofilm formation (review). Appl Biochem Microbiol 54(1):1–11. https://doi.org/10.1134/S0003683818010040 DOI

Mattos-Graner RO, Duncan MJ (2017) Two-component signal transduction systems in oral bacteria. J Oral Microbiol 9(1):1400858. https://doi.org/10.1080/20002297.2017.1400858 PubMed DOI PMC

Mattos-Graner RO, Duncan MJ, Lo A, Seers C, Dashper S, Butler C, Walker G, Walsh K, Catmull D, Hoffmann B, Cleal S, Lissel P, Boyce J, Reynolds E (2010) FimR and FimS: biofilm formation and gene expression in Porphyromonas gingivalis. J Bacteriol 192(5):1332–1343. https://doi.org/10.1128/JB.01211-09 DOI

Mysak J, Podzimek S, Sommerova P, Lyuya-Mi Y, Bartova J, Janatova T, Prochazkova J, Duskova J (2014) Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res 2014(1):476068. https://doi.org/10.1155/2014/476068 PubMed DOI PMC

Nakao R, Senpuku H, Watanabe H (2006) Porphyromonas gingivalis galE is involved in lipopolysaccharide O-antigen synthesis and biofilm formation. Infect Immun 74(11):6145. https://doi.org/10.1128/IAI.00261-06 PubMed DOI PMC

Niou YK, Wu WL, Lin LC, Yu MS, Shu HY, Yang HH, Lin GH (2009) Role of galE on biofilm formation by Thermus spp. Biochem Biophys Res Commun 390(2):313. https://doi.org/10.1016/j.bbrc.2009.09.120 PubMed DOI

Nishiyama SI, Murakami Y, Nagata H, Shizukuishi S, Kawagishi I, Yoshimura F (2007) Involvement of minor components associated with the FimA fimbriae of Porphyromonas gingivalis in adhesive functions. Microbiology 153(6):1916–1925. https://doi.org/10.1099/mic.0.2006/005561-0 PubMed DOI

Norambuena GA, Patel R, Karau M, Wyles CC, Jannetto PJ, Bennet KE, Hanssen AD, Sierra RJ (2017) Antibacterial and biocompatible titanium-copper oxide coating may be a potential strategy to reduce periprosthetic infection: an in vitro Study. Clin Orthop Relat Res 475(3):722–732. https://doi.org/10.1007/s11999-016-4713-7 PubMed DOI

O’Brien-Simpson NM, Paolini RA, Hoffmann B, Slakeski N, Dashper SG, Reynolds EC (2001) Role of RgpA, RgpB, and Kgp proteinases in virulence of Porphyromonas gingivalis W50 in a murine lesion model. Infect Immun 69(12):7527–7534. https://doi.org/10.1128/IAI.69.12.7527-7534.2001 PubMed DOI PMC

Olczak T, Wójtowicz H, Ciuraszkiewicz J, Olczak M (2010) Species specificity, surface exposure, protein expression, immunogenicity, and participation in biofilm formation of Porphyromonas gingivalis HmuY. BMC Microbiol 10:134. https://doi.org/10.1186/1471-2180-10-134 PubMed DOI PMC

Onozawa S, Kikuchi Y, Shibayama K, Kokubu E, Nakayama M, Inoue T, Nakano K, Shibata Y, Ohara N, Nakayama K, Ishihara K, Kawakami T, Hasegawa H (2015) Role of extracytoplasmic function sigma factors in biofilm formation of Porphyromonas gingivalis. BMC Oral Health 15(1):1–7. https://doi.org/10.1186/1472-6831-15-4 DOI

Peng N, Cai P, Mortimer M, Wu Y, Gao C, Huang Q (2020) The exopolysaccharide-eDNA interaction modulates 3D architecture of Bacillus subtilis biofilm. BMC Microbiol 20(1):1–12. https://doi.org/10.1186/s12866-020-01789-5 DOI

Pierce DL, Nishiyama SI, Liang S, Wang M, Triantafilou M, Triantafilou K, Yoshimura F, Demuth DR, Hajishengallis G (2009) Host adhesive activities and virulence of novel fimbrial proteins of Porphyromonas gingivalis. Infect Immun 77(8):3294–3301. https://doi.org/10.1128/IAI.00262-09 PubMed DOI PMC

Rams TE, Sautter JD, Van Winkelhoff AJ (2023) Emergence of antibiotic-resistant Porphyromonas gingivalis in United States periodontitis patients. Antibiotics 12(11):1–12. https://doi.org/10.3390/antibiotics12111584 DOI

Romero-Lastra P, Sánchez MC, Llama-Palacios A, Figuero E, Herrera D, Sanz M (2019) Gene expression of Porphyromonas gingivalis ATCC 33277 when growing in an in vitro multispecies biofilm. PLoS One 14(8):1–18. https://doi.org/10.1371/journal.pone.0221234 DOI

Sánchez MC, Romero-Lastra P, Ribeiro-Vidal H, Llama-Palacios A, Figuero E, Herrera D, Sanz M (2019) Comparative gene expression analysis of planktonic Porphyromonas gingivalis ATCC 33277 in the presence of a growing biofilm versus planktonic cells. BMC Microbiol 19(1):1–11. https://doi.org/10.1186/s12866-019-1423-9 DOI

Sapi E, Theophilus PAS, Pham TV, Burugu D, Luecke DF (2016) Effect of RpoN, RpoS and LuxS pathways on the biofilm formation and antibiotic sensitivity of Borrelia burgdorferi. Eur J Microbiol Immunol 6(4):272–286. https://doi.org/10.1556/1886.2016.00026 DOI

Selasi GN, Nicholas A, Jeon H, Na SH, Kwon H, Il Kim YJ, Heo ST, Oh MH, Lee JC (2016) Differences in biofilm mass, expression of biofilm-associated genes, and resistance to desiccation between epidemic and sporadic clones of carbapenem-resistant Acinetobacter baumannii sequence type 191. PLoS One 11(9):1–11. https://doi.org/10.1371/journal.pone.0162576 DOI

Sharma N, Bhatia S, Sodhi AS, Batra N (2018) Oral microbiome and health. AIMS Microbiol 4(1):42–66. https://doi.org/10.3934/microbiol.2018.1.42 PubMed DOI PMC

Shoji M, Sato K, Yukitake H, Naito M, Nakayama K (2014) Involvement of the Wbp pathway in the biosynthesis of Porphyromonas gingivalis lipopolysaccharide with anionic polysaccharide. Sci Rep 4:5056. https://doi.org/10.1038/srep05056 PubMed DOI PMC

Simpson W, Olczak T, Genco CA (2000) Characterization and expression of HmuR, a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis. J Bacteriol 20:5737–5748. https://doi.org/10.1128/9781555816544.ch21 DOI

Śmiga M, Stȩpień P, Olczak M, Olczak T (2019) PgFur participates differentially in expression of virulence factors in more virulent A7436 and less virulent ATCC 33277 Porphyromonas gingivalis strains. BMC Microbiol 19(1):1–16. https://doi.org/10.1186/s12866-019-1511-x DOI

Son MK, Song Y, Yu Y, Kim SY, Huh JB, Bae E, Bin Cho WT, Na HS, Chung J (2023) The oral microbiome of implant-abutment screw holes compared with the peri-implant sulcus and natural supragingival plaque in healthy individuals. J Periodontal Implant Sci 53(3):233–244. https://doi.org/10.5051/JPIS.2300100005 PubMed DOI PMC

Soules KR, LaBrie SD, May BH, Hefty PS (2020) Sigma 54-Regulated transcription is associated with membrane reorganization and type III secretion effectors during conversion to infectious forms of Chlamydia trachomatis. mBio 11(5):10. https://doi.org/10.1128/mbio.01725-20 DOI

Tamura M, Ochiai K (2009) Zinc and copper play a role in coaggregation inhibiting action of Porphyromonas gingivalis. Oral Microbiol Immunol 24(1):56–63. https://doi.org/10.1111/j.1399-302X.2008.00476.x PubMed DOI

Trumbo P, Yates AA, Schlicker S, Poos M (2001) Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc 101(3):294–301. https://doi.org/10.1016/S0002-8223(01)00078-5 PubMed DOI

Vincent MS, Canestrari MJ, Leone P, Stathopulos J, Ize B, Zoued A, Cambillau C, Kellenberger C, Roussel A, Cascales E (2017) Characterization of the Porphyromonas gingivalis type IX secretion trans-envelope PorKLMNP core complex. J Biol Chem 292(8):3252–3261. https://doi.org/10.1074/jbc.M116.765081 PubMed DOI PMC

Wang J, Liu J, Zhao Y, Sun M, Yu G, Fan J, Tian Y, Hu B (2022) OxyR contributes to virulence of Acidovorax citrulli by regulating anti-oxidative stress and expression of flagellin FliC and type IV pili PilA. Front Microbiol 13:977281. https://doi.org/10.3389/fmicb.2022.977281 PubMed DOI PMC

Warnes SL, Green SM, Michels HT, Keevil CW (2010) Biocidal efficacy of copper alloys against pathogenic Enterococci involves degradation of genomic and plasmid DNAs. Appl Environ Microbiol 76(16):5390–5401. https://doi.org/10.1128/AEM.03050-09 PubMed DOI PMC

White C, Gadd GM (1998) Accumulation and effects. Methods 1407–1415.

Williams DL, Smith SR, Peterson BR, Allyn G, Cadenas L, Epperson RT, Looper RE (2019) Growth substrate may influence biofilm susceptibility to antibiotics. PLoS One 14(3):1–18. https://doi.org/10.1371/journal.pone.0206774 DOI

Xu W, Zhou W, Wang H, Liang S (2020) Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. Adv Protein Chem Struct Biol 120:45–84. https://doi.org/10.1016/bs.apcsb.2019.12.001 PubMed DOI PMC

Yamaguchi-Kuroda Y, Kikuchi Y, Kokubu E, Ishihara K (2023) Porphyromonas gingivalis diffusible signaling molecules enhance Fusobacterium nucleatum biofilm formation via gene expression modulation. J Oral Microbiol 15(1). https://doi.org/10.1080/20002297.2023.2165001 .

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...