Mixed Parentage Broods Indicate Group Spawning in the Brood Parasitic Cuckoo Catfish
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
Grant support
J4584-B
Austrian Science Fund
21-00788X
Grantová Agentura České Republiky
PubMed
39960107
PubMed Central
PMC11874674
DOI
10.1111/mec.17692
Knihovny.cz E-resources
- Keywords
- Synodontis multipunctatus, African cichlids, Lake Tanganyika, parentage analysis, reproductive parasitism, reproductive success,
- MeSH
- Cichlids parasitology MeSH
- Nesting Behavior MeSH
- Lakes MeSH
- Microsatellite Repeats MeSH
- DNA, Mitochondrial genetics MeSH
- Likelihood Functions MeSH
- Reproduction genetics MeSH
- Sexual Behavior, Animal * MeSH
- Catfishes * genetics physiology parasitology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Mitochondrial MeSH
Obligate brood parasites delegate the workload of costly parental care to their hosts. Theory predicts that release from demanding parental care increases the importance of other factors to shape mating patterns. However, behavioural observations and parentage estimates are notoriously difficult to obtain in species with covert reproductive strategies, such as brood parasites, and evidence for their mating strategies are scarce. Molecular genetic methods provide a powerful tool to identify concealed mating patterns. Here, we reconstruct the parentage of cuckoo catfish (Synodontis multipunctatus) clutches collected in the wild using a combination of newly developed microsatellite markers, mitochondrial markers, and maximum likelihood estimates of pairwise relatedness. Cuckoo catfish parasitise mouthbrooding cichlids in Lake Tanganyika, but a natural spawning of the brood parasite has never been observed. We examined 429 females of confirmed host cichlid species (parasitism prevalence 6%; 24 parasitised clutches with 1-14 embryos) and found that 46% of clutches with three or more offspring (i.e., 6 out of 13) were parented by more than two catfish individuals. We demonstrated variable mating patterns including polyandrous and polygynous mating, and host sharing by separate, genetically monogamous, catfish pairs. This indicates that cuckoo catfish parasitism involves groups of catfish with reduced capability to monopolise mating opportunities. In general, our results demonstrate how reproductive strategy and mating patterns in a species with concealed breeding behaviour can be investigated and provide valuable insights into the mating system of a brood parasitic species other than hitherto studied avian brood parasites.
Department of Biological Sciences University of Zambia Lusaka Zambia
Department of Biology University of Graz Graz Austria
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Ecology and Vertebrate Zoology University of Lodz Lodz Poland
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
See more in PubMed
Blažek, R. , Polačik M., and Reichard M.. 2021. “Group Intrusions by a Brood Parasitic Fish Are Not Cooperative.” Behavioral Ecology 33, no. 1: 178–183. 10.1093/BEHECO/ARAB123. DOI
Blažek, R. , Polačik M., Smith C., Honza M., Meyer A., and Reichard M.. 2018. “Success of Cuckoo Catfish Brood Parasitism Reflects Coevolutionary History and Individual Experience of Their Cichlid Hosts.” Science Advances 4, no. 5: eaar4380. 10.1126/sciadv.aar4380. PubMed DOI PMC
Bolopo, D. , Canestrari D., Martínez J. G., et al. 2017. “Flexible Mating Patterns in an Obligate Brood Parasite.” Ibis 159, no. 1: 103–112. 10.1111/ibi.12429. DOI
Bshary, R. , Hohner A., Ait‐el‐Djoudi K., and Fricke H.. 2006. “Interspecific Communicative and Coordinated Hunting Between Groupers and Giant Moray Eels in the Red Sea.” PLoS Biology 4, no. 12: e431. 10.1371/journal.pbio.0040431. PubMed DOI PMC
Burt, D. B. , Coulter P. F., and Ligon J. D.. 2007. “Evolution of Parental Care and Cooperative Breeding.” In Reproductive Biology and Phylogeny of Birds, Part B: Sexual Selection, Behavior, Conservation, Embryology and Genetics, edited by Jamieson B. G. M., 1st ed., 295–327. Science Publishers.
Clutton‐Brock, T. H. 2016. Mammal Societies. John Wiley & Sons Ltd.
Cohen, M. S. , Hawkins M. B., Stock D. W., and Cruz A.. 2019. “Early Life‐History Features Associated With Brood Parasitism in the Cuckoo Catfish, Synodontis multipunctatus (Siluriformes: Mochokidae).” Philosophical Transactions of the Royal Society, B: Biological Sciences 374, no. 1769: 20180205. 10.1098/rstb.2018.0205. PubMed DOI PMC
De Mársico, M. C. , Ursino C. A., Scardamaglia R. C., and Reboreda J. C.. 2019. “Coevolutionary Arms Race Between a Specialist Brood Parasite, the Screaming Cowbird, and Its Host, the Grayish Baywing.” Journal of Ornithology 160, no. 4: 1221–1233. 10.1007/s10336-019-01697-0. DOI
Excoffier, L. , and Lischer H. E. L.. 2010. “Arlequin Suite ver 3.5: A New Series of Programs to Perform Population Genetics Analyses Under Linux and Windows.” Molecular Ecology Resources 10, no. 3: 564–567. 10.1111/j.1755-0998.2010.02847.x. PubMed DOI
Farabaugh, S. M. , Brown E. D., and Hughes J. M.. 1992. “Cooperative Territorial Defense in the Australian Magpie, Gymnorhina tibicen (Passeriformes, Cracticidae), a Group‐Living Songbird.” Ethology 92, no. 4: 283–292. 10.1111/j.1439-0310.1992.tb00966.x. DOI
Feeney, W. E. , and Riehl C.. 2019. “Monogamy Without Parental Care? Social and Genetic Mating Systems of Avian Brood Parasites.” Philosophical Transactions of the Royal Society, B: Biological Sciences 374, no. 1769: 20180201. 10.1098/RSTB.2018.0201. PubMed DOI PMC
Feeney, W. E. , Welbergen J. A., and Langmore N. E.. 2014. “Advances in the Study of Coevolution Between Avian Brood Parasites and Their Hosts.” Annual Review of Ecology, Evolution, and Systematics 45, no. 1: 227–246. 10.1146/annurev-ecolsys-120213-091603. DOI
Flanagan, S. P. , and Jones A. G.. 2019. “The Future of Parentage Analysis: From Microsatellites to SNPs and Beyond.” Molecular Ecology 28, no. 3: 544–567. 10.1111/mec.14988. PubMed DOI
Hauber, M. E. , and Dearborn D. C.. 2003. “Parentage Without Parental Care: What to Look for in Genetic Studies of Obligate Brood‐Parasitic Mating Systems.” Auk 120, no. 1: 1–13. 10.1093/AUK/120.1.1. DOI
Jones, O. R. , and Wang J.. 2010. “COLONY: A Program for Parentage and Sibship Inference From Multilocus Genotype Data.” Molecular Ecology Resources 10, no. 3: 551–555. 10.1111/j.1755-0998.2009.02787.x. PubMed DOI
Kalinowski, S. T. , Wagner A. P., and Taper M. L.. 2006. “ML‐RELATE: A Computer Program for Maximum Likelihood Estimation of Relatedness and Relationship.” Molecular Ecology Notes 6, no. 2: 576–579. 10.1111/j.1471-8286.2006.01256.x. DOI
Krakauer, A. H. 2005. “Kin Selection and Cooperative Courtship in Wild Turkeys.” Nature 434, no. 7029: 69–72. 10.1038/nature03325. PubMed DOI
Krakauer, D. C. 1995. “Groups Confuse Predators by Exploiting Perceptual Bottlenecks: A Connectionist Model of the Confusion Effect.” Behavioral Ecology and Sociobiology 36, no. 6: 421–429. 10.1007/BF00177338. DOI
Lack, D. 1968. Ecological Adaptations for Breeding in Birds. Methuen.
Langmore, N. E. , Adcock G. J., and Kilner R. M.. 2007. “The Spatial Organization and Mating System of Horsfield's Bronze‐Cuckoos, Chalcites basalis .” Animal Behaviour 74, no. 3: 403–412. 10.1016/J.ANBEHAV.2006.09.019. DOI
Mann, C. F. 2017. “A Taxonomic Review of Obligate and Facultative Interspecific Avian Brood Parasitism.” In Avian Brood Parasitism: Behaviour, Ecology, Evolution and Coevolution, edited by Soler M., 61–92. Springer. 10.1007/978-3-319-73138-4_4. DOI
Medina, I. , and Langmore N. E.. 2016. “Batten Down the Thatches: Front‐Line Defences in an Apparently Defenceless Cuckoo Host.” Animal Behaviour 112: 195–201. 10.1016/J.ANBEHAV.2015.12.006. DOI
Mouginot, P. , Galipaud M., and Reichard M.. 2024. “The Evolution of Brood Parasitism From Host Egg Predation.” Behavioral Ecology 35, no. 4: arae043. 10.1093/BEHECO/ARAE043. DOI
Noh, H. J. , Neaves L., Grealy A., and Langmore N. E.. 2024. “Molecular Sibship Reconstruction Reveals a Promiscuous Mating System in Brood Parasitic Little Bronze‐Cuckoos (Chalcites minutillus).” Behavioral Ecology 35, no. 4: arae041. 10.1093/beheco/arae041. DOI
Packer, G. , and Ruttan L.. 1988. “The Evolution of Cooperative Hunting.” American Naturalist 132, no. 2: 159–198. 10.1086/284844. DOI
Reichard, M. 2019. “Cuckoo Catfish.” Current Biology 29, no. 15: R722–R723. 10.1016/j.cub.2019.05.067. PubMed DOI
Reichard, M. , Koblmüller S., Blažek R., et al. 2023. “Lack of Host Specialization Despite Selective Host Use in Brood Parasitic Cuckoo Catfish.” Molecular Ecology 32, no. 22: 6070–6082. 10.1111/mec.17173. PubMed DOI
Robinson, S. K. 1988. “Foraging Ecology and Host Relationships of Giant Cowbirds in Southeastern Peru.” Wilson Bulletin 100, no. 2: 224–235.
Rönkä, K. , Eroukhmanoff F., Kulmuni J., Nouhaud P., and Thorogood R.. 2024. “Beyond Genes‐For‐Behaviour: The Potential for Genomics to Resolve Long‐Standing Questions in Avian Brood Parasitism.” Ecology and Evolution 14, no. 11: e70335. 10.1002/ece3.70335. PubMed DOI PMC
Royle, N. J. , Smiseth P. T., and Kölliker M.. 2012. The Evolution of Parental Care. 1st ed. Oxford University Press.
Rozas, J. , Ferrer‐Mata A., Sanchez‐DelBarrio J. C., et al. 2017. “DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets.” Molecular Biology and Evolution 34, no. 12: 3299–3302. 10.1093/molbev/msx248. PubMed DOI
Sato, T. 1986. “A Brood Parasitic Catfish Synodontis multipunctatus of Mouthbreeding Cichlid Fishes in Lake Tanganyika.” Nature 323: 58–59. 10.1038/323058a0. PubMed DOI
Scardamaglia, R. C. , and Reboreda J. C.. 2014. “Ranging Behavior of Female and Male Shiny Cowbirds and Screaming Cowbirds While Searching for Host Nests.” Auk 131, no. 4: 610–618. 10.1642/AUK-14-54.1. DOI
Sefc, K. M. 2011. “Mating and Parental Care in Lake Tanganyika's Cichlids.” International Journal of Evolutionary Biology 2011: 1–20. 10.4061/2011/470875. PubMed DOI PMC
Sefc, K. M. , and Koblmüller S.. 2009. “Assessing Parent Numbers From Offspring Genotypes: The Importance of Marker Polymorphism.” Journal of Heredity 100, no. 2: 197–205. 10.1093/jhered/esn095. PubMed DOI
Sless, T. J. L. , Danforth B. N., and Searle J. B.. 2023. “Evolutionary Origins and Patterns of Diversification in Animal Brood Parasitism.” American Naturalist 202, no. 2: 107–121. 10.1086/724839. PubMed DOI
Soler, M. 2017. “Avian Brood Parasitism: Behaviour, Ecology, Evolution and Coevolution.” In Fasinating Life Sciences, edited by Soler M., 1st ed. Springer. 10.1007/978-3-319-73138-4. DOI
Sommer‐Trembo, C. , Malinsky M., Santos E., et al. 2024. “The Genetics of Niche‐Specific Behavioral Tendencies in an Adaptive Radiation of Cichlid Fishes.” Science 475, no. 6694: 470–475. 10.1126/science.adj9228. PubMed DOI
Spottiswoode, C. N. , Kilner R. M., and Davies N. B.. 2012. “Brood Parasitism.” In The Evolution of Parental Care, edited by Royle N. J., Smiseth P. T., and Kölliker M., 1st ed. Oxford University Press.
Stoddard, M. C. , and Hauber M. E.. 2017. “Colour, Vision and Coevolution in Avian Brood Parasitism.” Philosophical Transactions of the Royal Society, B: Biological Sciences 372, no. 1724: 20160339. 10.1098/RSTB.2016.0339. PubMed DOI PMC
Taborsky, M. 1994. “Sneakers, Satellites, and Helpers: Parasitic and Cooperative Behavior in Fish Reproduction.” In Advances in the Study of Behavior, edited by Slater P., Rosenblatt J., Snowdon C., and Milinski M., vol. 23, 1st ed., 1–100. Academic Press Inc.
Taborsky, M. 2008. “Alternative Reproductive Tactics in Fish.” In Alternative Reproductive Tactics: An Integrative Approach, edited by Oliveira R. F., Taborsky M., and Brockmann H. J., 251–299. Cambridge University Press.
Takahashi, T. , and Koblmüller S.. 2020. “Brood Parasitism of an Open‐Water Spawning Cichlid by the Cuckoo Catfish.” Journal of Fish Biology 96, no. 6: 1538–1542. 10.1111/jfb.14350. PubMed DOI
Tamura, K. , Stecher G., and Kumar S.. 2021. “MEGA11: Molecular Evolutionary Genetics Analysis Version 11.” Molecular Biology and Evolution 38, no. 7: 3022–3027. 10.1093/molbev/msab120. PubMed DOI PMC
Valone, T. J. 2007. “From Eavesdropping on Performance to Copying the Behavior of Others: A Review of Public Information Use.” Behavioral Ecology and Sociobiology 62, no. 1: 1–14. 10.1007/s00265-007-0439-6. DOI
Wagner, H. W. , and Sefc K. M.. 1999. Identity4. Centre for Applied Genetics, University of Agricultural Science.
Ward, P. , and Zahavi A.. 1973. “The Importance of Certain Assemblages of Birds as “Information‐Centres” for Food‐Finding.” Ibis 115, no. 4: 517–534. 10.1111/J.1474-919X.1973.TB01990.X. DOI
Webster, M. S. 1994. “Interspecific Brood Parasitism of Montezuma Oropendolas by Giant Cowbirds.” Condor 96, no. 3: 794–798. 10.2307/1369483. DOI
Welbergen, J. A. , and Davies N. B.. 2009. “Strategic Variation in Mobbing as a Front Line of Defense Against Brood Parasitism.” Current Biology 19, no. 3: 235–240. 10.1016/J.CUB.2008.12.041. PubMed DOI
Wittenberger, J. F. , and Tilson R. L.. 1980. “The Evolution of Monogamy: Hypotheses and Evidence.” Annual Review of Ecology and Systematics 11, no. 1: 197–232. 10.1146/annurev.es.11.110180.001213. DOI
Wong, M. , and Balshine S.. 2011. “The Evolution of Cooperative Breeding in the African Cichlid Fish, Neolamprologus pulcher .” Biological Reviews 86, no. 2: 511–530. 10.1111/j.1469-185X.2010.00158.x. PubMed DOI
Zimmerman, H. , Tolman D., and Reichard M.. 2023. “Low Incidence of Cannibalism Among Brood Parasitic Cuckoo Catfish Embryos.” Behavioral Ecology 34, no. 4: 521–527. 10.1093/beheco/arad024. PubMed DOI PMC
Zimmermann, H. , Blažek R., Polačik M., and Reichard M.. 2022. “Individual Experience as a Key to Success for the Cuckoo Catfish Brood Parasitism.” Nature Communications 13, no. 1: 1723. 10.1038/s41467-022-29417-y. PubMed DOI PMC