Sperm DNA methylation patterns at discrete CpGs and genes involved in embryonic development are related to bull fertility

. 2022 May 18 ; 23 (1) : 379. [epub] 20220518

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35585482
Odkazy

PubMed 35585482
PubMed Central PMC9118845
DOI 10.1186/s12864-022-08614-5
PII: 10.1186/s12864-022-08614-5
Knihovny.cz E-zdroje

BACKGROUND: Despite a multifactorial approach being taken for the evaluation of bull semen quality in many animal breeding centres worldwide, reliable prediction of bull fertility is still a challenge. Recently, attention has turned to molecular mechanisms, which could uncover potential biomarkers of fertility. One of these mechanisms is DNA methylation, which together with other epigenetic mechanisms is essential for the fertilising sperm to drive normal embryo development and establish a viable pregnancy. In this study, we hypothesised that bull sperm DNA methylation patterns are related to bull fertility. We therefore investigated DNA methylation patterns from bulls used in artificial insemination with contrasting fertility scores. RESULTS: The DNA methylation patterns were obtained by reduced representative bisulphite sequencing from 10 high-fertility bulls and 10 low-fertility bulls, having average fertility scores of - 6.6 and + 6.5%, respectively (mean of the population was zero). Hierarchical clustering analysis did not distinguish bulls based on fertility but did highlight individual differences. Despite this, using stringent criteria (DNA methylation difference ≥ 35% and a q-value < 0.001), we identified 661 differently methylated cytosines (DMCs). DMCs were preferentially located in intergenic regions, introns, gene downstream regions, repetitive elements, open sea, shores and shelves of CpG islands. We also identified 10 differently methylated regions, covered by 7 unique genes (SFRP1, STXBP4, BCR, PSMG4, ARSG, ATP11A, RXRA), which are involved in spermatogenesis and early embryonic development. CONCLUSION: This study demonstrated that at specific CpG sites, sperm DNA methylation status is related to bull fertility, and identified seven differently methylated genes in sperm of subfertile bulls that may lead to altered gene expression and potentially influence embryo development.

Zobrazit více v PubMed

Fair S, Lonergan P. Review: Understanding the causes of variation in reproductive wastage among bulls. Animal. 2018;12:s53-s62. 10.1017/S1751731118000964. PubMed

Kathiravan P, Kalatharan J, Karthikeya G, Rengarajan K, Kadirvel G. Objective sperm motion analysis to assess dairy bull fertility using computer-aided system - a review. Reprod Domest Anim. 2011;46:165–172. doi: 10.1111/j.1439-0531.2010.01603.x. PubMed DOI

Gillan L, Kroetsch T, Chis Maxwell WM, Evans G. Assessment of in vitro sperm characteristics in relation to fertility in dairy bulls. Anim Reprod Sci. 2008;103:201–214. doi: 10.1016/j.anireprosci.2006.12.010. PubMed DOI

Bernecic NC, Donnellan E, O’Callaghan E, Kupisiewicz K, O’Meara C, Weldon K, et al. Comprehensive functional analysis reveals that acrosome integrity and viability are key variables distinguishing artificial insemination bulls of varying fertility. J Dairy Sci. 2021;0. doi:10.3168/JDS.2021-20319. PubMed

Bucher K, Malama E, Siuda M, Janett F, Bollwein H. Multicolor flow cytometric analysis of cryopreserved bovine sperm: a tool for the evaluation of bull fertility. J Dairy Sci. 2019;102:11652–11669. doi: 10.3168/JDS.2019-16572. PubMed DOI

Taylor JF, Schnabel RD, Sutovsky P. Genomics of bull fertility. Animal. 2018;12(Suppl 1):s172. doi: 10.1017/S1751731118000599. PubMed DOI PMC

Diskin M, Morris D. Embryonic and Early Foetal Losses in Cattle and Other Ruminants. Reprod Domest Anim. 2008;43(SUPPL.2):260–267. doi: 10.1111/J.1439-0531.2008.01171.X. PubMed DOI

Berg DK, van Leeuwen J, Beaumont S, Berg M, Pfeffer PL. Embryo loss in cattle between days 7 and 16 of pregnancy. Theriogenology. 2010;73:250–260. doi: 10.1016/j.theriogenology.2009.09.005. PubMed DOI

Pohler KG, Reese ST, Franco GA, Vander OR, Filho PR, et al. New approaches to diagnose and target reproductive failure in cattle. Anim Reprod. 2020;17:1–19. doi: 10.1590/1984-3143-AR2020-0057. PubMed DOI PMC

Franco G, Reese S, Poole R, Rhinehart J, Thompson K, Cooke R, et al. Sire contribution to pregnancy loss in different periods of embryonic and fetal development of beef cows. Theriogenology. 2020;154:84–91. doi: 10.1016/j.theriogenology.2020.05.021. PubMed DOI

O’Callaghan E, Sánchez JM, McDonald M, Kelly AK, Hamdi M, Maicas C, et al. Sire contribution to fertilization failure and early embryo survival in cattle. J Dairy Sci. 2021;104:7262–7271. doi: 10.3168/JDS.2020-19900. PubMed DOI

Viana AGA, Martins AMA, Pontes AH, Fontes W, Castro MS, Ricart CAO, et al. Proteomic landscape of seminal plasma associated with dairy bull fertility. Sci Rep. 2018;8. 10.1038/S41598-018-34152-W. PubMed PMC

Evans HC, Dinh TTN, Hardcastle ML, Gilmore AA, Ugur MR, Hitit M, et al. Advancing semen evaluation using lipidomics. Front Vet Sci. 2021;8:601794. doi: 10.3389/FVETS.2021.601794. PubMed DOI PMC

Saraf KK, Kumaresan A, Dasgupta M, Karthikkeyan G, Prasad TSK, Modi PK, et al. Metabolomic fingerprinting of bull spermatozoa for identification of fertility signature metabolites. Mol Reprod Dev. 2020;87:692–703. doi: 10.1002/MRD.23354. PubMed DOI

Menezes ESB, Badial PR, El DH, Husna AU, Ugur MR, Kaya A, et al. Sperm miR-15a and miR-29b are associated with bull fertility. Andrologia. 2020;52:e13412. doi: 10.1111/AND.13412. PubMed DOI

Casas E, Vavouri T. Sperm epigenomics: challenges and opportunities. Front Genet. 2014;5:1–7. doi: 10.3389/fgene.2014.00330. PubMed DOI PMC

Duan JE, Jiang ZC, Alqahtani F, Mandoiu I, Dong H, Zheng X, et al. Methylome dynamics of bovine gametes and in vivo early embryos. Front Genet. 2019;10. 10.3389/FGENE.2019.00512. PubMed PMC

Denomme MM, Haywood ME, Parks JC, Schoolcraft WB, Katz-Jaffe MG. The inherited methylome landscape is directly altered with paternal aging and associated with offspring neurodevelopmental disorders. Aging Cell. 2020;19. 10.1111/ACEL.13178. PubMed PMC

Denomme MM, McCallie BR, Parks JC, Schoolcraft WB, Katz-Jaffe MG. Alterations in the sperm histone-retained epigenome are associated with unexplained male factor infertility and poor blastocyst development in donor oocyte IVF cycles. Hum Reprod. 2017;32:2443–2455. doi: 10.1093/humrep/dex317. PubMed DOI

Fournier C, Labrune E, Lornage J, Soignon G, Giscard d’Estaing S, Guérin J-F, et al. The impact of histones linked to sperm chromatin on embryo development and ART outcome. Andrology. 2018;6:436–445. doi: 10.1111/andr.12478. PubMed DOI

Kutchy NA, Menezes ESB, Chiappetta A, Tan W, Wills RW, Kaya A, et al. Acetylation and methylation of sperm histone 3 lysine 27 (H3K27ac and H3K27me3) are associated with bull fertility. Andrologia. 2018;50:e12915. doi: 10.1111/AND.12915. PubMed DOI

Wu C, Blondin P, Vigneault C, Labrecque R, Sirard M-A. Sperm miRNAs— potential mediators of bull age and early embryo development. BMC Genomics. 2020;21. 10.1186/S12864-020-07206-5. PubMed PMC

Yuan S, Schuster A, Tang C, Yu T, Ortogero N, Bao J, et al. Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development. 2016;143:635. doi: 10.1242/DEV.131755. PubMed DOI PMC

Seah MKY, Messerschmidt DM. From germline to soma: epigenetic dynamics in the mouse preimplantation embryo. Curr Top Dev Biol. 2018;128:203–235. doi: 10.1016/bs.ctdb.2017.10.011. PubMed DOI

Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, et al. The dynamics of genome-wide dna methylation reprogramming in mouse primordial germ cells. Mol Cell. 2012;48:849–862. doi: 10.1016/j.molcel.2012.11.001. PubMed DOI PMC

Khambata K, Raut S, Deshpande S, Mohan S, Sonawane S, Gaonkar R, et al. DNA methylation defects in spermatozoa of male partners from couples experiencing recurrent pregnancy loss. Hum Reprod. 2021;36:48–60. doi: 10.1093/HUMREP/DEAA278. PubMed DOI

Wu H, Hauser R, Krawetz SA, Pilsner JR. Environmental Susceptibility of the Sperm Epigenome During Windows of Male Germ Cell Development. Curr Environ Heal reports. 2015;2:356–366. doi: 10.1007/s40572-015-0067-7. PubMed DOI PMC

Garrido N, Cruz F, Egea RR, Simon C, Sadler-Riggleman I, Beck D, et al. Sperm DNA methylation epimutation biomarker for paternal offspring autism susceptibility. Clin. Epigenetics. 2021;13. 10.1186/S13148-020-00995-2. PubMed PMC

Du Y, Li M, Chen J, Duan Y, Wang X, Qiu Y, et al. Promoter targeted bisulfite sequencing reveals DNA methylation profiles associated with low sperm motility in asthenozoospermia. Hum Reprod. 2016;31:24–33. doi: 10.1093/humrep/dev283. PubMed DOI

Boissonnas CC, El AH, Haelewyn V, Fauque P, Dupont JM, Gut I, et al. Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men. Eur J Hum Genet. 2010;18:73–80. doi: 10.1038/ejhg.2009.117. PubMed DOI PMC

Laqqan M, Tierling S, Alkhaled Y, LoPorto C, Hammadeh ME. Alterations in sperm DNA methylation patterns of oligospermic males. Reprod Biol. 2017;17:396–400. doi: 10.1016/j.repbio.2017.10.007. PubMed DOI

Urdinguio RG, Bayón GF, Dmitrijeva M, Toraño EG, Bravo C, Fraga MF, et al. Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility. Hum Reprod. 2015;30:1014–1028. doi: 10.1093/humrep/dev053. PubMed DOI

Carrell DT, Salas-Huetos A, Hotaling J. Increasing evidence of the role of the sperm epigenome in embryogenesis: oligoasthenoteratozoospermia, altered embryo DNA methylation, and miscarriage. Fertil Steril. 2018;110:401–402. doi: 10.1016/J.FERTNSTERT.2018.04.042. PubMed DOI

Kropp J, Carrillo JA, Namous H, Daniels A, Salih SM, Song J, et al. Male fertility status is associated with DNA methylation signatures in sperm and transcriptomic profiles of bovine preimplantation embryos. BMC Genomics. 2017;18:280. doi: 10.1186/s12864-017-3673-y. PubMed DOI PMC

Takeda K, Kobayashi E, Ogata K, Imai A, Sato S, Adachi H, et al. Differentially methylated CpG sites related to fertility in Japanese black bull spermatozoa: Epigenetic biomarker candidates to predict sire conception rate. J Reprod Dev. 2021;67:99–107. doi: 10.1262/jrd.2020-137. PubMed DOI PMC

Capra E, Lazzari B, Turri F, Cremonesi P, Portela AMR, Ajmone-Marsan P, et al. Epigenetic analysis of high and low motile sperm populations reveals methylation variation in satellite regions within the pericentromeric position and in genes functionally related to sperm DNA organization and maintenance in Bos taurus. BMC Genomics. 2019;20:1–12. doi: 10.1186/s12864-019-6317-6. PubMed DOI PMC

Narud B, Khezri A, Zeremichael TT, Stenseth E-BBE, Heringstad B, Johannisson A, et al. Sperm chromatin integrity and DNA methylation in Norwegian Red bulls of contrasting fertility. Mol Reprod Dev. 2021;88:187–200. doi: 10.1002/MRD.23461. PubMed DOI

Gross N, Peñagaricano F, Khatib H. Integration of whole-genome DNA methylation data with RNA sequencing data to identify markers for bull fertility. Anim Genet. 2020;51:502–510. doi: 10.1111/AGE.12941. PubMed DOI

Lambert S, Blondin P, Vigneault C, Labrecque R, Dufort I, Sirard MA. Spermatozoa DNA methylation patterns differ due to peripubertal age in bulls. Theriogenology. 2018;106:21–29. doi: 10.1016/j.theriogenology.2017.10.006. PubMed DOI

Takeda K, Kobayashi E, Nishino K, Imai A, Adachi H, Hoshino Y, et al. Age-related changes in DNA methylation levels at CpG sites in bull spermatozoa and in vitro fertilization-derived blastocyst-stage embryos revealed by combinedbisulfite restriction analysis. J Reprod Dev. 2019;65:305. doi: 10.1262/JRD.2018-146. PubMed DOI PMC

Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13. doi: 10.1093/NAR/GKN923. PubMed DOI PMC

Aston KI, Uren PJ, Jenkins TG, Horsager A, Cairns BR, Smith AD, et al. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. 2020;2015(104):1388–1397.e5. 10.1016/j.fertnstert.2015.08.019. Accessed 4 Oct. PubMed

Khezri A, Narud B, Stenseth E-BB, Johannisson A, Myromslien FD, Gaustad AH, et al. DNA methylation patterns vary in boar sperm cells with different levels of DNA fragmentation. 2019;20:1–15 https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6307-8. Accessed 5 Oct 2020. PubMed DOI PMC

Lambrot R, Chan D, Shao X, Aarabi M, Kwan T, Bourque G, et al. Whole-genome sequencing of H3K4me3 and DNA methylation in human sperm reveals regions of overlap linked to fertility and development. Cell Rep. 2021;36. 10.1016/J.CELREP.2021.109418. PubMed

Narud B, Khezri A, Zeremichael TT, Stenseth E, Heringstad B, Johannisson A, et al. Sperm chromatin integrity and DNA methylation in Norwegian Red bulls of contrasting fertility. Mol Reprod Dev. 2021:mrd.23461. 10.1002/mrd.23461. PubMed

Jenkins TG, Aston KI, Meyer TD, Hotaling JM, Shamsi MB, Johnstone EB, et al. Decreased fecundity and sperm DNA methylation patterns. Fertil Steril. 2016;105:51–57e3. doi: 10.1016/j.fertnstert.2015.09.013. PubMed DOI PMC

Sujit KM, Sarkar S, Singh V, Pandey R, Agrawal NK, Trivedi S, et al. Genome-wide differential methylation analyses identifies methylation signatures of male infertility. Hum Reprod. 2018;33:2256–2267. doi: 10.1093/humrep/dey319. PubMed DOI

Camprubí C, Salas-Huetos A, Aiese-Cigliano R, Godo A, Pons MC, Castellano G, et al. Spermatozoa from infertile patients exhibit differences of DNA methylation associated with spermatogenesis-related processes: an array-based analysis. Reprod Biomed Online. 2016;33:709–719. doi: 10.1016/j.rbmo.2016.09.001. PubMed DOI

Perrier J-P, Kenny DA, Chaulot-Talmon A, Byrne CJ, Sellem E, Jouneau L, et al. Accelerating Onset of Puberty Through Modification of Early Life Nutrition Induces Modest but Persistent Changes in Bull Sperm DNA Methylation Profiles Post-puberty. Front Genet. 2020;11:945. doi: 10.3389/fgene.2020.00945. PubMed DOI PMC

Giannini P, Braunschweig M. DNA methylation patterns at the IGF2-H19 locus in sperm of Swiss Landrace and Swiss Large White boars. J Anim Breed Genet. 2009;126:475–479. doi: 10.1111/J.1439-0388.2009.00802.X. PubMed DOI

Chen S, Liu S, Mi S, Li W, Zhang S, Ding X, et al. Comparative analyses of sperm dna methylomes among three commercial pig breeds reveal vital hypomethylated Regions associated with spermatogenesis and embryonic development. Front Genet. 2021;12:1849. PubMed PMC

El Hajj N, Zechner U, Schneider E, Tresch A, Gromoll J, Hahn T, et al. Methylation status of imprinted genes and repetitive elements in sperm DNA from infertile males. Sex Dev. 2011;5:60–69. doi: 10.1159/000323806. PubMed DOI

Samans B, Yang Y, Krebs S, Sarode GV, Blum H, Reichenbach M, et al. Uniformity of nucleosome preservation pattern in mammalian sperm and Its connection to repetitive DNA elements. Dev Cell. 2014;30:23–35. doi: 10.1016/J.DEVCEL.2014.05.023/ATTACHMENT/7C5D7493-CCB1-45B0-8EFC-F66EA02B5587/MMC3.XLSX. PubMed DOI

Sillaste G, Kaplinski L, Meier R, Jaakma Ü, Eriste E, Salumets A. A novel hypothesis for histone-to-protamine transition in Bos taurus spermatozoa. Reproduction. 2017;153:241–251. doi: 10.1530/REP-16-0441. PubMed DOI PMC

Samans B, Yang Y, Krebs S, Sarode GV, Blum H, Reichenbach M, et al. Uniformity of nucleosome preservation pattern in mammalian sperm and Its connection to repetitive DNA elements. Dev Cell. 2014;30:23–35. doi: 10.1016/j.devcel.2014.05.023. PubMed DOI

Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 2002;117:15–23. doi: 10.1016/S0925-4773(02)00181-8. PubMed DOI

Percharde M, Lin C-J, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A, et al. A LINE1-Nucleolin Partnership Regulates Early Development and ESC Identity. Cell. 2018;174:391–405.e19. doi: 10.1016/J.CELL.2018.05.043. PubMed DOI PMC

Halstead MM, Ma X, Zhou C, Schultz RM, Ross PJ. Chromatin remodeling in bovine embryos indicates species-specific regulation of genome activation. Nat Commun. 2020;11. 10.1038/S41467-020-18508-3. PubMed PMC

Fuselier TT, Lu H. PHLD class proteins: a family of new players in the p53 network. Int J Mol Sci 2020, Vol 21, Page 3543. 2020;21:3543. doi:10.3390/IJMS21103543. PubMed PMC

Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nat 2002 4206916. 2002;420:629–35. doi:10.1038/nature01148. PubMed

Coleman ML, Olson MF. Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ 2002 95. 2002;9:493–504. doi:10.1038/sj.cdd.4400987. PubMed

Denk-Lobnig M, Martin AC. Modular regulation of Rho family GTPases in development. Small GTPases. 2019;10:122. doi: 10.1080/21541248.2017.1294234. PubMed DOI PMC

Whitfield M, Thomas L, Bequignon E, Schmitt A, Stouvenel L, Montantin G, et al. Mutations in dnah17, encoding a sperm-specific axonemal outer dynein arm heavy chain, cause isolated male infertility due to Asthenozoospermia. Am J Hum Genet. 2019;105:198–212. doi: 10.1016/J.AJHG.2019.04.015. PubMed DOI PMC

Hu J, Lessard C, Longstaff C, O’Brien M, Palmer K, Reinholdt L, et al. ENU-induced mutant allele of Dnah1, ferf1, causes abnormal sperm behavior and fertilization failure in mice. Mol Reprod Dev. 2019;86:416–425. doi: 10.1002/MRD.23120. PubMed DOI

Wambergue C, Zouari R, Fourati Ben Mustapha S, Martinez G, Devillard F, Hennebicq S, et al. Patients with multiple morphological abnormalities of the sperm flagella due to DNAH1 mutations have a good prognosis following intracytoplasmic sperm injection. Hum Reprod. 2016;31:1164–1172. doi: 10.1093/HUMREP/DEW083. PubMed DOI

Ma T, Keller JA, Yu X. RNF8-dependent histone ubiquitination during DNA damage response and spermatogenesis. Acta Biochim Biophys Sin (Shanghai). 2011;43:339–345. doi: 10.1093/abbs/gmr016. PubMed DOI PMC

Salgado-Lucio ML, Ramírez-Ramírez D, Jorge-Cruz CY, Roa-Espitia AL, Hernández-González EO. FAK regulates actin polymerization during sperm capacitation via the ERK2/GEF-H1/RhoA signaling pathway. J Cell Sci. 2020;133:jcs239186. 10.1242/jcs.239186. PubMed

Wei G, Gao N, Chen J, Fan L, Zeng Z, Gao G, et al. Erk and MAPK signaling is essential for intestinal development through Wnt pathway modulation. Development. 2020;147:dev185678. PubMed

Hering DM, Olenski K, Kaminski S. Genome-wide association study for poor sperm motility in Holstein-Friesian bulls. Anim Reprod Sci. 2014;146:89–97. doi: 10.1016/j.anireprosci.2014.01.012. PubMed DOI

Prabhu AV, Luu W, Li D, Sharpe LJ, Brown AJ. DHCR7: A vital enzyme switch between cholesterol and vitamin D production. Prog Lipid Res. 2016;64:138–151. doi: 10.1016/j.plipres.2016.09.003. PubMed DOI

Ma F, Wu D, Deng L, Secrest P, Zhao J, Varki N, et al. Sialidases on mammalian sperm mediate deciduous sialylation during capacitation. J Biol Chem. 2012;287:38073–38079. doi: 10.1074/JBC.M112.380584/ATTACHMENT/2653AF1A-C0E4-443C-81E3-93044103F8FC/MMC1.PDF. PubMed DOI PMC

Sonderegger S, Pollheimer J, Knöfler M. Wnt Signalling in Implantation, Decidualisation and Placental Differentiation – Review. Placenta. 2010;31:839–847. doi: 10.1016/j.placenta.2010.07.011. PubMed DOI PMC

Koch S, Acebron SP, Herbst J, Hatiboglu G, Niehrs C. Post-transcriptional Wnt Signaling Governs Epididymal Sperm Maturation. Cell. 2015;163:1225–1236. doi: 10.1016/J.CELL.2015.10.029. PubMed DOI

Dong WL, Tan FQ, Yang WX. Wnt signaling in testis development: Unnecessary or essential? Gene. 2015;565:155–165. doi: 10.1016/j.gene.2015.04.066. PubMed DOI

Warr N, Siggers P, Bogani D, Brixey R, Pastorelli L, Yates L, et al. Sfrp1 and Sfrp2 are required for normal male sexual development in mice. Dev Biol. 2009;326:273–84. 10.1016/J.YDBIO.2008.11.023. PubMed

Wong EWP, Lee WM, Cheng CY. Secreted Frizzled-related protein 1 (sFRP1) regulates spermatid adhesion in the testis via dephosphorylation of focal adhesion kinase and the nectin-3 adhesion protein complex. Faseb J. 2013;27:464. doi: 10.1096/FJ.12-212514. PubMed DOI PMC

Bao H, Liu D, Xu Y, Sun Y, Mu C, Yu Y, et al. Hyperactivated Wnt-β-catenin signaling in the absence of sFRP1 and sFRP5 disrupts trophoblast differentiation through repression of Ascl2. BMC Biol. 2020;18. 10.1186/S12915-020-00883-4. PubMed PMC

Partl JZ, Fabijanovic D, Skrtic A, Vranic S, Martic TN, Serman L. Immunohistochemical expression of SFRP1 and SFRP3 proteins in normal and malignant reproductive tissues of rats and humans. Appl Immunohistochem Mol Morphol. 2014;22:681–687. doi: 10.1097/PAI.0000000000000019. PubMed DOI

Rhinn M, Dollé P. Retinoic acid signalling during development. Development. 2012;139:843–858. doi: 10.1242/dev.065938. PubMed DOI

Dollé P. Developmental expression of retinoic acid receptors (RARs) Nucl Recept Signal. 2009;7:6. doi: 10.1621/NRS.07006. PubMed DOI PMC

Wang G-S, Liang A, Dai Y-B, Wu X-L, Sun F, et al. Expression and localization of retinoid receptors in the testis of normal and infertile men. 2020;87:978–85. 10.1002/MRD.23412. PubMed

Lufkin T, Lohnes D, Mark M, Dierich A, Gorry P, Gaub MP, et al. High postnatal lethality and testis degeneration in retinoic acid receptor alpha mutant mice. Proc Natl Acad Sci U S A. 1993;90:7225. doi: 10.1073/PNAS.90.15.7225. PubMed DOI PMC

Huebner H, Hartner A, Rascher W, Strick RR, Kehl S, Heindl F, et al. Expression and regulation of retinoic acid receptor responders in the human placenta: https://doi.org/101177/1933719117746761. 2017;25:1357–70. doi:10.1177/1933719117746761. PubMed

Mohan M, Malayer JR, Geisert RD, Morgan GL. Expression patterns of retinoid x receptors, retinaldehyde dehydrogenase, and peroxisome proliferator activated receptor gamma in bovine preattachment embryos. Biol Reprod. 2002;66:692–700. doi: 10.1095/BIOLREPROD66.3.692. PubMed DOI

Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc Natl Acad Sci U S A. 2014;111:4139. doi: 10.1073/PNAS.1321569111. PubMed DOI PMC

Bennett MK. ‘Syniping’ away at glucose transport. Nat Cell Biol 1999 13. 1999;1:E58–60. doi:10.1038/11027. PubMed

Vargas RE, Duong VT, Han H, Ta AP, Chen Y, Zhao S, et al. Elucidation of WW domain ligand binding specificities in the Hippo pathway reveals STXBP4 as YAP inhibitor. Embo J. 2020;39:e102406. doi: 10.15252/EMBJ.2019102406. PubMed DOI PMC

Davis JR, Tapon N. Hippo signalling during development. Development. 2019;146:dev167106. PubMed PMC

Segawa K, Kurata S, Nagata S. Human type iv p-type atpases that work as plasma membrane phospholipid flippases and their regulation by caspase and calcium. 2016. 10.1074/JBC.M115.690727. PubMed PMC

Wang J, Molday LL, Hii T, Coleman JA, Wen T, Andersen JP, et al. Proteomic analysis and functional characterization of p4-ATPase Phospholipid Flippases from Murine Tissues. Sci Reports 2018 81. 2018;8:1–14. doi:10.1038/s41598-018-29108-z. PubMed PMC

Sun K, Tian W, Liu W, Yang Y, Zhu X. Disease mutation study identifies essential residues for phosphatidylserine flippase ATP11A. bioRxiv. 2020;:2020.01Sun, Kuanxiang, Wanli Tian, Wenjing Liu. Ye. . 10.1101/2020.01.13.904045. PubMed PMC

Segawa K, Kikuchi A, Noji T, Sugiura Y, Hiraga K, Suzuki C, et al. A sublethal ATP11A mutation associated with neurological deterioration causes aberrant phosphatidylcholine flipping in plasma membranes. 2021;131. 10.1172/JCI148005. PubMed PMC

Kowalewski B, Lübke T, Kollmann K, Braulke T, Reinheckel T, Dierks T, et al. Molecular Characterization of Arylsulfatase G: expression, processing, glycosylation, transport, and activity*. J Biol Chem. 2014;289:27992. doi: 10.1074/JBC.M114.584144. PubMed DOI PMC

Kowalewski B, Lamanna WC, Lawrence R, Damme M, Stroobants S, Padva M, et al. Arylsulfatase G inactivation causes loss of heparan sulfate 3-O-sulfatase activity and mucopolysaccharidosis in mice. Proc Natl Acad Sci U S A. 2012;109:10310. doi: 10.1073/PNAS.1202071109. PubMed DOI PMC

Yin Y, Wang A, Feng L, Wang Y, Zhang H, Zhang I, et al. Heparan sulfate proteoglycan sulfation regulates uterine differentiation and signaling during embryo implantation. Endocrinology. 2018;159:2459. doi: 10.1210/EN.2018-00105. PubMed DOI PMC

Satoh T, Yagi-Utsumi M, Okamoto K, Kurimoto E, Tanaka K, Kato K. Molecular and structural basis of the proteasome α subunit assembly mechanism mediated by the proteasome-assembling chaperone pac3-pac4 heterodimer. Int J Mol Sci. 2019;20. 10.3390/IJMS20092231. PubMed PMC

Zimmerman S, Sutovsky P. The sperm proteasome during sperm capacitation and fertilization. J Reprod Immunol. 2009;83:19–25. doi: 10.1016/j.jri.2009.07.006. PubMed DOI

Song W-H, Yi Y-J, Sutovsky M, Meyers S, Sutovsky P. Autophagy and ubiquitin–proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc Natl Acad Sci. 2016;113:E5261–E5270. doi: 10.1073/pnas.1605844113. PubMed DOI PMC

Baska KM, Manandhar G, Feng D, Agca Y, Tengowski MW, Sutovsky M, et al. Mechanism of extracellular ubiquitination in the mammalian epididymis. J Cell Physiol. 2008;215:684–696. doi: 10.1002/jcp.21349. PubMed DOI

Kerns K, Morales P, Sutovsky P. Regulation of sperm capacitation by the 26s proteasome: an emerging new paradigm in spermatology. Biol Repod. 2016;94:1–17. 10.1095/biolreprod.115.136622. PubMed

Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, et al. Programming and inheritance of parental DNA methylomes in mammals. Cell. 2014;157:979. doi: 10.1016/J.CELL.2014.04.017. PubMed DOI PMC

Sirard MA. How the environment affects early embryonic development. Reprod Fertil Dev. 2021;34:203–213. doi: 10.1071/RD21266. PubMed DOI

Berry DP, Evans RD, Mc PS. Evaluation of bull fertility in dairy and beef cattle using cow field data. Theriogenology. 2011;75:172–181. doi: 10.1016/j.theriogenology.2010.08.002. PubMed DOI

Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009 103. 2009;10:1–10. doi:10.1186/GB-2009-10-3-R25. PubMed PMC

Krueger F, Andrews SR. Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27:1571–1572. doi: 10.1093/bioinformatics/btr167. PubMed DOI PMC

Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol 2011 291. 2011;29:24–6. doi:10.1038/nbt.1754. PubMed PMC

Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 2012 1310. 2012;13:1–9. doi:10.1186/GB-2012-13-10-R87. PubMed PMC

Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the arrive guidelines for reporting animal research. PLOS Biol. 2010;8:e1000412. doi: 10.1371/JOURNAL.PBIO.1000412. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace