Sperm DNA methylation patterns at discrete CpGs and genes involved in embryonic development are related to bull fertility
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
35585482
PubMed Central
PMC9118845
DOI
10.1186/s12864-022-08614-5
PII: 10.1186/s12864-022-08614-5
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, Dairy industry, Epigenetics, Male fertility, RRBS, Spermatozoa,
- MeSH
- analýza spermatu * MeSH
- embryonální vývoj genetika MeSH
- fertilita genetika MeSH
- metylace DNA * MeSH
- skot MeSH
- spermie metabolismus MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- skot MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Despite a multifactorial approach being taken for the evaluation of bull semen quality in many animal breeding centres worldwide, reliable prediction of bull fertility is still a challenge. Recently, attention has turned to molecular mechanisms, which could uncover potential biomarkers of fertility. One of these mechanisms is DNA methylation, which together with other epigenetic mechanisms is essential for the fertilising sperm to drive normal embryo development and establish a viable pregnancy. In this study, we hypothesised that bull sperm DNA methylation patterns are related to bull fertility. We therefore investigated DNA methylation patterns from bulls used in artificial insemination with contrasting fertility scores. RESULTS: The DNA methylation patterns were obtained by reduced representative bisulphite sequencing from 10 high-fertility bulls and 10 low-fertility bulls, having average fertility scores of - 6.6 and + 6.5%, respectively (mean of the population was zero). Hierarchical clustering analysis did not distinguish bulls based on fertility but did highlight individual differences. Despite this, using stringent criteria (DNA methylation difference ≥ 35% and a q-value < 0.001), we identified 661 differently methylated cytosines (DMCs). DMCs were preferentially located in intergenic regions, introns, gene downstream regions, repetitive elements, open sea, shores and shelves of CpG islands. We also identified 10 differently methylated regions, covered by 7 unique genes (SFRP1, STXBP4, BCR, PSMG4, ARSG, ATP11A, RXRA), which are involved in spermatogenesis and early embryonic development. CONCLUSION: This study demonstrated that at specific CpG sites, sperm DNA methylation status is related to bull fertility, and identified seven differently methylated genes in sperm of subfertile bulls that may lead to altered gene expression and potentially influence embryo development.
Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Ecole Nationale Vétérinaire d'Alfort BREED Maisons Alfort France
School of Agriculture and Food Science University College Dublin Belfield Dublin 4 Ireland
Université Paris Saclay UVSQ INRAE BREED Jouy en Josas France
Zobrazit více v PubMed
Fair S, Lonergan P. Review: Understanding the causes of variation in reproductive wastage among bulls. Animal. 2018;12:s53-s62. 10.1017/S1751731118000964. PubMed
Kathiravan P, Kalatharan J, Karthikeya G, Rengarajan K, Kadirvel G. Objective sperm motion analysis to assess dairy bull fertility using computer-aided system - a review. Reprod Domest Anim. 2011;46:165–172. doi: 10.1111/j.1439-0531.2010.01603.x. PubMed DOI
Gillan L, Kroetsch T, Chis Maxwell WM, Evans G. Assessment of in vitro sperm characteristics in relation to fertility in dairy bulls. Anim Reprod Sci. 2008;103:201–214. doi: 10.1016/j.anireprosci.2006.12.010. PubMed DOI
Bernecic NC, Donnellan E, O’Callaghan E, Kupisiewicz K, O’Meara C, Weldon K, et al. Comprehensive functional analysis reveals that acrosome integrity and viability are key variables distinguishing artificial insemination bulls of varying fertility. J Dairy Sci. 2021;0. doi:10.3168/JDS.2021-20319. PubMed
Bucher K, Malama E, Siuda M, Janett F, Bollwein H. Multicolor flow cytometric analysis of cryopreserved bovine sperm: a tool for the evaluation of bull fertility. J Dairy Sci. 2019;102:11652–11669. doi: 10.3168/JDS.2019-16572. PubMed DOI
Taylor JF, Schnabel RD, Sutovsky P. Genomics of bull fertility. Animal. 2018;12(Suppl 1):s172. doi: 10.1017/S1751731118000599. PubMed DOI PMC
Diskin M, Morris D. Embryonic and Early Foetal Losses in Cattle and Other Ruminants. Reprod Domest Anim. 2008;43(SUPPL.2):260–267. doi: 10.1111/J.1439-0531.2008.01171.X. PubMed DOI
Berg DK, van Leeuwen J, Beaumont S, Berg M, Pfeffer PL. Embryo loss in cattle between days 7 and 16 of pregnancy. Theriogenology. 2010;73:250–260. doi: 10.1016/j.theriogenology.2009.09.005. PubMed DOI
Pohler KG, Reese ST, Franco GA, Vander OR, Filho PR, et al. New approaches to diagnose and target reproductive failure in cattle. Anim Reprod. 2020;17:1–19. doi: 10.1590/1984-3143-AR2020-0057. PubMed DOI PMC
Franco G, Reese S, Poole R, Rhinehart J, Thompson K, Cooke R, et al. Sire contribution to pregnancy loss in different periods of embryonic and fetal development of beef cows. Theriogenology. 2020;154:84–91. doi: 10.1016/j.theriogenology.2020.05.021. PubMed DOI
O’Callaghan E, Sánchez JM, McDonald M, Kelly AK, Hamdi M, Maicas C, et al. Sire contribution to fertilization failure and early embryo survival in cattle. J Dairy Sci. 2021;104:7262–7271. doi: 10.3168/JDS.2020-19900. PubMed DOI
Viana AGA, Martins AMA, Pontes AH, Fontes W, Castro MS, Ricart CAO, et al. Proteomic landscape of seminal plasma associated with dairy bull fertility. Sci Rep. 2018;8. 10.1038/S41598-018-34152-W. PubMed PMC
Evans HC, Dinh TTN, Hardcastle ML, Gilmore AA, Ugur MR, Hitit M, et al. Advancing semen evaluation using lipidomics. Front Vet Sci. 2021;8:601794. doi: 10.3389/FVETS.2021.601794. PubMed DOI PMC
Saraf KK, Kumaresan A, Dasgupta M, Karthikkeyan G, Prasad TSK, Modi PK, et al. Metabolomic fingerprinting of bull spermatozoa for identification of fertility signature metabolites. Mol Reprod Dev. 2020;87:692–703. doi: 10.1002/MRD.23354. PubMed DOI
Menezes ESB, Badial PR, El DH, Husna AU, Ugur MR, Kaya A, et al. Sperm miR-15a and miR-29b are associated with bull fertility. Andrologia. 2020;52:e13412. doi: 10.1111/AND.13412. PubMed DOI
Casas E, Vavouri T. Sperm epigenomics: challenges and opportunities. Front Genet. 2014;5:1–7. doi: 10.3389/fgene.2014.00330. PubMed DOI PMC
Duan JE, Jiang ZC, Alqahtani F, Mandoiu I, Dong H, Zheng X, et al. Methylome dynamics of bovine gametes and in vivo early embryos. Front Genet. 2019;10. 10.3389/FGENE.2019.00512. PubMed PMC
Denomme MM, Haywood ME, Parks JC, Schoolcraft WB, Katz-Jaffe MG. The inherited methylome landscape is directly altered with paternal aging and associated with offspring neurodevelopmental disorders. Aging Cell. 2020;19. 10.1111/ACEL.13178. PubMed PMC
Denomme MM, McCallie BR, Parks JC, Schoolcraft WB, Katz-Jaffe MG. Alterations in the sperm histone-retained epigenome are associated with unexplained male factor infertility and poor blastocyst development in donor oocyte IVF cycles. Hum Reprod. 2017;32:2443–2455. doi: 10.1093/humrep/dex317. PubMed DOI
Fournier C, Labrune E, Lornage J, Soignon G, Giscard d’Estaing S, Guérin J-F, et al. The impact of histones linked to sperm chromatin on embryo development and ART outcome. Andrology. 2018;6:436–445. doi: 10.1111/andr.12478. PubMed DOI
Kutchy NA, Menezes ESB, Chiappetta A, Tan W, Wills RW, Kaya A, et al. Acetylation and methylation of sperm histone 3 lysine 27 (H3K27ac and H3K27me3) are associated with bull fertility. Andrologia. 2018;50:e12915. doi: 10.1111/AND.12915. PubMed DOI
Wu C, Blondin P, Vigneault C, Labrecque R, Sirard M-A. Sperm miRNAs— potential mediators of bull age and early embryo development. BMC Genomics. 2020;21. 10.1186/S12864-020-07206-5. PubMed PMC
Yuan S, Schuster A, Tang C, Yu T, Ortogero N, Bao J, et al. Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development. 2016;143:635. doi: 10.1242/DEV.131755. PubMed DOI PMC
Seah MKY, Messerschmidt DM. From germline to soma: epigenetic dynamics in the mouse preimplantation embryo. Curr Top Dev Biol. 2018;128:203–235. doi: 10.1016/bs.ctdb.2017.10.011. PubMed DOI
Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, et al. The dynamics of genome-wide dna methylation reprogramming in mouse primordial germ cells. Mol Cell. 2012;48:849–862. doi: 10.1016/j.molcel.2012.11.001. PubMed DOI PMC
Khambata K, Raut S, Deshpande S, Mohan S, Sonawane S, Gaonkar R, et al. DNA methylation defects in spermatozoa of male partners from couples experiencing recurrent pregnancy loss. Hum Reprod. 2021;36:48–60. doi: 10.1093/HUMREP/DEAA278. PubMed DOI
Wu H, Hauser R, Krawetz SA, Pilsner JR. Environmental Susceptibility of the Sperm Epigenome During Windows of Male Germ Cell Development. Curr Environ Heal reports. 2015;2:356–366. doi: 10.1007/s40572-015-0067-7. PubMed DOI PMC
Garrido N, Cruz F, Egea RR, Simon C, Sadler-Riggleman I, Beck D, et al. Sperm DNA methylation epimutation biomarker for paternal offspring autism susceptibility. Clin. Epigenetics. 2021;13. 10.1186/S13148-020-00995-2. PubMed PMC
Du Y, Li M, Chen J, Duan Y, Wang X, Qiu Y, et al. Promoter targeted bisulfite sequencing reveals DNA methylation profiles associated with low sperm motility in asthenozoospermia. Hum Reprod. 2016;31:24–33. doi: 10.1093/humrep/dev283. PubMed DOI
Boissonnas CC, El AH, Haelewyn V, Fauque P, Dupont JM, Gut I, et al. Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men. Eur J Hum Genet. 2010;18:73–80. doi: 10.1038/ejhg.2009.117. PubMed DOI PMC
Laqqan M, Tierling S, Alkhaled Y, LoPorto C, Hammadeh ME. Alterations in sperm DNA methylation patterns of oligospermic males. Reprod Biol. 2017;17:396–400. doi: 10.1016/j.repbio.2017.10.007. PubMed DOI
Urdinguio RG, Bayón GF, Dmitrijeva M, Toraño EG, Bravo C, Fraga MF, et al. Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility. Hum Reprod. 2015;30:1014–1028. doi: 10.1093/humrep/dev053. PubMed DOI
Carrell DT, Salas-Huetos A, Hotaling J. Increasing evidence of the role of the sperm epigenome in embryogenesis: oligoasthenoteratozoospermia, altered embryo DNA methylation, and miscarriage. Fertil Steril. 2018;110:401–402. doi: 10.1016/J.FERTNSTERT.2018.04.042. PubMed DOI
Kropp J, Carrillo JA, Namous H, Daniels A, Salih SM, Song J, et al. Male fertility status is associated with DNA methylation signatures in sperm and transcriptomic profiles of bovine preimplantation embryos. BMC Genomics. 2017;18:280. doi: 10.1186/s12864-017-3673-y. PubMed DOI PMC
Takeda K, Kobayashi E, Ogata K, Imai A, Sato S, Adachi H, et al. Differentially methylated CpG sites related to fertility in Japanese black bull spermatozoa: Epigenetic biomarker candidates to predict sire conception rate. J Reprod Dev. 2021;67:99–107. doi: 10.1262/jrd.2020-137. PubMed DOI PMC
Capra E, Lazzari B, Turri F, Cremonesi P, Portela AMR, Ajmone-Marsan P, et al. Epigenetic analysis of high and low motile sperm populations reveals methylation variation in satellite regions within the pericentromeric position and in genes functionally related to sperm DNA organization and maintenance in Bos taurus. BMC Genomics. 2019;20:1–12. doi: 10.1186/s12864-019-6317-6. PubMed DOI PMC
Narud B, Khezri A, Zeremichael TT, Stenseth E-BBE, Heringstad B, Johannisson A, et al. Sperm chromatin integrity and DNA methylation in Norwegian Red bulls of contrasting fertility. Mol Reprod Dev. 2021;88:187–200. doi: 10.1002/MRD.23461. PubMed DOI
Gross N, Peñagaricano F, Khatib H. Integration of whole-genome DNA methylation data with RNA sequencing data to identify markers for bull fertility. Anim Genet. 2020;51:502–510. doi: 10.1111/AGE.12941. PubMed DOI
Lambert S, Blondin P, Vigneault C, Labrecque R, Dufort I, Sirard MA. Spermatozoa DNA methylation patterns differ due to peripubertal age in bulls. Theriogenology. 2018;106:21–29. doi: 10.1016/j.theriogenology.2017.10.006. PubMed DOI
Takeda K, Kobayashi E, Nishino K, Imai A, Adachi H, Hoshino Y, et al. Age-related changes in DNA methylation levels at CpG sites in bull spermatozoa and in vitro fertilization-derived blastocyst-stage embryos revealed by combinedbisulfite restriction analysis. J Reprod Dev. 2019;65:305. doi: 10.1262/JRD.2018-146. PubMed DOI PMC
Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13. doi: 10.1093/NAR/GKN923. PubMed DOI PMC
Aston KI, Uren PJ, Jenkins TG, Horsager A, Cairns BR, Smith AD, et al. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. 2020;2015(104):1388–1397.e5. 10.1016/j.fertnstert.2015.08.019. Accessed 4 Oct. PubMed
Khezri A, Narud B, Stenseth E-BB, Johannisson A, Myromslien FD, Gaustad AH, et al. DNA methylation patterns vary in boar sperm cells with different levels of DNA fragmentation. 2019;20:1–15 https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6307-8. Accessed 5 Oct 2020. PubMed DOI PMC
Lambrot R, Chan D, Shao X, Aarabi M, Kwan T, Bourque G, et al. Whole-genome sequencing of H3K4me3 and DNA methylation in human sperm reveals regions of overlap linked to fertility and development. Cell Rep. 2021;36. 10.1016/J.CELREP.2021.109418. PubMed
Narud B, Khezri A, Zeremichael TT, Stenseth E, Heringstad B, Johannisson A, et al. Sperm chromatin integrity and DNA methylation in Norwegian Red bulls of contrasting fertility. Mol Reprod Dev. 2021:mrd.23461. 10.1002/mrd.23461. PubMed
Jenkins TG, Aston KI, Meyer TD, Hotaling JM, Shamsi MB, Johnstone EB, et al. Decreased fecundity and sperm DNA methylation patterns. Fertil Steril. 2016;105:51–57e3. doi: 10.1016/j.fertnstert.2015.09.013. PubMed DOI PMC
Sujit KM, Sarkar S, Singh V, Pandey R, Agrawal NK, Trivedi S, et al. Genome-wide differential methylation analyses identifies methylation signatures of male infertility. Hum Reprod. 2018;33:2256–2267. doi: 10.1093/humrep/dey319. PubMed DOI
Camprubí C, Salas-Huetos A, Aiese-Cigliano R, Godo A, Pons MC, Castellano G, et al. Spermatozoa from infertile patients exhibit differences of DNA methylation associated with spermatogenesis-related processes: an array-based analysis. Reprod Biomed Online. 2016;33:709–719. doi: 10.1016/j.rbmo.2016.09.001. PubMed DOI
Perrier J-P, Kenny DA, Chaulot-Talmon A, Byrne CJ, Sellem E, Jouneau L, et al. Accelerating Onset of Puberty Through Modification of Early Life Nutrition Induces Modest but Persistent Changes in Bull Sperm DNA Methylation Profiles Post-puberty. Front Genet. 2020;11:945. doi: 10.3389/fgene.2020.00945. PubMed DOI PMC
Giannini P, Braunschweig M. DNA methylation patterns at the IGF2-H19 locus in sperm of Swiss Landrace and Swiss Large White boars. J Anim Breed Genet. 2009;126:475–479. doi: 10.1111/J.1439-0388.2009.00802.X. PubMed DOI
Chen S, Liu S, Mi S, Li W, Zhang S, Ding X, et al. Comparative analyses of sperm dna methylomes among three commercial pig breeds reveal vital hypomethylated Regions associated with spermatogenesis and embryonic development. Front Genet. 2021;12:1849. PubMed PMC
El Hajj N, Zechner U, Schneider E, Tresch A, Gromoll J, Hahn T, et al. Methylation status of imprinted genes and repetitive elements in sperm DNA from infertile males. Sex Dev. 2011;5:60–69. doi: 10.1159/000323806. PubMed DOI
Samans B, Yang Y, Krebs S, Sarode GV, Blum H, Reichenbach M, et al. Uniformity of nucleosome preservation pattern in mammalian sperm and Its connection to repetitive DNA elements. Dev Cell. 2014;30:23–35. doi: 10.1016/J.DEVCEL.2014.05.023/ATTACHMENT/7C5D7493-CCB1-45B0-8EFC-F66EA02B5587/MMC3.XLSX. PubMed DOI
Sillaste G, Kaplinski L, Meier R, Jaakma Ü, Eriste E, Salumets A. A novel hypothesis for histone-to-protamine transition in Bos taurus spermatozoa. Reproduction. 2017;153:241–251. doi: 10.1530/REP-16-0441. PubMed DOI PMC
Samans B, Yang Y, Krebs S, Sarode GV, Blum H, Reichenbach M, et al. Uniformity of nucleosome preservation pattern in mammalian sperm and Its connection to repetitive DNA elements. Dev Cell. 2014;30:23–35. doi: 10.1016/j.devcel.2014.05.023. PubMed DOI
Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 2002;117:15–23. doi: 10.1016/S0925-4773(02)00181-8. PubMed DOI
Percharde M, Lin C-J, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A, et al. A LINE1-Nucleolin Partnership Regulates Early Development and ESC Identity. Cell. 2018;174:391–405.e19. doi: 10.1016/J.CELL.2018.05.043. PubMed DOI PMC
Halstead MM, Ma X, Zhou C, Schultz RM, Ross PJ. Chromatin remodeling in bovine embryos indicates species-specific regulation of genome activation. Nat Commun. 2020;11. 10.1038/S41467-020-18508-3. PubMed PMC
Fuselier TT, Lu H. PHLD class proteins: a family of new players in the p53 network. Int J Mol Sci 2020, Vol 21, Page 3543. 2020;21:3543. doi:10.3390/IJMS21103543. PubMed PMC
Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nat 2002 4206916. 2002;420:629–35. doi:10.1038/nature01148. PubMed
Coleman ML, Olson MF. Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ 2002 95. 2002;9:493–504. doi:10.1038/sj.cdd.4400987. PubMed
Denk-Lobnig M, Martin AC. Modular regulation of Rho family GTPases in development. Small GTPases. 2019;10:122. doi: 10.1080/21541248.2017.1294234. PubMed DOI PMC
Whitfield M, Thomas L, Bequignon E, Schmitt A, Stouvenel L, Montantin G, et al. Mutations in dnah17, encoding a sperm-specific axonemal outer dynein arm heavy chain, cause isolated male infertility due to Asthenozoospermia. Am J Hum Genet. 2019;105:198–212. doi: 10.1016/J.AJHG.2019.04.015. PubMed DOI PMC
Hu J, Lessard C, Longstaff C, O’Brien M, Palmer K, Reinholdt L, et al. ENU-induced mutant allele of Dnah1, ferf1, causes abnormal sperm behavior and fertilization failure in mice. Mol Reprod Dev. 2019;86:416–425. doi: 10.1002/MRD.23120. PubMed DOI
Wambergue C, Zouari R, Fourati Ben Mustapha S, Martinez G, Devillard F, Hennebicq S, et al. Patients with multiple morphological abnormalities of the sperm flagella due to DNAH1 mutations have a good prognosis following intracytoplasmic sperm injection. Hum Reprod. 2016;31:1164–1172. doi: 10.1093/HUMREP/DEW083. PubMed DOI
Ma T, Keller JA, Yu X. RNF8-dependent histone ubiquitination during DNA damage response and spermatogenesis. Acta Biochim Biophys Sin (Shanghai). 2011;43:339–345. doi: 10.1093/abbs/gmr016. PubMed DOI PMC
Salgado-Lucio ML, Ramírez-Ramírez D, Jorge-Cruz CY, Roa-Espitia AL, Hernández-González EO. FAK regulates actin polymerization during sperm capacitation via the ERK2/GEF-H1/RhoA signaling pathway. J Cell Sci. 2020;133:jcs239186. 10.1242/jcs.239186. PubMed
Wei G, Gao N, Chen J, Fan L, Zeng Z, Gao G, et al. Erk and MAPK signaling is essential for intestinal development through Wnt pathway modulation. Development. 2020;147:dev185678. PubMed
Hering DM, Olenski K, Kaminski S. Genome-wide association study for poor sperm motility in Holstein-Friesian bulls. Anim Reprod Sci. 2014;146:89–97. doi: 10.1016/j.anireprosci.2014.01.012. PubMed DOI
Prabhu AV, Luu W, Li D, Sharpe LJ, Brown AJ. DHCR7: A vital enzyme switch between cholesterol and vitamin D production. Prog Lipid Res. 2016;64:138–151. doi: 10.1016/j.plipres.2016.09.003. PubMed DOI
Ma F, Wu D, Deng L, Secrest P, Zhao J, Varki N, et al. Sialidases on mammalian sperm mediate deciduous sialylation during capacitation. J Biol Chem. 2012;287:38073–38079. doi: 10.1074/JBC.M112.380584/ATTACHMENT/2653AF1A-C0E4-443C-81E3-93044103F8FC/MMC1.PDF. PubMed DOI PMC
Sonderegger S, Pollheimer J, Knöfler M. Wnt Signalling in Implantation, Decidualisation and Placental Differentiation – Review. Placenta. 2010;31:839–847. doi: 10.1016/j.placenta.2010.07.011. PubMed DOI PMC
Koch S, Acebron SP, Herbst J, Hatiboglu G, Niehrs C. Post-transcriptional Wnt Signaling Governs Epididymal Sperm Maturation. Cell. 2015;163:1225–1236. doi: 10.1016/J.CELL.2015.10.029. PubMed DOI
Dong WL, Tan FQ, Yang WX. Wnt signaling in testis development: Unnecessary or essential? Gene. 2015;565:155–165. doi: 10.1016/j.gene.2015.04.066. PubMed DOI
Warr N, Siggers P, Bogani D, Brixey R, Pastorelli L, Yates L, et al. Sfrp1 and Sfrp2 are required for normal male sexual development in mice. Dev Biol. 2009;326:273–84. 10.1016/J.YDBIO.2008.11.023. PubMed
Wong EWP, Lee WM, Cheng CY. Secreted Frizzled-related protein 1 (sFRP1) regulates spermatid adhesion in the testis via dephosphorylation of focal adhesion kinase and the nectin-3 adhesion protein complex. Faseb J. 2013;27:464. doi: 10.1096/FJ.12-212514. PubMed DOI PMC
Bao H, Liu D, Xu Y, Sun Y, Mu C, Yu Y, et al. Hyperactivated Wnt-β-catenin signaling in the absence of sFRP1 and sFRP5 disrupts trophoblast differentiation through repression of Ascl2. BMC Biol. 2020;18. 10.1186/S12915-020-00883-4. PubMed PMC
Partl JZ, Fabijanovic D, Skrtic A, Vranic S, Martic TN, Serman L. Immunohistochemical expression of SFRP1 and SFRP3 proteins in normal and malignant reproductive tissues of rats and humans. Appl Immunohistochem Mol Morphol. 2014;22:681–687. doi: 10.1097/PAI.0000000000000019. PubMed DOI
Rhinn M, Dollé P. Retinoic acid signalling during development. Development. 2012;139:843–858. doi: 10.1242/dev.065938. PubMed DOI
Dollé P. Developmental expression of retinoic acid receptors (RARs) Nucl Recept Signal. 2009;7:6. doi: 10.1621/NRS.07006. PubMed DOI PMC
Wang G-S, Liang A, Dai Y-B, Wu X-L, Sun F, et al. Expression and localization of retinoid receptors in the testis of normal and infertile men. 2020;87:978–85. 10.1002/MRD.23412. PubMed
Lufkin T, Lohnes D, Mark M, Dierich A, Gorry P, Gaub MP, et al. High postnatal lethality and testis degeneration in retinoic acid receptor alpha mutant mice. Proc Natl Acad Sci U S A. 1993;90:7225. doi: 10.1073/PNAS.90.15.7225. PubMed DOI PMC
Huebner H, Hartner A, Rascher W, Strick RR, Kehl S, Heindl F, et al. Expression and regulation of retinoic acid receptor responders in the human placenta: https://doi.org/101177/1933719117746761. 2017;25:1357–70. doi:10.1177/1933719117746761. PubMed
Mohan M, Malayer JR, Geisert RD, Morgan GL. Expression patterns of retinoid x receptors, retinaldehyde dehydrogenase, and peroxisome proliferator activated receptor gamma in bovine preattachment embryos. Biol Reprod. 2002;66:692–700. doi: 10.1095/BIOLREPROD66.3.692. PubMed DOI
Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc Natl Acad Sci U S A. 2014;111:4139. doi: 10.1073/PNAS.1321569111. PubMed DOI PMC
Bennett MK. ‘Syniping’ away at glucose transport. Nat Cell Biol 1999 13. 1999;1:E58–60. doi:10.1038/11027. PubMed
Vargas RE, Duong VT, Han H, Ta AP, Chen Y, Zhao S, et al. Elucidation of WW domain ligand binding specificities in the Hippo pathway reveals STXBP4 as YAP inhibitor. Embo J. 2020;39:e102406. doi: 10.15252/EMBJ.2019102406. PubMed DOI PMC
Davis JR, Tapon N. Hippo signalling during development. Development. 2019;146:dev167106. PubMed PMC
Segawa K, Kurata S, Nagata S. Human type iv p-type atpases that work as plasma membrane phospholipid flippases and their regulation by caspase and calcium. 2016. 10.1074/JBC.M115.690727. PubMed PMC
Wang J, Molday LL, Hii T, Coleman JA, Wen T, Andersen JP, et al. Proteomic analysis and functional characterization of p4-ATPase Phospholipid Flippases from Murine Tissues. Sci Reports 2018 81. 2018;8:1–14. doi:10.1038/s41598-018-29108-z. PubMed PMC
Sun K, Tian W, Liu W, Yang Y, Zhu X. Disease mutation study identifies essential residues for phosphatidylserine flippase ATP11A. bioRxiv. 2020;:2020.01Sun, Kuanxiang, Wanli Tian, Wenjing Liu. Ye. . 10.1101/2020.01.13.904045. PubMed PMC
Segawa K, Kikuchi A, Noji T, Sugiura Y, Hiraga K, Suzuki C, et al. A sublethal ATP11A mutation associated with neurological deterioration causes aberrant phosphatidylcholine flipping in plasma membranes. 2021;131. 10.1172/JCI148005. PubMed PMC
Kowalewski B, Lübke T, Kollmann K, Braulke T, Reinheckel T, Dierks T, et al. Molecular Characterization of Arylsulfatase G: expression, processing, glycosylation, transport, and activity*. J Biol Chem. 2014;289:27992. doi: 10.1074/JBC.M114.584144. PubMed DOI PMC
Kowalewski B, Lamanna WC, Lawrence R, Damme M, Stroobants S, Padva M, et al. Arylsulfatase G inactivation causes loss of heparan sulfate 3-O-sulfatase activity and mucopolysaccharidosis in mice. Proc Natl Acad Sci U S A. 2012;109:10310. doi: 10.1073/PNAS.1202071109. PubMed DOI PMC
Yin Y, Wang A, Feng L, Wang Y, Zhang H, Zhang I, et al. Heparan sulfate proteoglycan sulfation regulates uterine differentiation and signaling during embryo implantation. Endocrinology. 2018;159:2459. doi: 10.1210/EN.2018-00105. PubMed DOI PMC
Satoh T, Yagi-Utsumi M, Okamoto K, Kurimoto E, Tanaka K, Kato K. Molecular and structural basis of the proteasome α subunit assembly mechanism mediated by the proteasome-assembling chaperone pac3-pac4 heterodimer. Int J Mol Sci. 2019;20. 10.3390/IJMS20092231. PubMed PMC
Zimmerman S, Sutovsky P. The sperm proteasome during sperm capacitation and fertilization. J Reprod Immunol. 2009;83:19–25. doi: 10.1016/j.jri.2009.07.006. PubMed DOI
Song W-H, Yi Y-J, Sutovsky M, Meyers S, Sutovsky P. Autophagy and ubiquitin–proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc Natl Acad Sci. 2016;113:E5261–E5270. doi: 10.1073/pnas.1605844113. PubMed DOI PMC
Baska KM, Manandhar G, Feng D, Agca Y, Tengowski MW, Sutovsky M, et al. Mechanism of extracellular ubiquitination in the mammalian epididymis. J Cell Physiol. 2008;215:684–696. doi: 10.1002/jcp.21349. PubMed DOI
Kerns K, Morales P, Sutovsky P. Regulation of sperm capacitation by the 26s proteasome: an emerging new paradigm in spermatology. Biol Repod. 2016;94:1–17. 10.1095/biolreprod.115.136622. PubMed
Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, et al. Programming and inheritance of parental DNA methylomes in mammals. Cell. 2014;157:979. doi: 10.1016/J.CELL.2014.04.017. PubMed DOI PMC
Sirard MA. How the environment affects early embryonic development. Reprod Fertil Dev. 2021;34:203–213. doi: 10.1071/RD21266. PubMed DOI
Berry DP, Evans RD, Mc PS. Evaluation of bull fertility in dairy and beef cattle using cow field data. Theriogenology. 2011;75:172–181. doi: 10.1016/j.theriogenology.2010.08.002. PubMed DOI
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009 103. 2009;10:1–10. doi:10.1186/GB-2009-10-3-R25. PubMed PMC
Krueger F, Andrews SR. Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27:1571–1572. doi: 10.1093/bioinformatics/btr167. PubMed DOI PMC
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol 2011 291. 2011;29:24–6. doi:10.1038/nbt.1754. PubMed PMC
Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 2012 1310. 2012;13:1–9. doi:10.1186/GB-2012-13-10-R87. PubMed PMC
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the arrive guidelines for reporting animal research. PLOS Biol. 2010;8:e1000412. doi: 10.1371/JOURNAL.PBIO.1000412. PubMed DOI PMC