Effect of geographical origin, regional adaptation, genotype, and release year on winter hardiness of wheat and triticale accessions evaluated for six decades in trials

. 2025 Feb 18 ; 15 (1) : 5961. [epub] 20250218

Status In-Process Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39966594

Grantová podpora
QK22010293 Ministerstvo Zemědělství
RO0423 Ministerstvo Zemědělství

Odkazy

PubMed 39966594
PubMed Central PMC11836321
DOI 10.1038/s41598-025-89291-8
PII: 10.1038/s41598-025-89291-8
Knihovny.cz E-zdroje

UNLABELLED: The overwintering of accessions of three wheat species (bread, durum, spelt) and triticale was evaluated annually from 1960 to 2020 at the Crop Research Institute in Prague by means of trials in wooden-boxes. The set of tested cereal accessions was regularly changed, so that the winter survival ratings of the accessions represented a highly unbalanced set of values. Out of 15,510 winter survival values, 1,991 accessions were classified using a generalized linear model with the logit link function and transformation of calculated coefficients into a nine-point scale to estimate their genotypic Winter Hardiness Potential (WHP 1 = least hardy; WHP 9 = most hardy). The WHP of the winter wheat accessions depended on their geographical origin: for European countries, the mean ranged from WHP 7 for north-eastern countries to WHP 3 for south-western countries. There was a decrease in WHP for accessions released in the 21st century in the Central European region. A significant correlation was found between the cultivar WHPs and their survival in the field after severe winters, and registration of new, more cold tender cultivars increased after warm winters. Dependence of the overwintering index on climatic changes in the period 1960 to 2020 is discussed. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1038/s41598-025-89291-8.

Zobrazit více v PubMed

Prášil, I. & Zámečník, J. The effect of weather on the overwintering of winter crops. In Weather and Yield (ed. Petr, J.). 141 – 51 (Elsevier, 1991).

Sãulescu, N. N. & Braun, H. J. Cold tolerance. Application of Physiology in Wheat Breeding (eds. Reynolds, M. P., Ortiz-Monasterio, J. I. & McNab, A.). 111 – 23 (CIMMYT Mexico D.F., 2001). https://repository.cimmyt.org/bitstream/handle/10883/1248/74619.pdf?sequence=1&isAllowed=y

Ponomareva, M. L., Gorshkov, V. Y., Ponomarev, S. N., Korzun, V. & Miedaner, T. Snow mold of winter cereals: a complex disease and a challenge for resistance breeding. Theor. Appl. Genet.134, 419–433. 10.1007/s00122-020-03725-7 (2020). PubMed PMC

Sasaki, K. & Imai, R. Mechanisms of cold-induced immunity in plants. Physiol. Plant.17510.1111/ppl.13846 (2023). PubMed

Kosová, K. & Prášil, I. T. Annual field crops. In Temperature Adaptation in a Changing Climate: Nature at Risk (ed Storey, K. B. & Tanino, K. K.) 186–207 (CAB International Wallingford the UK, 2012). https://www.cabidigitallibrary.org/doi/10.1079/9781845938222.0186 DOI

Babben, S. et al. Association genetics studies on frost tolerance in wheat (Triticum aestivum L.) reveal new highly conserved amino acid substitutions in CBF-A3, CBF-A15, VRN3 and PPD1 genes. BMC Genom. 1910.1186/s12864-018-4795-6 (2018). PubMed PMC

Beil, C. T., Anderson, V. A., Morgounov, A. & Haley, S. D. Genomic selection for winter survival ability among a diverse collection of facultative and winter wheat genotypes. Mol. Breed.3910.1007/s11032-018-0925-8 (2019).

Sieber, A. N., Würschum, T., Longin, C. F. H. & Tuberosa, R. Evaluation of a semi-controlled test as a selection tool for frost tolerance in durum wheat (Triticum durum). Plant. Breed.133, 465–469. 10.1111/pbr.12181 (2014).

Pan, X. et al. Identification of genetic loci and candidate genes underlying freezing tolerance in wheat seedlings. Theor. Appl. Genet.13710.1007/s00122-024-04564-6 (2024). PubMed

Chen, Y. et al. Application of image-based phenotyping tools to identify QTL for in-field winter survival of winter wheat (Triticum aestivum L). Theor. Appl. Genet.132, 2591–2604. 10.1007/s00122-019-03373-6 (2019). PubMed

Rapacz, M., Sasal, M., Kalaji, H. M. & Kościelniak, J. Is the OJIP test a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under variable winter environments? PLoS ONE. 1010.1371/journal.pone.0134820 (2015). PubMed PMC

Fowler, D. B., Dvorak, J. & Gusta, L. V. Comparative cold hardiness of several Triticum species and Secale cereale L.1. Crop Sci.17, 941–943. 10.2135/cropsci1977.0011183X001700060031x (1977).

Szűcs, P., Veisz, O., Vida, G. & Bedő, Z. Winter hardiness of durum wheat in Hungary. Acta Agro Hung.51, 389–396. 10.1556/AAgr.51.2003.4.3 (2003).

Fowler, D. B. & Gusta, L. V. Selection for Winterhardiness in Wheat. I. Identification of Genotypic Variability1. Crop Sci.19, 769–772. 10.2135/cropsci1979.0011183X001900060005x (1979).

Prášil, I., Palovský, R., Rogalewicz, V. & Zámečník, J. Classification of wheat cultivars for winterhardiness from multi-year trials. Sci. Agric. Bohemoslovaca. 21, 85–90 (1989). https://www.researchgate.net/publication/237117627_Classification_of_wheat_cultivars_from_multi-year_trials_for_winterhardiness

Fowler, D. B. Ducks Unlimited Canada and Conservation Production Systems Ltd., Winter Wheat Production Manual Ch 12: Winter Survival. In Winter Wheat Production Manual. 1201-14 (2018). https://www.researchgate.net/publication/327704461_Winter_Wheat_Production_Manual_Ch_12_Winter_Survival

Prášil, I. T., Prášilová, P. & Mařík, P. Comparative study of direct and indirect evaluations of frost tolerance in barley. Field Crops Res.102, 1–8. 10.1016/j.fcr.2006.12.012 (2007).

Segeťa, V. Jednoduchá metoda určení odolnosti ozimých obilovin proti některým škodlivým činitelům zimy (a simple method for determining the hardiness of winter cereals to certain winter damaging factors). (Czech with abstract in German and Russian). Vědecké práce VÚRV v Praze Ruzyni. 85–96 (1957).

Yuriev, V. Y. et al. O povysenii zimostojkosti ozimoj psenicy. In Zimostojkost Celskoxozyajstbennych Kultur (ed. Majcyryan) Izdatelstvo Ministersva Celskogo Xozyastva CCCR Moskva. 9–12 (1960).

Hoeser, K. Über die Prüfung Von Winterweizen auf Winterfestigkeit in Auswinterungskästen. Der Züchter. 24, 353–357. 10.1007/BF00710395 (1954).

Sieber, A. N., Longin, C. F. H., Leiser, W. L. & Würschum, T. Copy number variation of CBF-A14 at the Fr-A2 locus determines frost tolerance in winter durum wheat. Theor. Appl. Genet.129, 1087–1097. 10.1007/s00122-016-2685-3 (2016). PubMed

Guddat, C. H. & Dornburg, T. L. L. Einschätzung Der Winterfestigkeit Von Winterweizensorten. Einschätzung Der Winterfestigkeit Von Winterweizensorten (2012). https://www.landwirtschaft.sachsen.de/download/Herr_Guddat_Winterfestigkeit.pdf

Prášil, I. & Rogalewicz, V. Accuracy of wheat winterhardines evaluation by a provocation method in natural conditions. Genet. Šlechtění. 25, 223–230 (1989). https://www.researchgate.net/publication/269874946_Accuracy_of_wheat_winterhardiness_evaluation_by_a_provocation_method_in_natural_conditions

Prášilová, P. & Prášil, I. Winter-hardiness scale for wheat cultivars of different geographical origin. Icel Agr Sci.14, 35–39 (2001).

Zhao, Y. et al. Dissecting the genetic architecture of frost tolerance in central European winter wheat. J. Exp. Bot.64, 4453–4460. 10.1093/jxb/ert259 (2013). PubMed PMC

Würschum, T., Longin, C. F. H., Hahn, V., Tucker, M. R. & Leiser, W. L. Copy number variations of CBF genes at the Fr-A2 locus are essential components of winter hardiness in wheat. Plant. J.89, 764–773. 10.1111/tpj.13424 (2017). PubMed

Soleimani, B. et al. Genome wide association study of frost tolerance in wheat. Sci. Rep.1210.1038/s41598-022-08706-y (2022). PubMed PMC

Skinner, D. Z. & Bellinger, B. S. Exposure to subfreezing temperature and a freeze-thaw cycle affect freezing tolerance of winter wheat in saturated soil. Plant. Soil.332, 289–297. 10.1007/s11104-010-0293-6 (2010).

Zheng, D. et al. Effect of freezing temperature and duration on winter survival and grain yield of winter wheat. Agr Meteorol.260–261, 1–8. 10.1016/j.agrformet.2018.05.011 (2018).

Rapacz, M., Jurczyk, B. & Sasal, M. Deacclimation may be crucial for winter survival of cereals under warming climate. Plant. Sci.256, 5–15. 10.1016/j.plantsci.2016.11.007 (2017). PubMed

Rapacz, M., Macko-Podgórni, A., Jurczyk, B. & Kuchar, L. Modeling wheat and triticale winter hardiness under current and predicted winter scenarios for Central Europe: A focus on deacclimation. Agr Meteorol.31310.1016/j.agrformet.2021.108739 (2022).

Brázdil, R. et al. Severity of winters in the Czech Republic during the 1961–2021 period and related environmental impacts and responses. Int. J. Climatol. 43, 2820–2842. 10.1002/joc.8003 (2023).

Fontrodona Bach, A., van der Schrier, G., Melsen, L. A., Klein Tank, A. M. G. & Teuling, A. J. Widespread and accelerated decrease of observed Mean and Extreme Snow depth over Europe. Geophys. Res. Lett.45 (2018).

Hömmö, L. & Pulli, S. Winterhardiness of some winter wheat (Triticum aestivum), rye (Secale cereale), triticale (x Triticosecale) and winter barley (Hordeum vulgare) cultivars tested at six locations in Finland. Agric. Food Sci.2, 311–327. 10.23986/afsci.72654 (1993).

Veisz, O., Braun, H. J. & Bedő, Z. Plant damage after freezing, and the frost resistance of varieties from the facultative and winter wheat observation nurseries. Euphytica119, 179–183. 10.1023/A:1017528624476 (2001).

Vaitkevičiūtė, G. et al. Genome-wide association analysis of freezing tolerance and winter hardiness in winter wheat of nordic origin. Plants12. 10.3390/plants12234014 (2023). PubMed PMC

Leišová-Svobodová, L., Chrpová, J., Hermuth, J. & Dotlačil, L. Quo vadis wheat breeding: A case study in Central Europe. Euphytica21610.1007/s10681-020-02670-2 (2020).

Holmanová, J., Kroutil, P., Markytánová, J. & Tesařová, R. Přehled výskytu některých škodlivých organismů a poruch na území ČR v roce 2003 (some harmful organisms and disorders of cultivated plants occurring in the Czech Republic in 2003 (in Czech) (State Phytosanitary Administration, 2004).

Nováček, T. & Fučíková, E. History of wheat breeding in the Czech Republic. In The World Wheat Book. Vol 2 (eds. Bonjean, A. P., Angus, W. J. & van Genkel, M.) (Lavoisier Publishing, 2011).

Crofts, H. J. On defining a winter wheat. Euphytica44, 225–234. 10.1007/BF00037529 (1989).

Wenda-Piesik, A., Holková, L., Solařová, E. & Pokorný, R. Attributes of wheat cultivars for late autumn sowing in genes expression and field estimates. Eur. J. Agron.75, 42–49. 10.1016/j.eja.201601.002 (2016).

Ding, Y. et al. Effects of weak- and semi-winter cultivars of wheat on grain yield and agronomic traits by breaking through traditional area planting. Agronomy1210.3390/agronomy12010196 (2022).

Horváth, Á. et al. Effects of genetic components of plant development on yield-related traits in wheat (Triticum aestivum L.) under stress-free conditions. Front. Plant. Sci.1310.3389/fpls.2022.1070410 (2023). PubMed PMC

Koemel, J. E., Guenzi, A. C., Anderson, J. A. & Smith, E. L. Cold hardiness of wheat near-isogenic lines differing in vernalization alleles. Theor. Appl. Genet.109, 839–846. 10.1007/s00122-004-1686-9 (2004). PubMed

Whittal, A., Kaviani, M., Graf, R. J., Humphreys, G. & Navabi, A. Allelic variation of vernalization and photoperiod response genes in a diverse set of north American high latitude winter wheat genotypes. PLoS ONE. 13. 10.1371/journal.pone.0203068 (2018). PubMed PMC

Tadesse, W. et al. Genetic gains in wheat breeding and its role in feeding the World. Crop Breed. Genet. Genom. 10.20900/cbgg20190005 (2019).

Ozturk, A., Caglar, O. & Bulut, S. Growth and Yield Response of Facultative Wheat to Winter Sowing, freezing sowing and spring sowing at different seeding rates. J. Agron. Crop Sci.192, 10–16. 10.1111/j.1439-037X.2006.00187.x (2006).

Petr, J. Biologie českých přesívek (the biology of the Czech facultative wheats – in Czech). Rostlinná Výroba (Plant Production). 6, 1473–1497 (1960).

Trávníčková, M., Pánková, K., Martinková, Z. & Honěk, A. Length of prematurity period in wheat cultivars determines maximum cereal aphid abundance. Plant. Protect Sci.52, 254–261 (2016). https://www.agriculturejournals.cz/pdfs/pps/2016/04/06.pdf

Košner, J. & Pánková, K. Effect of chromosome 3B gene/s of Česká Přesívka on vernalisation response, photoperiod sensitivity and earliness of wheat. Czech J. Genet. Plant. Breed.38, 41–49 (2002). https://www.agriculturejournals.cz/pdfs/cjg/2002/01/05.pdf

Limin, A. E. & Fowler, D. B. Low-temperature tolerance and genetic potential in wheat (Triticum aestivum L.): response to photoperiod, vernalization, and plant development. Planta224, 360–366. 10.1007/s00425-006-0219-y (2006). PubMed

Galiba, G., Vágújfalvi, A., Li, C., Soltész, A. & Dubcovsky, J. Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant. Sci.176, 12–19. 10.1016/j.plantsci.2008.09.016 (2009).

Gorash, A., Armonienė, R., Liatukas, Ž. & Brazauskas, G. The relationship among freezing tolerance, vernalization requirement, Ppd alleles and winter hardiness in European wheat cultivars. J. Agric. Sci.155, 1353–1370. 10.1017/S0021859617000521 (2017).

Pirych, A. V. et al. Features of modern winter wheat varieties in terms of winter hardiness components under conditions of Ukrainian forest-steppe. Regul. Mech. Biosyst. 12, 153–159. 10.15421/022123 (2021).

Båga, M. et al. Association mapping of autumn-seeded rye (Secale cereale L.) reveals genetic linkages between genes controlling winter hardiness and plant development. Sci. Rep.1210.1038/s41598-022-09582-2 (2022). PubMed PMC

Ihaka, R. & Gentleman, R. R. A language for data analysis and graphics. JCGS5, 299–314 (1996). 10.1080/10618600.1996.10474713

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...