Effects of celastrol on the heart and liver galaninergic system expression in a mouse model of Western-type diet-induced obesity and metabolic dysfunction-associated steatotic liver disease and steatohepatitis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39968178
PubMed Central
PMC11832397
DOI
10.3389/fphar.2025.1476994
PII: 1476994
Knihovny.cz E-zdroje
- Klíčová slova
- MASH, MASLD, celastrol, fatostatin, galanin receptor, heart, mouse, obesity,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The complexity of the galaninergic system is still not fully understood, especially under specific pre-existing comorbidities related to metabolic dysfunction. A plant-derived triterpenoid celastrol was demonstrated to exert a complex effect on the galaninergic system and to have hepatoprotective and anti-obesity properties. However, the exact molecular mechanisms responsible for these effects remain unclear. Specifically, there are no data on the impact of celastrol on the heart and liver galaninergic system. Therefore, this study aimed to investigate the effects of celastrol on the galaninergic system expression in the heart and liver of mice suffering from diet-induced obesity and metabolic dysfunction-associated steatotic liver disease and steatohepatitis (MASLD/MASH). METHODS: The male mice C57BL/6J were fed a Western-type high-fat diet for 16 and 20 weeks to induce obesity and MASLD/MASH. Celastrol was administered along with a specific diet for the last 4 weeks to evaluate its impact on the progression of these conditions. Moreover, the inhibitor of sterol regulatory element-binding protein 1/2 (SREBP1/2), fatostatin, was also tested to compare its influence on the galaninergic system with celastrol. RESULTS: The study demonstrates that celastrol treatment was safe and led to a reduction in food and energy intake, body fat and liver weights, and MASLD-to-MASH progression and improved glucose tolerance, serum biochemistry markers, and hepatic lipid peroxidation in mice. Quantitative gene expression originally showed significant regulation of galanin and all three of its receptors (GalR1/2/3) in the heart ventricles and only GalR2 in the liver of obese mice. Celastrol influenced the gene expression of galanin receptors: it downregulated Galr1 in the heart and upregulated Galr2 in the liver and Galr3 in the heart ventricles, potentially affecting energy metabolism, oxidative stress, and inflammation. Fatostatin suppressed gene expression of all the detected members of the galaninergic system in the heart ventricles, depicting the role of SREBP in this process. CONCLUSION: These findings suggest that celastrol may beneficially modulate the galaninergic system under obesity and MASLD-to-MASH progression, indicating its potential as a therapeutic agent for disorders associated with metabolic dysfunction.
Department of Anthropology and Human Genetics Faculty of Science Charles University Prague Czechia
Institute of Histology and Embryology 1st Faculty of Medicine Charles University Prague Czechia
Zobrazit více v PubMed
Abebe E. C., Mengstie M. A., Seid M. A., Malik T., Dejenie T. A. (2022). The evolving roles of alarin in physiological and disease conditions, and its future potential clinical implications. Front. Endocrinol. (Lausanne) 13, 1028982. 10.3389/fendo.2022.1028982 PubMed DOI PMC
Abu Bakar M. H., Nor Shahril N. S., Mohamad Khalid M. S. F., Mohammad S., Shariff K. A., Karunakaran T., et al. (2022). Celastrol alleviates high-fat diet-induced obesity via enhanced muscle glucose utilization and mitochondrial oxidative metabolism-mediated upregulation of pyruvate dehydrogenase complex. Toxicol. Appl. Pharmacol. 15 (449), 116099. 10.1016/j.taap.2022.116099 PubMed DOI
Adams A. C., Clapham J. C., Wynick D., Speakman J. R. (2008). Feeding behaviour in galanin knockout mice supports a role of galanin in fat intake and preference. J. Neuroendocrinol. 20 (2), 199–206. 10.1111/j.1365-2826.2007.01638.x PubMed DOI
Ahrén B., Pacini G., Wynick D., Wierup N., Sundler F. (2004). Loss-of-function mutation of the galanin gene is associated with perturbed islet function in mice. Endocrinology 145 (7), 3190–3196. 10.1210/en.2003-1700 PubMed DOI
Andrikopoulos S., Blair A. M., Deluca N., Fam B. C., Proietto J. (2008). Evaluating the glucose tolerance test in mice. Am. J. Physiology-Endocrinology Metabolism 295 (6), E1323–E1332. 10.1152/ajpendo.90617.2008 PubMed DOI
Arora M., Pavlíková Z., Kučera T., Kozlík P., Šopin T., Vacík T., et al. (2023). Pharmacological effects of mTORC1/C2 inhibitor in a preclinical model of NASH progression. Biomed. Pharmacother. 167, 115447. 10.1016/j.biopha.2023.115447 PubMed DOI
Behrooz M., Vaghef-Mehrabany E., Maleki V., Pourmoradian S., Fathifar Z., Ostadrahimi A. (2020). Spexin status in relation to obesity and its related comorbidities: a systematic review. J. Diabetes Metab. Disord. 19 (2), 1943–1957. 10.1007/s40200-020-00636-8 PubMed DOI PMC
Berger A., Lang R., Moritz K., Santic R., Hermann A., Sperl W., et al. (2004). Galanin receptor subtype GalR2 mediates apoptosis in SH-SY5Y neuroblastoma cells. Endocrinology 145, 500–507. 10.1210/en.2003-0649 PubMed DOI
Boal F., Cinato M., Timotin A., Münzberg H., Qualls-Creekmore E., Kramar S., et al. (2022). Galanin regulates myocardial mitochondrial ROS homeostasis and hypertrophic remodeling through GalR2. Front. Pharmacol. 13, 869179. 10.3389/fphar.2022.869179 PubMed DOI PMC
Brunner S. M., Farzi A., Locker F., Holub B. S., Drexel M., Reichmann F., et al. (2014). GAL3 receptor KO mice exhibit an anxiety-like phenotype. Proc. Natl. Acad. Sci. U. S. A. 111 (19), 7138–7143. 10.1073/pnas.1318066111 PubMed DOI PMC
Cascão R., Fonseca J. E., Moita L. F. (2017). Celastrol: a spectrum of treatment opportunities in chronic diseases. Front. Med. (Lausanne) 4, 69. 10.3389/fmed.2017.00069 PubMed DOI PMC
Chen A., Li M., Song L., Zhang Y., Luo Z., Zhang W., et al. (2015). Effects of the galanin receptor antagonist M40 on cardiac function and remodeling in rats with heart failure. Cardiovasc Ther. 33 (5), 288–293. 10.1111/1755-5922.12144 PubMed DOI
Elibol B., Kilic U. (2018). High levels of SIRT1 expression as a protective mechanism against disease-related conditions. Front. Endocrinol. (Lausanne) 9, 614. 10.3389/fendo.2018.00614 PubMed DOI PMC
Eng P. C., Forlano R., Tan T., Manousou P., Dhillo W. S., Izzi-Engbeaya C. (2023). Non-alcoholic fatty liver disease in women – current knowledge and emerging concepts. JHEP Rep. 5 (10), 100835. 10.1016/j.jhepr.2023.100835 PubMed DOI PMC
Ewert T. J., Gritman K. R., Bader M., Habecker B. A. (2008). Post-infarct cardiac sympathetic hyperactivity regulates galanin expression. Neurosci. Lett. 436 (2), 163–166. 10.1016/j.neulet.2008.03.012 PubMed DOI PMC
Fan N., Zhao J., Zhao W., Shen Y., Song Q., Shum H. C., et al. (2022). Biodegradable celastrol-loaded albumin nanoparticles ameliorate inflammation and lipid accumulation in diet-induced obese mice. Biomater. Sci. 10, 984–996. 10.1039/D1BM01637G PubMed DOI
Fang P., He B., Yu M., Shi M., Zhu Y., Zhang Z., et al. (2019). Treatment with celastrol protects against obesity through suppression of galanin-induced fat intake and activation of PGC-1α/GLUT4 axis-mediated glucose consumption. Biochim. Biophys. Acta. Mol. Basis Dis. 1865, 1341–1350. 10.1016/j.bbadis.2019.02.002 PubMed DOI
Fang P., Yu M., Shi M., Bo P., Zhang Z. (2020). Galanin peptide family regulation of glucose metabolism. Front. Neuroendocrinol. 56, 100801. 10.1016/j.yfrne.2019.100801 PubMed DOI
Fang P., Yu M., Shi M., Zhang Z., Sui Y., Guo L., et al. (2012). Galanin peptide family as a modulating target for contribution to metabolic syndrome. Gen. Comp. Endocrinol. 179 (1), 115–120. 10.1016/j.ygcen.2012.07.029 PubMed DOI
Farghali H., Cerný D., Kameníková L., Martínek J., Horínek A., Kmonícková E., et al. (2009). Resveratrol attenuates lipopolysaccharide-induced hepatitis in D-galactosamine sensitized rats: role of nitric oxide synthase 2 and heme oxygenase-1. Nitric Oxide 21 (3-4), 216–225. 10.1016/j.niox.2009.09.004 PubMed DOI
Gopalakrishnan L., Chatterjee O., Raj C., Pullimamidi D., Advani J., Mahadevan A., et al. (2021). An assembly of galanin–galanin receptor signaling network. J. Cell Commun. Signal 15, 269–275. 10.1007/s12079-020-00590-3 PubMed DOI PMC
He L., Huang C., Wang H., Yang N., Zhang J., Xu L., et al. (2023). Galanin ameliorates liver inflammation and fibrosis in mice by activating AMPK/ACC signaling and modifying macrophage inflammatory phenotype. Front. Immunol. 14, 1161676. 10.3389/fimmu.2023.1161676 PubMed DOI PMC
He L., Li Z., Zhou D., Ding Y., Xu L., Chen Y., et al. (2016). Galanin receptor 2 mediates antifibrogenic effects of galanin on hepatic stellate cells. Exp. Ther. Med. 12 (5), 3375–3380. 10.3892/etm.2016.3764 PubMed DOI PMC
Herring N., Cranley J., Lokale M. N., Li D., Shanks J., Alston E. N., et al. (2012). The cardiac sympathetic co-transmitter galanin reduces acetylcholine release and vagal bradycardia: implications for neural control of cardiac excitability. J. Mol. Cell Cardiol. 52 (3), 667–676. 10.1016/j.yjmcc.2011.11.016 PubMed DOI PMC
Hirako S., Wada N., Kageyama H., Takenoya F., Kim H., Iizuka Y., et al. (2017). Effect of intranasal administration of galanin-like peptide (GALP) on body weight and hepatic lipids accumulation in mice with diet-induced obesity. Curr. Pharm. Des. 23 (25), 3751–3756. 10.2174/1381612823666170321095950 PubMed DOI
Hu J., Li X., Zhou J., Zhang C., Zheng G., Qiu Z. (2018). Celastrol delays hepatic steatosis and carcinogenesis in a rapid AKT/c-Met-transfected hepatocellular carcinoma model via suppressing fatty acid synthase expression and AKT/ERK phosphorylation. RSC Adv. 8 (25), 13976–13983. 10.1039/c8ra00522b PubMed DOI PMC
Jacobsen D. E., Montoya M. M., Llewellyn T. R., Martinez K., Wilding K. M., Lenz K. D., et al. (2024). Correlating transcription and protein expression profiles of immune biomarkers following lipopolysaccharide exposure in lung epithelial cells. PLoS One 19 (4), e0293680. 10.1371/journal.pone.0293680 PubMed DOI PMC
Jasmine G., Walewski J., Anglade D., Berk P. (2016). Regulation of hepatocellular fatty acid uptake in mouse models of fatty liver disease with and without functional leptin signaling: roles of NfKB and SREBP-1C and the effects of spexin. Semin. Liver Dis. 36, 360–372. 10.1055/s-0036-1597248 PubMed DOI
Jiang W., Zheng S. (2022). Structural insights into galanin receptor signaling. Proc. Natl. Acad. Sci. U. S. A. 119 (21), e2121465119. 10.1073/pnas.2121465119 PubMed DOI PMC
Jung S. A., Choi M., Kim S., Yu R., Park T. (2012). Cinchonine prevents high-fat-diet-induced obesity through downregulation of adipogenesis and adipose inflammation. PPAR Res. 2012, 541204. 10.1155/2012/541204 PubMed DOI PMC
Kamisuki S., Mao Q., Abu-Elheiga L., Gu Z., Kugimiya A., Kwon Y., et al. (2009). A small molecule that blocks fat synthesis by inhibiting the activation of SREBP. Chem. Biol. 16 (8), 882–892. 10.1016/j.chembiol.2009.07.007 PubMed DOI
Kawaguchi K., Sakai Y., Terashima T., Shimode T., Seki A., Orita N., et al. (2021). Decline in serum albumin concentration is a predictor of serious events in nonalcoholic fatty liver disease. Med. Baltim. 100 (31), e26835. 10.1097/MD.0000000000026835 PubMed DOI PMC
Kim S., Sohn I., Ahn J. I., Lee K. H., Lee Y. S., Lee Y. S. (2004). Hepatic gene expression profiles in a long-term high-fat diet-induced obesity mouse model. Gene 340 (1), 99–109. 10.1016/j.gene.2004.06.015 PubMed DOI
Kleiner D. E., Brunt E. M., Van Natta M., Behling C., Contos M. J., Cummings O. W., et al. (2005). Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41 (6), 1313–1321. 10.1002/hep.20701 PubMed DOI
Kocic I. (1998). The influence of the neuropeptide galanin on the contractility and the effective refractory period of Guinea-pig heart papillary muscle under normoxic and hypoxic conditions. J. Pharm. Pharmacol. 50 (12), 1361–1364. 10.1111/j.2042-7158.1998.tb03360.x PubMed DOI
Kuramochi M., Onaka T., Kohno D., Kato S., Yada T. (2006). Galanin-like peptide stimulates food intake via activation of neuropeptide Y neurons in the hypothalamic dorsomedial nucleus of the rat. Endocrinology 147 (4), 1744–1752. 10.1210/en.2005-0907 PubMed DOI
Kyriakou E., Schmidt S., Dodd G. T., Pfuhlmann K., Simonds S. E., Lenhart D., et al. (2018). Celastrol promotes weight loss in diet-induced obesity by inhibiting the protein tyrosine phosphatases PTP1B and TCPTP in the hypothalamus. J. Med. Chem. 61 (24), 11144–11157. 10.1021/acs.jmedchem.8b01224 PubMed DOI
Lang R., Gundlach A. L., Holmes F. E., Hobson S. A., Wynick D., Hökfelt T., et al. (2015). Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol. Rev. 67 (1), 118–175. 10.1124/pr.112.006536 PubMed DOI
Lang R., Kofler B. (2011). The galanin peptide family in inflammation. Neuropeptides 45 (1), 1–8. 10.1016/j.npep.2010.10.005 PubMed DOI
Lee J. H., Koo T. H., Yoon H., Jung H. S., Jin H. Z., Lee K., et al. (2006). Inhibition of NF-kappa B activation through targeting I kappa B kinase by celastrol, a quinone methide triterpenoid. Biochem. Pharmacol. 72 (10), 1311–1321. 10.1016/j.bcp.2006.08.014 PubMed DOI
Li L., Li Q., Huang W., Han Y., Tan H., An M., et al. (2021). Dapagliflozin alleviates hepatic steatosis by restoring autophagy via the AMPK-mTOR pathway. Front. Pharmacol. 12, 589273. 10.3389/fphar.2021.589273 PubMed DOI PMC
Li M., Xie F., Wang L., Zhu G., Qi L.-W., Jiang S. (2022). Celastrol: an update on its hepatoprotective properties and the linked molecular mechanisms. Front. Pharmacol. 13, 857956. 10.3389/fphar.2022.857956 PubMed DOI PMC
Li Z., Zhang J., Duan X., Zhao G., Zhang M. (2022). Celastrol: a promising agent fighting against cardiovascular diseases. Antioxidants (Basel) 11 (8), 1597. 10.3390/antiox11081597 PubMed DOI PMC
Liang W., Menke A. L., Driessen A., Koek G. H., Lindeman J. H., Stoop R., et al. (2014). Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS ONE 9 (12), e115922. 10.1371/journal.pone.0115922 PubMed DOI PMC
Liu J., Lee J., Salazar Hernandez M. A., Mazitschek R., Ozcan U. (2015). Treatment of obesity with celastrol. Cell 161 (5), 999–1011. 10.1016/j.cell.2015.05.011 PubMed DOI PMC
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 (4), 402–408. 10.1006/meth.2001.1262 PubMed DOI
Lu X., Bartfai T. (2009). Analyzing the validity of GalR1 and GalR2 antibodies using knockout mice. Naunyn Schmiedeb. Arch. Pharmacol. 379 (4), 417–420. 10.1007/s00210-009-0394-z PubMed DOI PMC
Luo D., Guo Y., Cheng Y., Zhao J., Wang Y., Rong J. (2017). Natural product celastrol suppressed macrophage M1 polarization against inflammation in diet-induced obese mice via regulating Nrf2/HO-1, MAP kinase and NF-κB pathways. Aging (Albany NY) 9 (10), 2069–2082. 10.18632/aging.101302 PubMed DOI PMC
Marcos P., Coveñas R. (2021). Neuropeptidergic control of feeding: focus on the galanin family of peptides. Int. J. Mol. Sci. 22 (5), 2544. 10.3390/ijms22052544 PubMed DOI PMC
Martin K., Hatab A., Athwal V. S., Jokl E., Hanley K. P. (2021). Genetic contribution to non-alcoholic fatty liver disease and prognostic implications. Curr. Diab Rep. 21 (3), 8. 10.1007/s11892-021-01377-5 PubMed DOI PMC
Martinelli I., Timotin A., Moreno-Corchado P., Marsal D., Kramar S., Loy H., et al. (2021). Galanin promotes autophagy and alleviates apoptosis in the hypertrophied heart through FoxO1 pathway. Redox Biol. 40, 101866. 10.1016/j.redox.2021.101866 PubMed DOI PMC
Michalickova D., Kramarikova I., Ozturk H. K., Kucera T., Vacik T., Hrncir T., et al. (2023). Detection of galanin receptors in the spinal cord in experimental autoimmune encephalomyelitis. Biomed. Pap. Med. Fac. Univ. Pancakes Olomouc Czech Repub. 167 (1), 36–42. 10.5507/bp.2022.005 PubMed DOI
Mills E. G., Izzi-Engbeaya C., Abbara A., Comninos A. N., Dhillo W. S. (2021). Functions of galanin, spexin and kisspeptin in metabolism, mood and behaviour. Nat. Rev. Endocrinol. 17 (2), 97–113. 10.1038/s41574-020-00438-1 PubMed DOI
Molla M. D., Dessie G., Akalu Y., Ayelign B. (2020). Hepatocellular expression of SIRT1 and its effect on hepatocellular carcinoma progression: a future therapeutic perspective. Int. J. Hepatol. 2020, 2374615. 10.1155/2020/2374615 PubMed DOI PMC
National Librabry of Medicine – National Centre for Biotechnology Information. (2024). Galr1 galanin receptor 1 [Mus musculus (house mouse)].
Oliner J. D., Andresen J. M., Hansen S. K., Zhou S., Tjian R. (1996). SREBP transcriptional activity is mediated through an interaction with the CREB-binding protein. Genes Dev. 10 (22), 2903–2911. 10.1101/gad.10.22.2903 PubMed DOI
Palkeeva M., Studneva I., Molokoedov A., Serebryakova L., Veselova O., Ovchinnikov M., et al. (2019). Galanin/GalR1-3 system: a promising therapeutic target for myocardial ischemia/reperfusion injury. Biomed. Pharmacother. 109, 1556–1562. 10.1016/j.biopha.2018.09.182 PubMed DOI
Pisarenko O., Timotin A., Sidorova M., Studneva I., Shulzhenko V., Palkeeva M., et al. (2017). Cardioprotective properties of N-terminal galanin fragment (2-15) in experimental ischemia/reperfusion injury. Oncotarget 8 (60), 101659–101671. 10.18632/oncotarget.21503 PubMed DOI PMC
Rodgers J. T., Lerin C., Haas W., Gygi S. P., Spiegelman B. M., Puigserver P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434 (7029), 113–118. 10.1038/nature03354 PubMed DOI
Schroeder A., Mueller O., Stocker S., Salowsky R., Leiber M., Gassmann M., et al. (2006). The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 7, 3. 10.1186/1471-2199-7-3 PubMed DOI PMC
Sciolino N. R., Smith J. M., Stranahan A. M., Freeman K. G., Edwards G. L., Weinshenker D., et al. (2015). Galanin mediates features of neural and behavioral stress resilience afforded by exercise. Neuropharmacology 89, 255–264. 10.1016/j.neuropharm.2014.09.029 PubMed DOI PMC
Serebryakova L., Veselova O., Studneva I., Dobrokhotov I., Palkeeva M., Avdeev D., et al. (2023). Exogenous GalR2-specific peptide agonist as a tool for treating myocardial ischemia/reperfusion injury. Fundam. Clin. Pharmacol. 37 (6), 1109–1118. 10.1111/fcp.12925 PubMed DOI
She Y., Ge R., Gu X., Fang P., Zhang Z. (2023). Cardioprotective effects of neuropeptide galanin: focusing on its roles against diabetic heart. Peptides 159, 170918. 10.1016/j.peptides.2022.170918 PubMed DOI
Shin S. M., Yang J. H., Ki S. H. (2013). Role of the Nrf2-ARE pathway in liver diseases. Oxid. Med. Cell Longev. 2013, 763257. 10.1155/2013/763257 PubMed DOI PMC
Šípková J., Kramáriková I., Hynie S., Klenerová V. (2017a). The galanin and galanin receptor subtypes, its regulatory role in the biological and pathological functions. Physiol. Res. 66 (5), 729–740. 10.33549/physiolres.933576 PubMed DOI
Šípková J., Šída P., Kaspříková N., Kramáriková I., Hynie S., Klenerová V. (2017b). Effect of stress on the expression of galanin receptors in rat heart. Folia Biol. (Praha). 63 (3), 98–104. 10.14712/fb2017063030098 PubMed DOI
Škopek P. (2013). Effect of stress on the expression of some neuropeptides and their receptors in the heart and CNS, by using biochemical and immunofluorescent procedures. Ph. D. Thesis. Prague, Czechia: First Faculty of Medicine, Charles University. Available at: https://dspace.cuni.cz/handle/20.500.11956/58905 (Accessed March 15, 2024).
Soyal S. M., Nofziger C., Dossena S., Paulmichl M., Patsch W. (2015). Targeting SREBPs for treatment of the metabolic syndrome. Trends Pharmacol. Sci. 36 (6), 406–416. 10.1016/j.tips.2015.04.010 PubMed DOI
Staňková P., Kučera O., Peterová E., Elkalaf M., Rychtrmoc D., Melek J., et al. (2021). Western diet decreases the liver mitochondrial oxidative flux of succinate: insight from a murine NAFLD model. Int. J. Mol. Sci. 22 (13), 6908. 10.3390/ijms22136908 PubMed DOI PMC
Takenoya F., Hirako S., Wada N., Nonaka N., Hirabayashi T., Kageyama H., et al. (2018). Regulation of feeding behavior and energy metabolism by galanin-like peptide (GALP): a novel strategy to fight against obesity. Curr. Pharm. Des. 24 (33), 3926–3933. 10.2174/1381612824666181106111623 PubMed DOI
Tatemoto K., Rökaeus A., Jörnvall H., McDonald T. J., Mutt V. (1983). Galanin - a novel biologically active peptide from porcine intestine. FEBS Lett. 164 (1), 124–128. 10.1016/0014-5793(83)80033-7 PubMed DOI
Tiscione S. A., Vivas O., Ginsburg K. S., Bers D. M., Ory D. S., Santana L. F., et al. (2019). Disease-associated mutations in Niemann-Pick type C1 alter ER calcium signaling and neuronal plasticity. J. Cell Biol. 218 (12), 4141–4156. 10.1083/jcb.201903018 PubMed DOI PMC
Tofighi R., Joseph B., Xia S., Xu Z. Q., Hamberger B., Hokfelt T., et al. (2008). Galanin decreases proliferation of PC12 cells and induces apoptosis via its subtype 2 receptor (GalR2). Proc. Natl. Acad. Sci. U. S. A. 105, 2717–2722. 10.1073/pnas.0712300105 PubMed DOI PMC
Tseng C. K., Hsu S. P., Lin C. K., Wu Y. H., Lee J. C., Young K. C. (2017). Celastrol inhibits hepatitis C virus replication by upregulating heme oxygenase-1 via the JNK MAPK/Nrf2 pathway in human hepatoma cells. Antivir. Res. 146, 191–200. 10.1016/j.antiviral.2017.09.010 PubMed DOI PMC
Wang B., Yang X., Zhao M., Su Z., Hu Z., Zhang C., et al. (2021). Celastrol prevents high-fat diet-induced obesity by promoting white adipose tissue browning. Clin. Transl. Med. 11 (12), e641. 10.1002/ctm2.641 PubMed DOI PMC
Wang M., Zhu Z., Kan Y., Yu M., Guo W., Ju M., et al. (2022). Treatment with spexin mitigates diet-induced hepatic steatosis in vivo and in vitro through activation of galanin receptor 2. Mol. Cell Endocrinol. 552, 111688. 10.1016/j.mce.2022.111688 PubMed DOI
Wang S., He C., Hashemi T., Bayne M. (1997a). Cloning and expressional characterization of a novel galanin receptor. Identification of different pharmacophores within galanin for the three galanin receptor subtypes. J. Biol. Chem. 272 (51), 31949–31952. 10.1074/jbc.272.51.31949 PubMed DOI
Wang S., He C., Maguire M. T., Clemmons A. L., Burrier R. E., Guzzi M. F., et al. (1997b). Genomic organization and functional characterization of the mouse GalR1 galanin receptor. FEBS Lett. 411 (2-3), 225–230. 10.1016/s0014-5793(97)00695-9 PubMed DOI
Wang Y., Li C., Gu J., Chen C., Duanmu J., Miao J., et al. (2020). Celastrol exerts anti-inflammatory effect in liver fibrosis via activation of AMPK-SIRT3 signalling. J. Cell Mol. Med. 24 (1), 941–953. 10.1111/jcmm.14805 PubMed DOI PMC
Waters S. M., Krause J. E. (2000). Distribution of galanin-1, -2 and -3 receptor messenger RNAs in central and peripheral rat tissues. Neuroscience 95 (1), 265–271. 10.1016/s0306-4522(99)00407-8 PubMed DOI
Ye L., Gao Y., Li X., Liang X., Yang Y., Zhang R. (2024). Celastrol attenuates HFD-induced obesity and improves metabolic function independent of adiponectin signaling. Arch. Physiol. Biochem. 130 (6), 642–648. 10.1080/13813455.2023.2250929 PubMed DOI
Yue F., Cheng Y., Breschi A., Vierstra J., Wu W., Ryba T., et al. (2014). A comparative encyclopedia of DNA elements in the mouse genome. Nature 515 (7527), 355–364. 10.1038/nature13992 PubMed DOI PMC
Zachariou V., Georgescu D., Kansal L., Merriam P., Picciotto M. R. (2001). Galanin receptor 1 gene expression is regulated by cyclic AMP through a CREB-dependent mechanism. J. Neurochem. 76 (1), 191–200. 10.1046/j.1471-4159.2001.00018.x PubMed DOI
Zhang Y., Geng C., Liu X., Li M., Gao M., Liu X., et al. (2016). Celastrol ameliorates liver metabolic damage caused by a high-fat diet through Sirt1. Mol. Metab. 6 (1), 138–147. 10.1016/j.molmet.2016.11.002 PubMed DOI PMC
Zhang Y., Liu Y., Chen L., Wang Y., Han J. (2018). CRTC2 modulates hepatic SREBP1c cleavage by controlling Insig2a expression during fasting. Protein Cell 9 (8), 729–732. 10.1007/s13238-018-0538-3 PubMed DOI PMC
Zhang T., Xu H., Li G., Liu Ch, Zou N., Zhang X., et al. (2009). Spectroscopic study of binding reaction between celastrol and bovine serum albumin. Food Sci. 30 (17), 130–133. 10.7506/spkx1002-6630-200917030 DOI
Zhao Q., Lin X., Wang G. (2022). Targeting SREBP-1-mediated lipogenesis as potential strategies for cancer. Front. Oncol. 12, 952371. 10.3389/fonc.2022.952371 PubMed DOI PMC
Zheng H. Y., Wang Y. X., Zhou K., Xie H. L., Ren Z., Liu H. T., et al. (2023). Biological functions of CRTC2 and its role in metabolism-related diseases. J. Cell Commun. Signal 17 (3), 495–506. 10.1007/s12079-023-00730-5 PubMed DOI PMC
Zhu S., Hu X., Bennett S., Charlesworth O., Qin S., Mai Y., et al. (2022). Galanin family peptides: molecular structure, expression and roles in the neuroendocrine axis and in the spinal cord. Front. Endocrinol. (Lausanne) 13, 1019943. 10.3389/fendo.2022.1019943 PubMed DOI PMC
Zhuang K., Jiang X., Liu R., Ye C., Wang Y., Wang Y., et al. (2021). Formononetin activates the Nrf2/ARE signaling pathway via Sirt1 to improve diabetic renal fibrosis. Front. Pharmacol. 1, 616378. 10.3389/fphar.2020.616378 PubMed DOI PMC
Zorrilla E. P., Brennan M., Sabino V., Lu X., Bartfai T. (2007). Galanin type 1 receptor knockout mice show altered responses to high-fat diet and glucose challenge. Physiol. Behav. 91 (5), 479–485. 10.1016/j.physbeh.2006.11.011 PubMed DOI PMC