Direct chemical lithography writing on 2D materials by electron beam induced chemical reactions

. 2025 Mar 25 ; 7 (7) : 2021-2031. [epub] 20250210

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39974340

Due to their high surface-to-volume ratio and native band gaps, two-dimensional (2D) materials are widely used as supports for metal nanoparticle (NP) catalysts. Various synthesis methods exist to prepare such materials, but controlling the amount, size, and distribution of the deposited NPs remains a challenge. Here, we investigate the use of electron beam lithography (EBL) for this purpose. A dual-beam focused ion beam-scanning electron microscope (FIB-SEM) was used to direct the deposition of platinum NPs (Pt NPs) onto 2D graphene oxide, functionalized with epoxy and hydroxyl (HUGO) or carboxyl (TOGO) groups, and black phosphorus (BP) sheets. According to NP size, the deposition was conducted for various exposure times and several types of particle distribution. EDS confirmed the required chemical composition of all of the prepared materials. SEM showed the amount and distribution of the supported NPs, and TEM confirmed their size. Raman spectroscopy revealed a strong bonding between the NPs and the support sheets according to the type of 2D support. These results suggest that EBL is a promising method for the target-controlled deposition of metal NPs of targeted amount, size, and spatial distribution onto 2D materials, which enables evaluating the specific influence of the NP-support interaction on enhanced catalytic activity.

Zobrazit více v PubMed

Feng H. Liu Y. Li J. Chem. Commun. 2015;51:2418–2420. doi: 10.1039/C4CC09146A. PubMed DOI

Li Y. Li Y. Zhu E. McLouth T. Chiu C.-Y. Huang X. Huang Y. J. Am. Chem. Soc. 2012;134:12326–12329. doi: 10.1021/ja3031449. PubMed DOI

Xu C. Wang X. Zhu J. J. Phys. Chem. C. 2008;112:19841–19845. doi: 10.1021/jp807989b. DOI

Lin Y. Pan Y. Zhang J. Int. J. Hydrogen Energy. 2017;42:7951–7956. doi: 10.1016/j.ijhydene.2016.12.030. DOI

Zhang Y. Jiang Q. Lang P. Yuan N. Tang J. J. Alloys Compd. 2021;850:156580. doi: 10.1016/j.jallcom.2020.156580. DOI

Zhang X. Zhao X. Wu D. Jing Y. Zhou Z. Adv. Sci. 2016;3:1600062. doi: 10.1002/advs.201600062. PubMed DOI PMC

Kuznetsov D. A. Chen Z. Kumar P. V. Tsoukalou A. Kierzkowska A. Abdala P. M. Safonova O. V. Fedorov A. Müller C. R. J. Am. Chem. Soc. 2019;141:17809–17816. doi: 10.1021/jacs.9b08897. PubMed DOI

Wang J. Liu C. j. ChemBioEng Rev. 2015;2:335–350. doi: 10.1002/cben.201500014. DOI

Yoo M. Kang E. Choi H. Ha H. Choi H. Choi J.-S. Lee K.-S. Celestre R. Shapiro D. A. Park J. Y. J. Mater. Chem. A. 2022;10:5942–5952. doi: 10.1039/D1TA08059H. DOI

Saikia P. Miah A. T. Malakar B. Bordoloi A. Indian J. Eng. Sci. 2015;2015:10.

Ni J. Shi S. Zhang C. Fang B. Wang X. Lin J. Liang S. Lin B. Jiang L. J. Catal. 2022;409:78–86. doi: 10.1016/j.jcat.2022.03.026. DOI

Slot T. K. Yue F. Xu H. Ramos-Fernandez E. V. Sepúlveda-Escribano A. Sofer Z. Rothenberg G. Shiju N. R. 2D Materials. 2020;8:015001. doi: 10.1088/2053-1583/ababef. DOI

Ahmed N. S. Menzel R. Wang Y. Garcia-Gallastegui A. Bawaked S. M. Obaid A. Y. Basahel S. N. Mokhtar M. J. Solid State Chem. 2017;246:130–137. doi: 10.1016/j.jssc.2016.11.024. DOI

Gao H. Zhai C. Zhang H. Fu N. Du Y. Zhu M. Energy Technol. 2019;7:1900253. doi: 10.1002/ente.201900253. DOI

George S. M. Chem. Rev. 2010;110:111–131. doi: 10.1021/cr900056b. PubMed DOI

Lee S. Kang Y. Lee J. Kim J. Shin J. W. Sim S. Go D. Jo E. Kye S. Kim J. Appl. Surf. Sci. 2022;571:151256. doi: 10.1016/j.apsusc.2021.151256. DOI

Mackus A. Thissen N. Mulders J. Trompenaars P. Verheijen M. Bol A. Kessels W. J. Phys. Chem. C. 2013;117:10788–10798. doi: 10.1021/jp402260j. DOI

Altissimo M. Biomicrofluidics. 2010;4:026503. doi: 10.1063/1.3437589. PubMed DOI PMC

Hagen C. Appl. Phys. A. 2014;117:1599–1605. doi: 10.1007/s00339-014-8847-8. DOI

Huth M. Porrati F. Schwalb C. Winhold M. Sachser R. Dukic M. Adams J. Fantner G. Beilstein J. Nanotechnol. 2012;3:597–619. doi: 10.3762/bjnano.3.70. PubMed DOI PMC

Vesely M. Marvan P. Trejbal J. Mazanek V. Luxa J. Sturala J. Sofer Z. ACS Appl. Mater. Interfaces. 2020;12:22702–22709. doi: 10.1021/acsami.9b20618. PubMed DOI

Hummers Jr W. S. Offeman R. E. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI

Marcano D. C. Kosynkin D. V. Berlin J. M. Sinitskii A. Sun Z. Slesarev A. Alemany L. B. Lu W. Tour J. M. ACS Nano. 2010;4:4806–4814. doi: 10.1021/nn1006368. PubMed DOI

Scardaci V. Compagnini G. C. 2021;7:48. PubMed PMC

Kudin K. N. Ozbas B. Schniepp H. C. Prud'Homme R. K. Aksay I. A. Car R. Nano Lett. 2008;8:36–41. doi: 10.1021/nl071822y. PubMed DOI

Hasani A. Sharifi Dehsari H. Amiri Zarandi A. Salehi A. Taromi F. A. Kazeroni H. J. Nanomater. 2015;2015(1):930306. doi: 10.1155/2015/930306. DOI

Thakran M. Kumar S. Phogat R. Ray S. Brajpuriya R. Rana A. S. Kumar B. J. Nano- Electron. Phys. 2021;13(10):21272.

Castellanos-Gomez A. Vicarelli L. Prada E. Island J. O. Narasimha-Acharya K. Blanter S. I. Groenendijk D. J. Buscema M. Steele G. A. Alvarez J. 2D Materials. 2014;1:025001. doi: 10.1088/2053-1583/1/2/025001. DOI

Huang H. Xiao Q. Wang J. Yu X.-F. Wang H. Zhang H. Chu P. K. npj 2D Mater. Appl. 2017;1:20. doi: 10.1038/s41699-017-0022-6. DOI

Janowska I. Moldovan M.-S. Ersen O. Bulou H. Chizari K. Ledoux M. J. Pham-Huu C. Nano Res. 2011;4:511–521. doi: 10.1007/s12274-011-0107-z. DOI

Mahgoub A. Lu H. Thorman R. M. Preradovic K. McElwee-White L. Fairbrother H. Hagen C. W. Beilstein J. Nanotechnol. 2020;11:1789–1800. doi: 10.3762/bjnano.11.161. PubMed DOI PMC

Schmidt F. Swiderek P. Bredehöft J. H. ACS Earth Space Chem. 2019;3:1974–1986. doi: 10.1021/acsearthspacechem.9b00168. DOI

Stankovich S. Dikin D. A. Piner R. D. Kohlhaas K. A. Kleinhammes A. Jia Y. Wu Y. Nguyen S. T. Ruoff R. S. Carbon. 2007;45:1558–1565. doi: 10.1016/j.carbon.2007.02.034. DOI

Lu W. Nan H. Hong J. Chen Y. Zhu C. Liang Z. Ma X. Ni Z. Jin C. Zhang Z. Nano Res. 2014;7:853–859. doi: 10.1007/s12274-014-0446-7. DOI

Molina-Sanchez A. Wirtz L. Phys. Rev. B: Condens. Matter Mater. Phys. 2011;84:155413. doi: 10.1103/PhysRevB.84.155413. DOI

Lee C. Yan H. Brus L. E. Heinz T. F. Hone J. Ryu S. ACS Nano. 2010;4:2695–2700. doi: 10.1021/nn1003937. PubMed DOI

Krishna R. Wade J. Jones A. N. Lasithiotakis M. Mummery P. M. Marsden B. J. Carbon. 2017;124:314–333. doi: 10.1016/j.carbon.2017.08.070. DOI

Muzyka R. Drewniak S. Pustelny T. Chrubasik M. Gryglewicz G. Materials. 2018;11:1050. doi: 10.3390/ma11071050. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Developments in Nanopatterning of Graphene; Toward Direct Writing

. 2026 Jan ; 38 (5) : e13264. [epub] 20251120

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...