Direct chemical lithography writing on 2D materials by electron beam induced chemical reactions
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39974340
PubMed Central
PMC11833312
DOI
10.1039/d5na00036j
PII: d5na00036j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Due to their high surface-to-volume ratio and native band gaps, two-dimensional (2D) materials are widely used as supports for metal nanoparticle (NP) catalysts. Various synthesis methods exist to prepare such materials, but controlling the amount, size, and distribution of the deposited NPs remains a challenge. Here, we investigate the use of electron beam lithography (EBL) for this purpose. A dual-beam focused ion beam-scanning electron microscope (FIB-SEM) was used to direct the deposition of platinum NPs (Pt NPs) onto 2D graphene oxide, functionalized with epoxy and hydroxyl (HUGO) or carboxyl (TOGO) groups, and black phosphorus (BP) sheets. According to NP size, the deposition was conducted for various exposure times and several types of particle distribution. EDS confirmed the required chemical composition of all of the prepared materials. SEM showed the amount and distribution of the supported NPs, and TEM confirmed their size. Raman spectroscopy revealed a strong bonding between the NPs and the support sheets according to the type of 2D support. These results suggest that EBL is a promising method for the target-controlled deposition of metal NPs of targeted amount, size, and spatial distribution onto 2D materials, which enables evaluating the specific influence of the NP-support interaction on enhanced catalytic activity.
Department of Inorganic Chemistry University of Chemistry and Technology Prague Czech Republic
Department of Organic Technology University of Chemistry and Technology Prague Czech Republic
Zobrazit více v PubMed
Feng H. Liu Y. Li J. Chem. Commun. 2015;51:2418–2420. doi: 10.1039/C4CC09146A. PubMed DOI
Li Y. Li Y. Zhu E. McLouth T. Chiu C.-Y. Huang X. Huang Y. J. Am. Chem. Soc. 2012;134:12326–12329. doi: 10.1021/ja3031449. PubMed DOI
Xu C. Wang X. Zhu J. J. Phys. Chem. C. 2008;112:19841–19845. doi: 10.1021/jp807989b. DOI
Lin Y. Pan Y. Zhang J. Int. J. Hydrogen Energy. 2017;42:7951–7956. doi: 10.1016/j.ijhydene.2016.12.030. DOI
Zhang Y. Jiang Q. Lang P. Yuan N. Tang J. J. Alloys Compd. 2021;850:156580. doi: 10.1016/j.jallcom.2020.156580. DOI
Zhang X. Zhao X. Wu D. Jing Y. Zhou Z. Adv. Sci. 2016;3:1600062. doi: 10.1002/advs.201600062. PubMed DOI PMC
Kuznetsov D. A. Chen Z. Kumar P. V. Tsoukalou A. Kierzkowska A. Abdala P. M. Safonova O. V. Fedorov A. Müller C. R. J. Am. Chem. Soc. 2019;141:17809–17816. doi: 10.1021/jacs.9b08897. PubMed DOI
Wang J. Liu C. j. ChemBioEng Rev. 2015;2:335–350. doi: 10.1002/cben.201500014. DOI
Yoo M. Kang E. Choi H. Ha H. Choi H. Choi J.-S. Lee K.-S. Celestre R. Shapiro D. A. Park J. Y. J. Mater. Chem. A. 2022;10:5942–5952. doi: 10.1039/D1TA08059H. DOI
Saikia P. Miah A. T. Malakar B. Bordoloi A. Indian J. Eng. Sci. 2015;2015:10.
Ni J. Shi S. Zhang C. Fang B. Wang X. Lin J. Liang S. Lin B. Jiang L. J. Catal. 2022;409:78–86. doi: 10.1016/j.jcat.2022.03.026. DOI
Slot T. K. Yue F. Xu H. Ramos-Fernandez E. V. Sepúlveda-Escribano A. Sofer Z. Rothenberg G. Shiju N. R. 2D Materials. 2020;8:015001. doi: 10.1088/2053-1583/ababef. DOI
Ahmed N. S. Menzel R. Wang Y. Garcia-Gallastegui A. Bawaked S. M. Obaid A. Y. Basahel S. N. Mokhtar M. J. Solid State Chem. 2017;246:130–137. doi: 10.1016/j.jssc.2016.11.024. DOI
Gao H. Zhai C. Zhang H. Fu N. Du Y. Zhu M. Energy Technol. 2019;7:1900253. doi: 10.1002/ente.201900253. DOI
George S. M. Chem. Rev. 2010;110:111–131. doi: 10.1021/cr900056b. PubMed DOI
Lee S. Kang Y. Lee J. Kim J. Shin J. W. Sim S. Go D. Jo E. Kye S. Kim J. Appl. Surf. Sci. 2022;571:151256. doi: 10.1016/j.apsusc.2021.151256. DOI
Mackus A. Thissen N. Mulders J. Trompenaars P. Verheijen M. Bol A. Kessels W. J. Phys. Chem. C. 2013;117:10788–10798. doi: 10.1021/jp402260j. DOI
Altissimo M. Biomicrofluidics. 2010;4:026503. doi: 10.1063/1.3437589. PubMed DOI PMC
Hagen C. Appl. Phys. A. 2014;117:1599–1605. doi: 10.1007/s00339-014-8847-8. DOI
Huth M. Porrati F. Schwalb C. Winhold M. Sachser R. Dukic M. Adams J. Fantner G. Beilstein J. Nanotechnol. 2012;3:597–619. doi: 10.3762/bjnano.3.70. PubMed DOI PMC
Vesely M. Marvan P. Trejbal J. Mazanek V. Luxa J. Sturala J. Sofer Z. ACS Appl. Mater. Interfaces. 2020;12:22702–22709. doi: 10.1021/acsami.9b20618. PubMed DOI
Hummers Jr W. S. Offeman R. E. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI
Marcano D. C. Kosynkin D. V. Berlin J. M. Sinitskii A. Sun Z. Slesarev A. Alemany L. B. Lu W. Tour J. M. ACS Nano. 2010;4:4806–4814. doi: 10.1021/nn1006368. PubMed DOI
Scardaci V. Compagnini G. C. 2021;7:48. PubMed PMC
Kudin K. N. Ozbas B. Schniepp H. C. Prud'Homme R. K. Aksay I. A. Car R. Nano Lett. 2008;8:36–41. doi: 10.1021/nl071822y. PubMed DOI
Hasani A. Sharifi Dehsari H. Amiri Zarandi A. Salehi A. Taromi F. A. Kazeroni H. J. Nanomater. 2015;2015(1):930306. doi: 10.1155/2015/930306. DOI
Thakran M. Kumar S. Phogat R. Ray S. Brajpuriya R. Rana A. S. Kumar B. J. Nano- Electron. Phys. 2021;13(10):21272.
Castellanos-Gomez A. Vicarelli L. Prada E. Island J. O. Narasimha-Acharya K. Blanter S. I. Groenendijk D. J. Buscema M. Steele G. A. Alvarez J. 2D Materials. 2014;1:025001. doi: 10.1088/2053-1583/1/2/025001. DOI
Huang H. Xiao Q. Wang J. Yu X.-F. Wang H. Zhang H. Chu P. K. npj 2D Mater. Appl. 2017;1:20. doi: 10.1038/s41699-017-0022-6. DOI
Janowska I. Moldovan M.-S. Ersen O. Bulou H. Chizari K. Ledoux M. J. Pham-Huu C. Nano Res. 2011;4:511–521. doi: 10.1007/s12274-011-0107-z. DOI
Mahgoub A. Lu H. Thorman R. M. Preradovic K. McElwee-White L. Fairbrother H. Hagen C. W. Beilstein J. Nanotechnol. 2020;11:1789–1800. doi: 10.3762/bjnano.11.161. PubMed DOI PMC
Schmidt F. Swiderek P. Bredehöft J. H. ACS Earth Space Chem. 2019;3:1974–1986. doi: 10.1021/acsearthspacechem.9b00168. DOI
Stankovich S. Dikin D. A. Piner R. D. Kohlhaas K. A. Kleinhammes A. Jia Y. Wu Y. Nguyen S. T. Ruoff R. S. Carbon. 2007;45:1558–1565. doi: 10.1016/j.carbon.2007.02.034. DOI
Lu W. Nan H. Hong J. Chen Y. Zhu C. Liang Z. Ma X. Ni Z. Jin C. Zhang Z. Nano Res. 2014;7:853–859. doi: 10.1007/s12274-014-0446-7. DOI
Molina-Sanchez A. Wirtz L. Phys. Rev. B: Condens. Matter Mater. Phys. 2011;84:155413. doi: 10.1103/PhysRevB.84.155413. DOI
Lee C. Yan H. Brus L. E. Heinz T. F. Hone J. Ryu S. ACS Nano. 2010;4:2695–2700. doi: 10.1021/nn1003937. PubMed DOI
Krishna R. Wade J. Jones A. N. Lasithiotakis M. Mummery P. M. Marsden B. J. Carbon. 2017;124:314–333. doi: 10.1016/j.carbon.2017.08.070. DOI
Muzyka R. Drewniak S. Pustelny T. Chrubasik M. Gryglewicz G. Materials. 2018;11:1050. doi: 10.3390/ma11071050. PubMed DOI PMC
Developments in Nanopatterning of Graphene; Toward Direct Writing