Computational fluid dynamic modeling of pressure and velocity in a water aspirator

. 2025 Feb 15 ; 11 (3) : e42289. [epub] 20250128

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39975821
Odkazy

PubMed 39975821
PubMed Central PMC11835565
DOI 10.1016/j.heliyon.2025.e42289
PII: S2405-8440(25)00669-3
Knihovny.cz E-zdroje

This study presents the experimental and theoretical modeling results of pressure changes caused by fluid flow in a water aspirator (water pump) whose working principle is based on the Venturi effect. Experimentally measured pressure drop in a glass-made device is modeled in COMSOL Multiphysics by previously reproducing the device geometry. Computations were performed using a Fluid Flow Module with turbulence model RANS k-ε. Pressure and liquid velocity magnitude maps were drowned, and selected vertical and perpendicular cross-sections of velocity and pressure fields were shown and discussed, indicating model limitations.

Zobrazit více v PubMed

Streeter V.L. ninth ed. vol. 2010. MC GRAW HILL INDIA; January 1, 2010. (Fluid Mechanics).

Clancy J.L. Aerodynamics. Sterling Book House; 2006. chapter 3. pages 16-32.

Tonin A.P.P., et al. Venturi electrospray ionization: principles and applications. Int. J. Mass Spectrom. 2018;431:50–55.

Invention of the venturi meter. Nature. 1935;136:254.

Sigalotti L.D.G., et al. SPH simulations and experimental investigation of water flow through a Venturi meter of rectangular cross-section. Sci. Rep. 2023;13 PubMed PMC

Xu J., Liu X., Pang M. Numerical and experimental studies on transport properties of powder ejector based on double venturi effect. Vacuum. 2016;134:92–98.

Gallitto A.A., Zingales R., Battaglia O.R., Fazio C. An approach to the Venturi effect by historical instruments. Phys. Educ. 2021;56

Jensen W.B. The origins of the hirsch and büchner vacuum filtration funnels. J. Chem. Educ. 2006;83:1283.

Song Y., Shentu Y., Qian Y., Yin J., Wang D. Experiment and modeling of liquid-phase flow in a venturi tube using stereoscopic PIV. Nucl. Eng. Technol. 2021;53:79–92.

Paul N. Cheremisinoff. Taylor & Francis; 1993. Air Pollution Control and Design for Industry.

Ravi D., Rajagopal T.K.R. Numerical investigation on the effect of geometric shape and outlet angle of a bladeless fan for flow optimization using CFD techniques. Int. J. Thermofluids. 2022;15

Betz M.A., Büchele P., Brünnler M., Deml S., Lechner A. Silicon micro venturi nozzles for cost-efficient spray coating of thin organic P3HT/PCBM layers. J. Micromech. Microeng. 2017;27

Sharma D., Ghosh D.P., Dennis S.J., Abbasi B. Fouling mechanism in airblast atomizers and its suppression for water desalination. Water Res. 2022;221 PubMed

Gamisans X., Sarrà M., Lafuente F.J., Azzopardi B.J. The hydrodynamics of ejector-Venturi scrubbers and their modelling by an annular flow/boundary layer model. Chem. Eng. Sci. 2002;57:2707–2718.

Gamisans X., Sarrà M., Lafuente F.J. Fluid flow and pumping efficiency in an ejector-venturi scrubber. Chem. Eng. Process. Process Intensif. 2004;43:127–136.

Chandekar A.C., Debnath B.K. Computational investigation of air-biogas mixing device for different biogas substitutions and engine load variations. Renew. Energy. 2018;127:811–824.

Moore W.D. A water aspirator hood. J. Chem. Educ. 1959;36:407.

Palican A.K., Chavez S.A., Mountain J.R. Design and fabrication of a microfluidic pressure inverter. 2008 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC 2008. 2009;5:535–541.

Schima H., Huber L., Spitaler F. Vacuum generation in pneumatic artificial heart drives with a specially designed ejector system. Artif. Organs. 1990;14:224–226. PubMed

Kandula M., Nufer B.M. AIAA SCITECH 2024 Forum. American Institute of Aeronautics and Astronautics; 2024. On the performance of small-sized venturi flowmeters in cavitating and non-cavitating flow regimes. DOI

Masgo S.L.B.T. vols. 9–22. 2020. (Experimental and Numerical Study of the Pressure of the Water Flow in a Venturi Tube). DOI

Li M., Bussonnière A., Bronson M., Xu Z., Liu Q. Study of Venturi tube geometry on the hydrodynamic cavitation for the generation of microbubbles. Miner. Eng. 2019;132:268–274.

Majid A.I., et al. On the performance of venturi-porous pipe microbubble generator with inlet angle of 20° and outlet angle of 12. AIP Conf. Proc. 2018;2001

Agarwal A., Ng W.J., Liu Y. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere. 2011;84:1175–1180. PubMed

Levitsky I., Tavor D., Erenburg V. A new bubble generator for creation of large quantity of bubbles with controlled diameters. Exp. Comput. Multiph. Flow. 2022;4:45–51.

Dixit D., Balapure K., Bhandari V.M. Enhanced disinfection efficiency using Cu vortex diode for providing safe drinking water: devising newer methodologies. Environ. Qual. Manag. 2024;34

Sarvothaman V.P., et al. Evaluating performance of vortex-diode based hydrodynamic cavitation device scale and pressure drop using coumarin dosimetry. Chem. Eng. J. 2024;481

Jiao L., et al. Numerical simulation of cavitation performance for vortex diode. K. Cheng Je Wu Li Hsueh Pao/Journal Eng. Thermophys. 2012;33:1519–1522.

Jiao L., Zhang P.P., Chen C.N., Yin J.L., Wang L.Q. Experimental study on the cavitation of vortex diode based on CFD. IOP Conf. Ser. Earth Environ. Sci. 2012;15

Suryawanshi N.B., Bhandari V.M., Sorokhaibam L.G., Ranade V.V. A non-catalytic deep desulphurization process using hydrodynamic cavitation. Sci. Rep. 2016;6 PubMed PMC

Suryawanshi P.G., Bhandari V.M., Sorokhaibam L.G., Ruparelia J.P., Ranade V.V. Solvent degradation studies using hydrodynamic cavitation. Environ. Prog. Sustain. Energy. 2018;37:295–304.

Suryawanshi N.B., Bhandari V.M., Sorokhaibam L.G., Ranade V.V. Developing techno-economically sustainable methodologies for deep desulfurization using hydrodynamic cavitation. Fuel. 2017;210:482–490.

Tadyszak K., Jäger A., Pánek J., Hrubý M. Design and optimization of microfluidic vortex diode. Math. Comput. Appl. 2024;29 doi: 10.3390/mca29060097. at. DOI

Jain P., et al. Hydrodynamic cavitation using vortex diode: an efficient approach for elimination of pathogenic bacteria from water. J. Environ. Manag. 2019;242:210–219. PubMed

Wang B., Su H., Zhang B. Hydrodynamic cavitation as a promising route for wastewater treatment – a review. Chem. Eng. J. 2021;412

Rehak P., Gao H., Lu R., Král P. Nanoscale venturi–Bernoulli pumping of liquids. ACS Nano. 2021;15:10342–10346. PubMed

Davis J.J., et al. Utility of low-cost, miniaturized peristaltic and Venturi pumps in droplet microfluidics. Anal. Chim. Acta. 2021;1151 PubMed PMC

Adamski K., Kawa B., Walczak R. 2018 XV International Scientific Conference on Optoelectronic and Electronic Sensors (COE) 2018. Inkjet 3D printed venturi microflowmeter; pp. 1–3. DOI

Cubberley M.S., Hess W.A., Johnson M.B. An inexpensive recirculating water vacuum pump for the chemistry laboratory. J. Chem. Educ. 2020;97:1495–1499.

CRC Handbook of Chemistry and Physics. CRC Press.; 2004.

Perrine T.D. Method for attaching glass water aspirators to water lines. J. Chem. Educ. 1960;37:481.

Little E.P., Pond S.E. A comparative study of water aspirators. Rev. Sci. Instrum. 2004;11:285–286.

Power B.D. vol. 422. Chapman and Hall; 1966. Chapter 4. (High Vacuum Pumping Equipment).

Wilcox D.C. Turbulence Modeling for CFD. 2006

Malalasekera H.K.V. Longman Group Ltd; 1995. W. An Introduction To Computational Fluid Dynamics: the Finite Volume Method.

Pope S.B. Cambridge University Press; 2000. Turbulent Flows. DOI

Schlichting Hermann, Deceased K.G. Springer; 2016. Boundary-Layer Theory.

FLUENT 6.1 User's Guide. FLUENT Inc.; 2003.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...