Atmospheric and submerged bone cement erosion by a pulsating water jet with a straight tubular nozzle extension

. 2025 Feb 20 ; 15 (1) : 6224. [epub] 20250220

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39979459

Grantová podpora
APVV-22-0391 Agentúra na Podporu Výskumu a Vývoja
68145535 long-term conceptual development of the research institution RVO
68145535 long-term conceptual development of the research institution RVO

Odkazy

PubMed 39979459
PubMed Central PMC11842789
DOI 10.1038/s41598-025-91213-7
PII: 10.1038/s41598-025-91213-7
Knihovny.cz E-zdroje

A pulsating water jet (PWJ) offers advantages over a continuous water jet, such as lower liquid volume flows and pressures for deeper cuts. However, traditional PWJ setups are unsuitable for minimally invasive surgeries due to their size. This study aimed to develop a PWJ instrument by testing a 100 mm long, 10 mm diameter extension tube. We evaluated (1) the machining capability of the PWJ with the extension tube on simulated hard tissue and (2) the impact of a submerged environment on cutting capacity. Using a 20 kHz ultrasonic pulsating water jet were provided erosion 120 tests in bone cement and assessed cutting depth and volume via micro-CT scans. Results showed that the PWJ with the extension tube could machine bone cement in both open-air and submerged environments, though the latter required longer exposure and reduced material removal by 65%. Increasing exposure time improved cutting depth and volume until a plateau was reached. The PWJ was compared with a continuous jet with a 5-minute exposure time, showing no visible or measurable erosion. This PWJ design could meet requirements, offering non-thermal and selective tissue removal.

Zobrazit více v PubMed

Folkes, J. Waterjet-An innovative tool for manufacturing. J. Mater. Process. Technol.209, 6181–6189 (2009).

Harris, H. D. & Mellor, M. Cutting rock with water jets. International Journal of Rock Mechanics and Mining Sciences and 11, 343–358 (1974).

Andrzej, P. Experimental research into alternative abrasive material for the abrasive water-jet cutting of titanium. Int. J. Adv. Manuf. Technol.97, 1529–1540 (2018).

Perec, A., Radomska-Zalas, A., Fajdek-Bieda, A. & EXPERIMENTAL RESEARCH INTO MARBLE CUTTING BY ABRASIVE WATER JET. Facta Universitatis, Series: Mechanical Engineering (2021).

Jahn, C. A. The dental water Jet: a historical review of the literature. J. Dent. Hygiene: JDH / Am. Dent. Hygienists’ Association. 84, 114–120 (2010). PubMed

Ohya, T., Okimura, K., Ohta, T. & Ichioka, T. Residual stress improved by water jet peening for small-diameter pipe inner surfaces. Tech. Rev. - Mitsubishi Heavy Industries (2000).

Momber, A. W. Fundamentals of Hydrodemolition. in Hydrodemolition of Concrete Surfaces and Reinforced Concrete (2005). 10.1016/b978-185617460-2/50002-0

Szada-Borzyszkowska, M. E., Kacalak, W., Bohdal, Ł. & Szada-Borzyszkowski, W. Analysis and basics of improving the process of cutting electrical sheet bundles with a High-Pressure abrasive water jet. Materials17, 1666 (2024). PubMed PMC

Hreha, P. et al. Monitoring of focusing tube wear during abrasive waterjet (AWJ) cutting of AISI 309. Metalurgija53, 533–536 (2014).

Natarajan, Y., Murugesan, P. K. & Mohan, M. Liyakath Ali Khan, S. A. Abrasive water jet machining process: A state of Art of review. J. Manuf. Process.49, 271–322 (2020).

Hreha, P. et al. Water jet technology used in medicine. Tehnicki Vjesn.17, (2010).

Schwieger, K. et al. Abrasive water jet cutting as a new procedure for cutting cancellous bone - In vitro testing in comparison with the oscillating saw. J. Biomed. Mater. Res. B Appl. Biomater.71, 223–228 (2004). PubMed

Honl, M. et al. The use of water-jetting technology in prostheses revision surgery - First results of parameter studies on bone and bone cement. J. Biomed. Mater. Res.53, 781–790 (2000). PubMed

Song, X. F., Zhao, J., Yan, H., Yu, W. & Yin, L. Waterjet machining of biological tissues in medical surgeries: From soft tissue dissection to bone cutting. Journal of Manufacturing Processes vol. 107 529–548 Preprint at (2023). 10.1016/j.jmapro.2023.10.067

Vollmer, C. M. et al. Water-jet dissection for parenchymal division during hepatectomy. HPB8, 377–385 (2006). PubMed PMC

den Dunnen, S., Dankelman, J., Kerkhoffs, G. M. M. J. & Tuijthof, G. J. M. How do jet time, pressure and bone volume fraction influence the drilling depth when waterjet drilling in Porcine bone? J. Mech. Behav. Biomed. Mater.62, 495–503 (2016). PubMed

Schüller, J. et al. Springer Berlin Heidelberg, Berlin, Heidelberg,. Water-Jet Cutting: A New Technique for Selective Parenchymal Surgery of the Kidney. in Investigative Urology 3 39–43 (1989). 10.1007/978-3-642-74438-9_6

Keiner, D., Gaab, M. R., Backhaus, V., Piek, J. & Oertel, J. Water jet dissection in neurosurgery: an update after 208 procedures with special reference to surgical technique and complications. Operative Neurosurg.67, ons342–ons354 (2010). PubMed

Rennekampff, H. O., Schaller, H. E., Wisser, D. & Tenenhaus, M. Debridement of burn wounds with a water jet surgical tool. Burns32, 64–69 (2006). PubMed

Hvizdoš, P. et al. Local mechanical properties of various bone cements. Key Eng. Mater.592–593, 382–385 (2013).

Affatato, S., Merola, M. & Ruggiero, A. Tribological performances of total knee prostheses: roughness measurements on medial and lateral compartments of retrieved femoral components. Meas. (Lond). 10.1016/j.measurement.2018.11.072 (2019).

Gryc, R., Hlaváč, L. M., Mikoláš, M., Šancer, J. & Daněk, T. Correlation of pure and abrasive water jet cutting of rocks. Int. J. Rock Mech. Min. Sci.65, 149–152 (2014).

Szada-Borzyszkowska, M., Kacalak, W., Banaszek, K., Borkowski, P. J. & Szada-Borzyszkowski, W. Analysis of the pulsating properties of a high-pressure water jet generated in a self-excited head for erosion processing. Archives Civil Mech. Eng.23, (2023).

Szada-Borzyszkowska, M. et al. Assessment of the effectiveness of high-pressure water jet machining generated using self-excited pulsating heads. Int. J. Adv. Manuf. Technol.10.1007/s00170-024-14040-6 (2024).

Lehocká, D. et al. Comparison of the influence of acoustically enhanced pulsating water jet on selected surface integrity characteristics of CW004A copper and CW614N brass. Measurement110, 230–238 (2017).

Cook, S. S. Erosion by water-hammer. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 119, 481–488 (1928).

Nastic, A., Vijay, M., Tieu, A. & Jodoin, B. High speed water droplet impact erosive behavior on dry and wet pulsed waterjet treated surfaces. Phys. Fluids35, (2023).

Field, J. E. ELSI conference: Invited lecture liquid impact: Theory, experiment, applications. in Wear vols 233–235 1–12 (1999).

Worthington, A. On the forms assumed by drops of liquid falling vertically on a horizontal plate. Proceedings of the Royal Society of London (1876).

Fujisawa, K. Simulation of lateral jet formation in high-speed liquid droplet impingement and its impact on crater side wall. Ann. Nucl. Energy175, (2022).

Haller, K. K., Poulikakos, D., Ventikos, Y. & Monkewitz, P. Shock wave formation in droplet impact on a rigid surface: lateral liquid motion and multiple wave structure in the contact line region. J. Fluid Mech.10.1017/S0022112003005093 (2003).

Bowden, F. P. & Field, J. E. The brittle fracture of solids by liquid impact, by solid impact, and by shock. Proc. R Soc. Lond. Math. Phys. Sci.10.1098/rspa.1964.0236 (1964).

Vijay, M. M., Remisz, J. & Shen, X. Potential of pulsed water jets for cutting and fracturing of hard rock formations. Int. J. Surf. Min. Reclam. Environ.7, 121–132 (1993).

Foldyna, J. InTech,. Use of acoustic waves for pulsating water jet generation. in Acoustic Waves-From Microdevices to Helioseismology (2011).

Vijay, M. M., Foldyna, J. & Remisz, J. Ultrasonic Modulation of High-Speed Water Jets. Geomechanics 93. Proc. conference, Ostrava, 1993 (1994).

Amegadzie, M. Y. et al. Ultrasonic pulsed waterjet surface peening of an industrial aluminum-based metal matrix composite. Surf. Coat. Technol.426, 127795 (2021).

Li, D., Kang, Y., Ding, X., Wang, X. & Fang, Z. An experimental investigation on the pressure characteristics of high speed self-resonating pulsed waterjets influenced by feeding pipe diameter. J. Mech. Sci. Technol.30, 4997–5007 (2016).

Nag, A., Stolárik, G., Svehla, B. & Hloch, S. Effect of Water Flow Rate on Operating Frequency and Power During Acoustic Chamber Tuning. in Advances in Manufacturing Engineering and Materials II: Proceedings of the International Conference on Manufacturing Engineering and Materials (ICMEM 2020), 21–25 June, 2021, Nový Smokovec, Slovakia 142–154 (Springer International Publishing, 2021).

Foldyna, J., Říha, Z., Sitek, L. & Švehla, B. Numerical simulation of transmission of acoustic waves in high-pressure system. in Proceedings of the International Congress on Ultrasonics, Vienna (2007).

Nag, A., Hloch, S., Dixit, A. R. & Pude, F. Utilization of ultrasonically forced pulsating water jet decaying for bone cement removal. Int. J. Adv. Manuf. Technol.10.1007/s00170-020-05892-9 (2020).

Hloch, S., Nag, A., Pude, F., Foldyna, J. & Zeleňák, M. On-line measurement and monitoring of pulsating saline and water jet disintegration of bone cement with frequency 20 kHz. Meas. (Lond)147, (2019).

Hloch, S. et al. Disintegration of bone cement by continuous and pulsating water jet. Tech. Gaz.3651, 593–598 (2017).

Breusch, S. J. et al. Lavage technique in total hip arthroplasty. J. Arthroplasty. 15, 921–927 (2000). PubMed

Merola, M., Ruggiero, A., De Mattia, J. S. & Affatato, S. On the tribological behavior of retrieved hip femoral heads affected by metallic debris. A comparative investigation by Stylus and optical profilometer for a new roughness measurement protocol. Meas. (Lond). 90, 365–371 (2016).

Hloch, S. et al. Submerged pulsating water jet erosion of ductile material. Wear 538–539, (2024).

Hloch, S., Souček, K., Svobodová, J., Hromasová, M. & Müller, M. Subsurface microtunneling in ductile material caused by multiple droplet impingement at subsonic speeds. Wear 490–491, (2022).

Ikohagi, T. et al. Advanced wall thinning prediction of liquid droplet impingement erosion. in International Symposium on the Ageing Management & Maintenance of Nuclear Power Plants vol. 47 57 (2010).

Nag, A. et al. Maximization of wear rates through effective configuration of standoff distance and hydraulic parameters in ultrasonic pulsating waterjet. Facta Universitatis Series: Mech. Eng.10.22190/FUME220523045N (2022).

Hloch, S. et al. Disintegration of bone cement by continuous and pulsating water jet | Dezintegracija Koštanog Cementa Pomoću Kontinuiranog i pulsirajućeg Mlaza vode. Tehnicki Vjesn.20, (2013).

Hloch, S. et al. Experimental in-vitro bone cements disintegration with ultrasonic pulsating water jet for revision arthroplasty | eksperimentalna in-vitro Razgradnja Koštanog Cementa Pomoću Ultrazvučnog Pulzirajućeg Mlaza vode Za potrebe revizijske Artroplastike. Tehnicki Vjesn.22, (2015).

den Dunnen, S. & Tuijthof, G. J. M. The influence of water jet diameter and bone structural properties on the efficiency of pure water jet drilling in Porcine bone. Mech. Sci.5, 53–58 (2014).

Chahine, G. L., Franc, J. P. & Karimi, A. Cavitation and Cavitation Erosion. in 3–20 (2014). 10.1007/978-94-017-8539-6_1

HOGG, A. J. & HUPPERT, H. E. DADE, W. B. Erosion by planar turbulent wall jets. J. Fluid Mech.338, 317–340 (1997).

Li, H. et al. A study of cavitation Erosion in artificial submerged water jets. Appl. Sci.14, 4804 (2024).

Klich, J., Klichova, D. & Peng, G. Submerged abrasive water jet piercing/drilling: preliminary tests. in 91–98 (2021). 10.1007/978-3-030-53491-2_10

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...