Machine learning and big data analytics in bipolar disorder: A position paper from the International Society for Bipolar Disorders Big Data Task Force

. 2019 Nov ; 21 (7) : 582-594. [epub] 20190918

Jazyk angličtina Země Dánsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31465619

Grantová podpora
103703 CIHR - Canada
106469 CIHR - Canada
142255 CIHR - Canada

OBJECTIVES: The International Society for Bipolar Disorders Big Data Task Force assembled leading researchers in the field of bipolar disorder (BD), machine learning, and big data with extensive experience to evaluate the rationale of machine learning and big data analytics strategies for BD. METHOD: A task force was convened to examine and integrate findings from the scientific literature related to machine learning and big data based studies to clarify terminology and to describe challenges and potential applications in the field of BD. We also systematically searched PubMed, Embase, and Web of Science for articles published up to January 2019 that used machine learning in BD. RESULTS: The results suggested that big data analytics has the potential to provide risk calculators to aid in treatment decisions and predict clinical prognosis, including suicidality, for individual patients. This approach can advance diagnosis by enabling discovery of more relevant data-driven phenotypes, as well as by predicting transition to the disorder in high-risk unaffected subjects. We also discuss the most frequent challenges that big data analytics applications can face, such as heterogeneity, lack of external validation and replication of some studies, cost and non-stationary distribution of the data, and lack of appropriate funding. CONCLUSION: Machine learning-based studies, including atheoretical data-driven big data approaches, provide an opportunity to more accurately detect those who are at risk, parse-relevant phenotypes as well as inform treatment selection and prognosis. However, several methodological challenges need to be addressed in order to translate research findings to clinical settings.

Copenhagen Affective Disorder Research Center Psychiatric Center Copenhagen Copenhagen University Hospital Copenhagen Denmark

Department of Psychiatry and Behavioral Sciences UT Center of Excellence on Mood Disorders McGovern Medical School The University of Texas Health Science Center at Houston Houston TX USA

Department of Psychiatry and Behavioural Neurosciences McMaster University Hamilton ON Canada

Department of Psychiatry Dalhousie University Halifax NS Canada

Department of Psychiatry Queen's University School of Medicine Kingston ON Canada

Department of Psychiatry University Medical Center Groningen University of Groningen Groningen The Netherlands

Department of Psychiatry University of British Columbia Vancouver BC Canada

Department of Psychiatry University of Helsinki and Helsinki University Central Hospital Helsinki Finland

Department of Psychiatry University of Toronto Toronto ON Canada

Department of Psychiatry Western Psychiatric Institute and Clinic University of Pittsburgh School of Medicine Pittsburgh PA USA

Laboratory of Molecular Psychiatry and Bipolar Disorder Program Programa de Pós Graduação em Psiquiatria e Ciências do Comportamento Hospital de Clínicas de Porto Alegre Universidade Federal do Rio Grande do Sul Porto Alegre Brazil

Mood Disorders Program Hospital Universitario San Vicente Fundación Medellín Colombia

Mood Disorders Psychopharmacology Unit University Health Network University of Toronto Toronto ON Canada

National Institute of Mental Health Klecany Czech Republic

Research Group in Psychiatry Department of Psychiatry Faculty of Medicine University of Antioquia Medellín Colombia

School of Technology Pontifícia Universidade Católica do Rio Grande do Sul Rio Grande do Sul Brazil

Zobrazit více v PubMed

Merikangas KR, Akiskal HS, Angst J, et al. Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Arch Gen Psychiatry. 2007;64(5):543-552. https://doi.org/10.1001/archpsyc.64.5.543.

Mathers CD, Iburg KM, Begg S. Adjusting for dependent comorbidity in the calculation of healthy life expectancy. Popul Health Metr. 2006;4:4. https://doi.org/10.1186/1478-7954-4-4.

Nordentoft M, Mortensen PB, Pedersen CB. Absolute risk of suicide after first hospital contact in mental disorder. Arch Gen Psychiatry. 2011;68(10):1058-1064. https://doi.org/10.1001/archgenpsychiatry.2011.113.

Yatham LN, Kennedy SH, Parikh SV, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) 2018 guidelines for the management of patients with bipolar disorder. Bipolar Disord. 2018;20(2):97-170. https://doi.org/10.1111/bdi.12609.

Goodwin GM, Anderson I, Arango C, et al. ECNP consensus meeting. Bipolar depression. Nice, March 2007. Eur Neuropsychopharmacol. 2008;18(7):535-549. https://doi.org/10.1016/j.euroneuro.2008.03.003.

Gitlin MJ, Swendsen J, Heller TL, Hammen C. Relapse and impairment in bipolar disorder. Am J Psychiatry. 1995;152(11):1635-1640.

Kessing LV, Andersen PK, Vinberg M. Risk of recurrence after a single manic or mixed episode-a systematic review and meta-analysis. Bipolar Disord. 2018;20(1):9-17. https://doi.org/10.1111/bdi.12593.

Passos IC, Mwangi B, Vieta E, Berk M, Kapczinski F. Areas of controversy in neuroprogression in bipolar disorder. Acta Psychiatr Scand. 2016;134(2):91-103. https://doi.org/10.1111/acps.12581.

da Costa SC, Passos IC, Lowri C, Soares JC, Kapczinski F. Refractory bipolar disorder and neuroprogression. Prog Neuropsychopharmacol Biol Psychiatry. 2016;70:103-110. https://doi.org/10.1016/j.pnpbp.2015.09.005.

Kessing LV, Andersen PK. Evidence for clinical progression of unipolar and bipolar disorders. Acta Psychiatr Scand. 2017;135(1):51-64. https://doi.org/10.1111/acps.12667.

Lish JD, Dime-Meenan S, Whybrow PC, Price RA, Hirschfeld RM. The National Depressive and Manic-depressive Association (DMDA) survey of bipolar members. J Affect Disord. 1994;31(4):281-294.

Geddes JR, Calabrese JR, Goodwin GM. Lamotrigine for treatment of bipolar depression: independent meta-analysis and meta-regression of individual patient data from five randomised trials. Br J Psychiatry. 2009;194(1):4-9. https://doi.org/10.1192/bjp.bp.107.048504.

Young AH, McElroy SL, Olausson B, Paulsson B. A randomised, placebo-controlled 52-week trial of continued quetiapine treatment in recently depressed patients with bipolar i and bipolar II disorder. World J Biol Psychiatry. 2014;15(2):96-112. https://doi.org/10.3109/15622975.2012.665177.

Greenhalgh T, Howick J, Maskrey N. Evidence based medicine: a movement in crisis? BMJ. 2014;348:g3725-g3725. https://doi.org/10.1136/bmj.g3725.

Kapczinski NS, Mwangi B, Cassidy RM, et al. Neuroprogression and illness trajectories in bipolar disorder. Expert Rev Neurother. 2017;17(3):277-285. https://doi.org/10.1080/14737175.2017.1240615.

Grof P, Duffy A, Alda M, Hajek T. Lithium response across generations. Acta Psychiatr Scand. 2009;120(5):378-385. https://doi.org/10.1111/j.1600-0447.2009.01454.x.

Garnham J, Munro A, Slaney C, et al. Prophylactic treatment response in bipolar disorder: results of a naturalistic observation study. J Affect Disord. 2007;104(1-3):185-190. https://doi.org/10.1016/j.jad.2007.03.003.

Duffy A, Goodday S, Passos IC, Kapczinski F. Changing the bipolar illness trajectory. Lancet Psychiatry. 2017;4(1):11-13. https://doi.org/10.1016/S2215-0366(16)30352-2.

Hamilton JE, Passos IC, de Azevedo Cardoso T, et al. Predictors of psychiatric readmission among patients with bipolar disorder at an academic safety-net hospital. Aust New Zeal J Psychiatry. 2016;50(6):584-593. https://doi.org/10.1177/0004867415605171.

Savage N. Machine learning: Calculating disease. Nature. 2017;550(7676):S115-S117. https://doi.org/10.1038/550S115a.

Obermeyer Z, Emanuel EJ. Predicting the future-big data, machine learning, and clinical medicine. N Engl J Med. 2016;375(13):1216-1219. https://doi.org/10.1056/NEJMp1606181.

Passos IC, Mwangi B, Kapczinski F. Big data analytics and machine learning in psychiatry. Lancet Psychiatry. 2016;3:13-15.

Librenza-Garcia D, Kotzian BJ, Yang J, et al. The impact of machine learning techniques in the study of bipolar disorder: a systematic review. Neurosci Biobehav Rev. 2017;80:538-554. https://doi.org/10.1016/j.neubiorev.2017.07.004.

Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.

Big MB. Data: Using SMART Big Data, Analytics and Metrics to Make Better Decisions and Improve Performance. Chichester: John Wiley & Sons; 2015.

Barnett I, Torous J, Staples P, Sandoval L, Keshavan M, Onnela J-P. Relapse prediction in schizophrenia through digital phenotyping: a pilot study. Neuropsychopharmacology. 2018;43(8):1660-1666. https://doi.org/10.1038/s41386-018-0030-z.

Kessing LV, Munkholm K, Faurholt-Jepsen M, et al. The Bipolar Illness Onset study: research protocol for the BIO cohort study. BMJ Open. 2017;7(6):e015462. https://doi.org/10.1136/bmjopen-2016-015462.

Munkholm K, Vinberg M, Pedersen BK, Poulsen HE, Ekstrøm CT, Kessing LV. A multisystem composite biomarker as a preliminary diagnostic test in bipolar disorder. Acta Psychiatr Scand. 2019;139(3):227-236. https://doi.org/10.1111/acps.12983.

Mitchell TM. Machine Learning. Maidenhead: McGraw-Hill; 1997.

Mwangi B, Tian TS, Soares JC. A review of feature reduction techniques in neuroimaging. Neuroinformatics. 2013;12(2):229-244. https://doi.org/10.1007/s12021-013-9204-3.

Bishop CM. Pattern Recognition and Machine Learning. Berlin: Springer; 2006.

Passos IC, Mwangi B, Cao BO, et al. Identifying a clinical signature of suicidality among patients with mood disorders: a pilot study using a machine learning approach. J Affect Disord. 2016;193:109-116. https://doi.org/10.1016/j.jad.2015.12.066.

Wu M-J, Mwangi B, Bauer IE, et al. Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning. NeuroImage. 2017;145:254-264. https://doi.org/10.1016/j.neuroimage.2016.02.016.

Hajek T, Cooke C, Kopecek M, Novak T, Hoschl C, Alda M. Using structural MRI to identify individuals at genetic risk for bipolar disorders: a 2-cohort, machine learning study. J Psychiatry Neurosci. 2015;40(5):316-324.

Redlich R, Almeida J, Grotegerd D, et al. Brain morphometric biomarkers distinguishing unipolar and bipolar depression. A voxel-based morphometry-pattern classification approach. JAMA Psychiatry. 2014;71(11):1222-1230. https://doi.org/10.1001/jamapsychiatry.2014.1100.

Rocha-Rego V, Jogia J, Marquand AF, Mourao-Miranda J, Simmons A, Frangou S. Examination of the predictive value of structural magnetic resonance scans in bipolar disorder: a pattern classification approach. Psychol Med. 2014;44(3):519-532. https://doi.org/10.1017/S0033291713001013.

Nunes A, Schnack HG, Ching C, et al. Using structural MRI to identify bipolar disorders-13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group. Mol Psychiatry. 2018. https://doi.org/10.1038/s41380-018-0228-9.

Deng F, Wang Y, Huang H, et al. Abnormal segments of right uncinate fasciculus and left anterior thalamic radiation in major and bipolar depression. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:340-349. https://doi.org/10.1016/j.pnpbp.2017.09.006.

Chuang L-C, Kuo P-H. Building a genetic risk model for bipolar disorder from genome-wide association data with random forest algorithm. Sci Rep. 2017;7(1):39943. https://doi.org/10.1038/srep39943.

Acikel C, Aydin Son Y, Celik C, Gul H. Evaluation of potential novel variations and their interactions related to bipolar disorders: analysis of genome-wide association study data. Neuropsychiatr Dis Treat. 2016;12:2997-3004. https://doi.org/10.2147/NDT.S112558.

Dmitrzak-Weglarz MP, Pawlak JM, Maciukiewicz M, et al. Clock gene variants differentiate mood disorders. Mol Biol Rep. 2015;42(1):277-288. https://doi.org/10.1007/s11033-014-3770-9.

Laksshman S, Bhat RR, Viswanath V, Li X. DeepBipolar: Identifying genomic mutations for bipolar disorder via deep learning. Hum Mutat. 2017;38(9):1217-1224. https://doi.org/10.1002/humu.23272.

Pirooznia M, Seifuddin F, Judy J, Mahon PB, Potash JB, Zandi PP. Data mining approaches for genome-wide association of mood disorders. Psychiatr Genet. 2012;22(2):55-61. https://doi.org/10.1097/YPG.0b013e32834dc40d.

Struyf J, Dobrin S, Page D. Combining gene expression, demographic and clinical data in modeling disease: a case study of bipolar disorder and schizophrenia. BMC Genom. 2008;9:531. https://doi.org/10.1186/1471-2164-9-531.

Johannesen JK, O'Donnell BF, Shekhar A, McGrew JH, Hetrick WP. Diagnostic specificity of neurophysiological endophenotypes in schizophrenia and bipolar disorder. Schizophr Bull. 2013;39(6):1219-1229. https://doi.org/10.1093/schbul/sbs093.

Tekin Erguzel T, Tas C, Cebi M. A wrapper-based approach for feature selection and classification of major depressive disorder-bipolar disorders. Comput Biol Med. 2015;64:127-137. https://doi.org/10.1016/j.compbiomed.2015.06.021.

Erguzel TT, Sayar GH, Tarhan N. Artificial intelligence approach to classify unipolar and bipolar depressive disorders. Neural Comput Appl. 2016;27(6):1607-1616. https://doi.org/10.1007/s00521-015-1959-z.

Alimardani F, Cho J-H, Boostani R, Hwang H-J. Classification of bipolar disorder and schizophrenia using steady-state visual evoked potential based features. IEEE Access. 2018;6:40379-40388. https://doi.org/10.1109/ACCESS.2018.2854555.

Khodayari-Rostamabad A, Reilly JP, Hasey G, Debruin H, Maccrimmon D. Diagnosis of psychiatric disorders using EEG data and employing a statistical decision model. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2010;2010:4006-4009. https://doi.org/10.1109/IEMBS.2010.5627998.

Lithgow BJ, Moussavi Z, Gurvich C, Kulkarni J, Maller JJ, Fitzgerald PB. Bipolar disorder in the balance. Eur Arch Psychiatry Clin Neurosci. 2018. https://doi.org/10.1007/s00406-018-0935-x.

Wu M-J, Passos IC, Bauer IE, et al. Individualized identification of euthymic bipolar disorder using the Cambridge Neuropsychological Test Automated Battery (CANTAB) and machine learning. J Affect Disord. 2016;192:219-225. https://doi.org/10.1016/j.jad.2015.12.053.

Besga A, Gonzalez I, Echeburua E, et al. Discrimination between Alzheimer's disease and late onset bipolar disorder using multivariate analysis. Front Aging Neurosci. 2015;7:231. https://doi.org/10.3389/fnagi.2015.00231.

Pinto JV, Passos IC, Gomes F, et al. Peripheral biomarker signatures of bipolar disorder and schizophrenia: a machine learning approach. Schizophr Res. 2017;188:182-184. https://doi.org/10.1016/j.schres.2017.01.018.

Schulz SC, Overgaard S, Bond DJ, Kaldate R. Assessment of proteomic measures across serious psychiatric illness. Clin Schizophr Relat Psychoses. 2017;11(2):103-112. https://doi.org/10.3371/CSRP.SSSO.071717.

Haenisch F, Cooper JD, Reif A, et al. Towards a blood-based diagnostic panel for bipolar disorder. Brain Behav Immun. 2016;52:49-57. https://doi.org/10.1016/j.bbi.2015.10.001.

Munkholm K, Peijs L, Vinberg M, Kessing LV. A composite peripheral blood gene expression measure as a potential diagnostic biomarker in bipolar disorder. Transl Psychiatry. 2015;5(8):e614. https://doi.org/10.1038/tp.2015.110.

Tran T, Kavuluru R. Predicting mental conditions based on “history of present illness” in psychiatric notes with deep neural networks. J Biomed Inform. 2017;75S:S138-S148. https://doi.org/10.1016/j.jbi.2017.06.010.

Yang T-H, Wu C-H, Huang K-Y, Su M-H. Coupled HMM-based multimodal fusion for mood disorder detection through elicited audio-visual signals. J Ambient Intell Hum Comput. 2016;8(6):895-906. https://doi.org/10.1007/s12652-016-0395-y.

Huang K-Y, Wu C-H, Su M-H, Chou C-H. Mood disorder identification using deep bottleneck features of elicited speech. Asia-pacific signal and information processing association annual summit and conference (APSIPA ASC). Lanzhou, China: IEEE; 2017:1648-1652. https://doi.org/10.1109/APSIPA.2017.8282296.

Perez Arribas I, Goodwin GM, Geddes JR, Lyons T, Saunders K. A signature-based machine learning model for distinguishing bipolar disorder and borderline personality disorder. Transl Psychiatry. 2018;8(1):274. https://doi.org/10.1038/s41398-018-0334-0.

Duffy A, Goodday S, Keown-Stoneman C, Grof P. The emergent course of bipolar disorder: observations over two decades from the canadian high-risk offspring cohort. Am J Psychiatry. 2018. https://doi.org/10.1176/appi.ajp.2018.18040461.

Mwangi B, Wu M-J, Cao BO, et al. Individualized prediction and clinical staging of bipolar disorders using neuroanatomical biomarkers. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1(2):186-194. https://doi.org/10.1016/j.bpsc.2016.01.001.

Niculescu AB, Levey DF, Phalen PL, et al. Understanding and predicting suicidality using a combined genomic and clinical risk assessment approach. Mol Psychiatry. 2015;20(11):1266-1285. https://doi.org/10.1038/mp.2015.112.

Levey DF, Niculescu EM, Le-Niculescu H, et al. Towards understanding and predicting suicidality in women: biomarkers and clinical risk assessment. Mol Psychiatry. 2016;21(6):768-785. https://doi.org/10.1038/mp.2016.31.

de Ávila Berni G, Rabelo-da-Ponte FD, Librenza-Garcia D, et al. Potential use of text classification tools as signatures of suicidal behavior: A proof-of-concept study using Virginia Woolf's personal writings. PLoS ONE. 2018;13(10):e0204820. https://doi.org/10.1371/journal.pone.0204820.

Salvini R, da Silva DR, Lafer B, Dutra I. A multi-relational model for depression relapse in patients with bipolar disorder. Stud Health Technol Inform. 2015;216:741-745.

Faurholt-Jepsen M, Busk J, Frost M, et al. Voice analysis as an objective state marker in bipolar disorder. Transl Psychiatry. 2016;6(7):e856. https://doi.org/10.1038/tp.2016.123.

Passos IC, Mwangi B. Machine learning-guided intervention trials to predict treatment response at an individual patient level: an important second step following randomized clinical trials. Mol Psychiatry. 2018. https://doi.org/10.1038/s41380-018-0250-y.

Chekroud AM, Lane CE, Ross DA. Computational psychiatry: embracing uncertainty and focusing on individuals, not averages. Biol Psychiatry. 2017;82(6):e45-e47. https://doi.org/10.1016/j.biopsych.2017.07.011.

Chekroud AM. Bigger data, harder questions-opportunities throughout mental health care. JAMA Psychiatry. 2017;74(12):1183. https://doi.org/10.1001/jamapsychiatry.2017.3333.

Fleck DE, Ernest N, Adler CM, et al. Prediction of lithium response in first-episode mania using the LITHium Intelligent Agent (LITHIA): pilot data and proof-of-concept. Bipolar Disord. 2017;19(4):259-272. https://doi.org/10.1111/bdi.12507.

Castro VM, Roberson AM, McCoy TH, et al. Stratifying risk for renal insufficiency among lithium-treated patients: an electronic health record study. Neuropsychopharmacology. 2016;41(4):1138-1143. https://doi.org/10.1038/npp.2015.254.

Nzeyimana A, Saunders KE, Geddes JR, McSharry PE. Lamotrigine therapy for bipolar depression: analysis of self-reported patient data. JMIR Ment Heal. 2018;5(4):e63. https://doi.org/10.2196/mental.9026.

Stern S, Santos R, Marchetto MC, et al. Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients’ responsiveness to lithium. Mol Psychiatry. 2018;23(6):1453-1465. https://doi.org/10.1038/mp.2016.260.

Wade B, Joshi SH, Njau S, et al. Effect of electroconvulsive therapy on striatal morphometry in major depressive disorder. Neuropsychopharmacology. 2016;41(10):2481-2491. https://doi.org/10.1038/npp.2016.48.

Duffy A, Grof P, Robertson C, Alda M. The implications of genetics studies of major mood disorders for clinical practice. J Clin Psychiatry. 2000;61(9):630-637.

Goodday SM, Preisig M, Gholamrezaee M, Grof P, Angst J, Duffy A. The association between self-reported and clinically determined hypomanic symptoms and the onset of major mood disorders. BJPsych Open. 2017;3(2):71-77. https://doi.org/10.1192/bjpo.bp.116.004234.

Hafeman DM, Merranko J, Axelson D, et al. Toward the definition of a bipolar prodrome: dimensional predictors of bipolar spectrum disorders in at-risk youths. Am J Psychiatry. 2016;173(7):695-704. https://doi.org/10.1176/appi.ajp.2015.15040414.

Duffy A, Keown-Stoneman C, Goodday SM, et al. Daily and weekly mood ratings using a remote capture method in high-risk offspring of bipolar parents: compliance and symptom monitoring. Bipolar Disord. 2019;21(2):159-167. https://doi.org/10.1111/bdi.12721.

Duffy A, Horrocks J, Doucette S, Keown-Stoneman C, McCloskey S, Grof P. The developmental trajectory of bipolar disorder. Br J Psychiatry. 2014;204(2):122-128. https://doi.org/10.1192/bjp.bp.113.126706.

Jansen K, Cardoso TA, Fries GR, et al. Childhood trauma, family history, and their association with mood disorders in early adulthood. Acta Psychiatr Scand. 2016;134(4):281-286. https://doi.org/10.1111/acps.12551.

Goodday S, Levy A, Flowerdew G, et al. Early exposure to parental bipolar disorder and risk of mood disorder: the Flourish Canadian prospective offspring cohort study. Early Interv Psychiatry. 2018;12(2):160-168. https://doi.org/10.1111/eip.12291.

Doucette S, Horrocks J, Grof P, Keown-Stoneman C, Duffy A. Attachment and temperament profiles among the offspring of a parent with bipolar disorder. J Affect Disord. 2013;150(2):522-526. https://doi.org/10.1016/j.jad.2013.01.023.

Grande I, Berk M, Birmaher B, Vieta E. Bipolar disorder. Lancet. 2016;387(10027):1561-1572. https://doi.org/10.1016/S0140-6736(15)00241-X.

Birmaher B, Merranko JA, Goldstein TR, et al. A risk calculator to predict the individual risk of conversion from subthreshold bipolar symptoms to bipolar disorder I or II in youth. J Am Acad Child Adolesc Psychiatry. 2018;57(10):755-763.e4. https://doi.org/10.1016/J.JAAC.2018.05.023.

Marquand AF, Wolfers T, Mennes M, Buitelaar J, Beckmann CF. Beyond lumping and splitting: a review of computational approaches for stratifying psychiatric disorders. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1(5):433-447. https://doi.org/10.1016/j.bpsc.2016.04.002.

Bansal R, Staib LH, Laine AF, et al. Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses. PLoS ONE. 2012;7(12):e50698. https://doi.org/10.1371/journal.pone.0050698.

Hall M-H, Smoller JW, Cook NR, et al. Patterns of deficits in brain function in bipolar disorder and schizophrenia: a cluster analytic study. Psychiatry Res. 2012;200(2-3):272-280. https://doi.org/10.1016/j.psychres.2012.07.052.

Nguyen T, O'Dea B, Larsen M, Phung D, Venkatesh S, Christensen H. Using linguistic and topic analysis to classify sub-groups of online depression communities. Multimed Tools Appl. 2017;76(8):10653-10676. https://doi.org/10.1007/s11042-015-3128-x.

Wahlund B, Grahn H, Sääf J, Wetterberg L. Affective disorder subtyped by psychomotor symptoms, monoamine oxidase, melatonin and cortisol: identification of patients with latent bipolar disorder. Eur Arch Psychiatry Clin Neurosci. 1998;248(5):215-224.

Chekroud AM, Koutsouleris N. The perilous path from publication to practice. Mol Psychiatry. 2018;23(1):24-25. https://doi.org/10.1038/mp.2017.227.

Mwangi B, Ebmeier KP, Matthews K, Steele JD. Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder. Brain. 2012;135(Pt 5):1508-1521. https://doi.org/10.1093/brain/aws084.

Belsher BE, Smolenski DJ, Pruitt LD, et al. Prediction models for suicide attempts and deaths. JAMA Psychiatry. 2019;76(6):642. https://doi.org/10.1001/jamapsychiatry.2019.0174.

Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature. 2009;457(7232):1012-1014. https://doi.org/10.1038/nature07634.

Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google flu: traps in big data analysis. Science. 2014;343(6176):1203-1205. https://doi.org/10.1126/science.1248506.

Manchia M, Cullis J, Turecki G, Rouleau GA, Uher R, Alda M. The impact of phenotypic and genetic heterogeneity on results of genome wide association studies of complex diseases. PLoS ONE. 2013;8(10):e76295. https://doi.org/10.1371/journal.pone.0076295.

Wilson S. Big data held to privacy laws, too. Nature. 2015;519(7544):414-414. https://doi.org/10.1038/519414a.

Lee Y, Ragguett R-M, Mansur RB, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review. J Affect Disord. 2018;241:519-532. https://doi.org/10.1016/j.jad.2018.08.073.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...