Multiple regulatory events contribute to a widespread circular RNA downregulation in precancer and early stage of colorectal cancer development
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
825410
Horizon 2020
825410
Horizon 2020
825410
Horizon 2020
825410
Horizon 2020
825410
Horizon 2020
24882
Associazione Italiana per la Ricerca sul Cancro
PubMed
39980011
PubMed Central
PMC11844049
DOI
10.1186/s40364-025-00744-8
PII: 10.1186/s40364-025-00744-8
Knihovny.cz E-resources
- Keywords
- Adenoma, Circular RNAs, Colorectal cancer, Precancerous lesions, RNA-binding proteins, RNA-sequencing,
- Publication type
- Journal Article MeSH
BACKGROUND: Early detection of colorectal cancer (CRC) significantly improves its management and patients' survival. Circular RNAs (circRNAs) are peculiar covalently closed transcripts involved in gene expression modulation whose dysregulation has been extensively reported in CRC cells. However, little is known about their alterations in the early phases of colorectal carcinogenesis. METHODS: In this study, we performed an integrative analysis of circRNA profiles in RNA-sequencing (RNA-Seq) data of 96 colorectal cancers, 27 adenomas, and matched adjacent mucosa tissues. We also investigated the levels of cognate linear transcripts and those of regulating RNA-binding proteins (RBPs). Levels of circRNA-interacting microRNAs (miRNAs) were explored by integrating data of small RNA-Seq performed on the same samples. RESULTS: Our results revealed a significant dysregulation of 34 circRNAs (paired adj. p < 0.05), almost exclusively downregulated in tumor tissues and, prevalently, in early disease stages. This downregulation was associated with decreased expression of circRNA host genes and those encoding for RBPs involved in circRNA biogenesis, including NOVA1, RBMS3, and MBNL1. Guilt-by-association analysis showed that dysregulated circRNAs correlated with increased predicted activity of cell proliferation, DNA repair, and c-Myc signaling pathways. Functional analysis showed interactions among dysregulated circRNAs, RBPs, and miRNAs, which were supported by significant correlations among their expression levels. Findings were validated in independent cohorts and public datasets, and the downregulation of circLPAR1(2,3) and circLINC00632(5) was validated by ddPCR. CONCLUSIONS: These results support that multiple altered regulatory mechanisms may contribute to the reduction of circRNA levels that characterize early colorectal carcinogenesis.
Candiolo Cancer Institute FPO IRCCS Candiolo Turin 10060 Italy
Department of Clinical and Biological Sciences University of Torino Turin 10100 Italy
Department of Colorectal Surgery Clinica S Rita Vercelli 13100 Italy
Department of Surgery La Sapienza University of Rome Rome 00161 Italy
Italian Institute for Genomic Medicine c o IRCCS Candiolo Turin 10060 Italy
RECETOX Faculty of Science Masaryk University Brno 61137 Czech Republic
See more in PubMed
Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA Cancer J Clin. 2023;73(3):233–54. PubMed
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394(10207):1467–80. PubMed
Nunes L, Li F, Wu M, Luo T, Hammarstrom K, Torell E, Ljuslinder I, Mezheyeuski A, Edqvist PH, Lofgren-Burstrom A, et al. Prognostic genome and transcriptome signatures in colorectal cancers. Nature. 2024;633(8028):137–46. PubMed PMC
Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer. 2017;17(2):79–92. PubMed
Pisignano G, Michael DC, Visal TH, Pirlog R, Ladomery M, Calin GA, Pisignano G, Michael DC, Visal TH, Pirlog R, et al. Going circular: history, present, and future of circRNAs in cancer. Oncogene. 2023;42(38):2783–800. PubMed PMC
Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet. 2024;25(3):211–32. PubMed
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–91. PubMed
Hulstaert E, Morlion A, Avila Cobos F, Verniers K, Nuytens J, Vanden Eynde E, Yigit N, Anckaert J, Geerts A, Hindryckx P, et al. Charting extracellular transcriptomes in the human biofluid RNA atlas. Cell Rep. 2020;33(13):108552. PubMed
Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17(5):272–83. PubMed
Huang D, Zhu X, Ye S, Zhang J, Liao J, Zhang N, Zeng X, Wang J, Yang B, Zhang Y, et al. Tumour circular RNAs elicit anti-tumour immunity by encoding cryptic peptides. Nature. 2024;625(7995):593–602. PubMed
Ferreira HJ, Stevenson BJ, Pak H, Yu F, Almeida Oliveira J, Huber F, Taillandier-Coindard M, Michaux J, Ricart-Altimiras E, Kraemer AI, et al. Immunopeptidomics-based identification of naturally presented non-canonical circRNA-derived peptides. Nat Commun. 2024;15(1):2357. PubMed PMC
Nielsen AF, Bindereif A, Bozzoni I, Hanan M, Hansen TB, Irimia M, Kadener S, Kristensen LS, Legnini I, Morlando M, et al. Best practice standards for circular RNA research. Nat Methods. 2022;19(10):1208–20. PubMed PMC
Ferrero G, Licheri N, De Bortoli M, Calogero RA, Beccuti M, Cordero F. Computational analysis of circRNA expression data. Methods Mol Biol. 2021;2284:181–92. PubMed
Verduci L, Tarcitano E, Strano S, Yarden Y, Blandino G. CircRNAs: role in human diseases and potential use as biomarkers. Cell Death Dis. 2021;12(5):468. PubMed PMC
Li S, Wang J, Qiu L, Fu G, Li Y, Su Q, Zhu Y, Zhao F, Tian J, Huang J, et al. Comprehensive circular RNA profiling provides insight into colorectal cancer pathogenesis and reveals diagnostically relevant biomarkers. Clin Transl Med. 2024;14(10):e70049. PubMed PMC
Zhang Y, Luo J, Yang W, Ye W-C. CircRNAs in colorectal cancer: potential biomarkers and therapeutic targets. Cell Death Dis. 2023;14(6):353. PubMed PMC
Zhao S, Ly A, Mudd JL, Rozycki EB, Webster J, Coonrod E, Othoum G, Luo J, Dang HX, Fields RC, et al. Characterization of cell-type specific circular RNAs associated with colorectal cancer metastasis. NAR Cancer. 2023;5(2):zcad021. PubMed PMC
Dou Y, Cha DJ, Franklin JL, Higginbotham JN, Jeppesen DK, Weaver AM, Prasad N, Levy S, Coffey RJ, Patton JG, et al. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci Rep. 2016;6:37982. PubMed PMC
Shao M, Hao S, Jiang L, Cai Y, Zhao X, Chen Q, Gao X, Xu J. CRIT: identifying RNA-binding protein regulator in circRNA life cycle via non-negative matrix factorization. Mol Ther Nucleic Acids. 2022;30:398–406. PubMed PMC
García-Rodríguez JL, Korsgaard U, Ahmadov U, Jarlstad Olesen MT, Dietrich KG, Hansen EB, Vissing SM, Ulhøi BP, Dyrskjøt L, Sørensen KD, et al. Spatial profiling of circular RNAs in cancer reveals high expression in muscle and stromal cells. Cancer Res. 2023;83(20):3340–53. PubMed PMC
Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2016;44(3):1370–83. PubMed PMC
Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, Mesteri I, Grunt TW, Zeillinger R, Pils D. Correlation of circular RNA abundance with proliferation–exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep. 2015;5:8057. PubMed PMC
Gagliardi A, Francescato G, Ferrero G, Birolo G, Tarallo S, Francavilla A, Piaggeschi G, Di Battista C, Gallo G, Realis Luc A, et al. The 8q24 region hosts miRNAs altered in biospecimens of colorectal and bladder cancer patients. Cancer Med. 2023;12(5):5859–73. PubMed PMC
Pardini B, Ferrero G, Tarallo S, Gallo G, Francavilla A, Licheri N, Trompetto M, Clerico G, Senore C, Peyre S, et al. A fecal microRNA signature by small RNA sequencing accurately distinguishes colorectal cancers: results from a multicenter study. Gastroenterology. 2023;165(3):582-599.e588. PubMed
Zwinsová B, Petrov VA, Hrivňáková M, Smatana S, Micenková L, Kazdová N, Popovici V, Hrstka R, Šefr R, Bencsiková B, et al. Colorectal tumour mucosa microbiome is enriched in oral pathogens and defines three subtypes that correlate with markers of tumour progression. Cancers. 2021;13(19):4799. PubMed PMC
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90. PubMed PMC
Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28(24):3211–7. PubMed
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. PubMed PMC
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323. PubMed PMC
Gao Y, Zhang J, Zhao F. Circular RNA identification based on multiple seed matching. Brief Bioinform. 2018;19(5):803–10. PubMed
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. PubMed PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. PubMed PMC
Chen L-L, Bindereif A, Bozzoni I, Chang HY, Matera AG, Gorospe M, Hansen TB, Kjems J, Ma X-K, Pek JW, et al. A guide to naming eukaryotic circular RNAs. Nat Cell Biol. 2023;25(1):1–5. PubMed PMC
Tarallo S, Ferrero G, Gallo G, Francavilla A, Clerico G, Realis Luc A, Manghi P, Thomas AM, Vineis P, Segata N, et al. Altered fecal small RNA profiles in colorectal cancer reflect gut microbiome composition in stool samples. mSystems. 2019;4(5):e00289. PubMed PMC
Lee H-O, Hong Y, Etlioglu HE, Cho YB, Pomella V, Van Den Bosch B, Vanhecke J, Verbandt S, Hong H, Min J-W, et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat Genet. 2020;52(6):594–603. PubMed
Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov J, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Sys. 2015;1(6):417–25. PubMed PMC
Foroutan M, Bhuva DD, Lyu R, Horan K, Cursons J, Davis MJ. Single sample scoring of molecular phenotypes. BMC Bioinformatics. 2018;19(1):404. PubMed PMC
Chen Y, Yao L, Tang Y, Jhong J-H, Wan J, Chang J, Cui S, Luo Y, Cai X, Li W, et al. CircNet 2.0: an updated database for exploring circular RNA regulatory networks in cancers. Nucleic Acids Res. 2022;50(D1):D93–101. PubMed PMC
Li H, Xie M, Wang Y, Yang L, Xie Z, Wang H. riboCIRC: a comprehensive database of translatable circRNAs. Genome Biol. 2021;22(1):79. PubMed PMC
Gebauer F, Schwarzl T, Valcárcel J, Hentze MW. RNA-binding proteins in human genetic disease. Nat Rev Genet. 2021;22(3):185–98. PubMed
Paz I, Kosti I, Ares M, Cline M, Mandel-Gutfreund Y. RBPmap: a web server for mapping binding sites of RNA-binding proteins. Nucleic Acids Res. 2014;42(W1):W361–7. PubMed PMC
Guinney J, Dienstmann R, Wang X, De Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21(11):1350–6. PubMed PMC
Wang X, Zhou C, Qiu G, Yang Y, Yan D, Xing T, Fan J, Tang H, Peng Z. Phospholipase C epsilon plays a suppressive role in incidence of colorectal cancer. Med Oncol. 2012;29(2):1051–8. PubMed
Martins M, McCarthy A, Baxendale R, Guichard S, Magno L, Kessaris N, El-Bahrawy M, Yu P, Katan M. Tumor suppressor role of phospholipase Cε in Ras-triggered cancers. Proc Natl Acad Sci U S A. 2014;111(11):4239–44. PubMed PMC
Song K, Su W, Liu Y, Zhang J, Liang Q, Li N, Guan Q, He J, Bai X, Zhao W, et al. Identification of genes with universally upregulated or downregulated expressions in colorectal cancer. J Gastroenterol Hepatol. 2019;34(5):880–9. PubMed
Zhu H, Yu J, Zhu H, Guo Y, Feng S. Identification of key lncRNAs in colorectal cancer progression based on associated protein–protein interaction analysis. World J Surg Oncol. 2017;15(1):153. PubMed PMC
Liang Z-X, Liu H-S, Xiong L, Yang X, Wang F-W, Zeng Z-W, He X-W, Wu X-R, Lan P. A novel NF-κB regulator encoded by circPLCE1 inhibits colorectal carcinoma progression by promoting RPS3 ubiquitin-dependent degradation. Mol Cancer. 2021;20(1):103. PubMed PMC
Zheng R, Zhang K, Tan S, Gao F, Zhang Y, Xu W, Wang H, Gu D, Zhu L, Li S, et al. Exosomal circLPAR1 functions in colorectal cancer diagnosis and tumorigenesis through suppressing BRD4 via METTL3-eIF3h interaction. Mol Cancer. 2022;21(1):49. PubMed PMC
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8. PubMed
Kristensen LS, Ebbesen KK, Sokol M, Jakobsen T, Korsgaard U, Eriksen AC, Hansen TB, Kjems J, Hager H. Spatial expression analyses of the putative oncogene ciRS-7 in cancer reshape the microRNA sponge theory. Nature Commun. 2020;11(1):4551. PubMed PMC
Chung HK, Xiao L, Han N, Chen J, Yao V, Cairns CM, Raufman B, Rao JN, Turner DJ, Kozar R, et al. Circular RNA Cdr1as inhibits proliferation and delays injury-induced regeneration of the intestinal epithelium. JCI Insight. 2024;9(4):e169716. PubMed PMC
Xiao L, Ma XX, Luo J, Chung HK, Kwon MS, Yu TX, Rao JN, Kozar R, Gorospe M, Wang JY. Circular RNA circHIPK3 promotes homeostasis of the intestinal epithelium by reducing microRNA 29b function. Gastroenterology. 2021;161(4):1303-1317.e1303. PubMed PMC
Xin Y, Li Z, Zheng H, Ho J, Chan MTV, Wu WKK. Neuro-oncological ventral antigen 1 (NOVA): Implications in neurological diseases and cancers. Cell Prolif. 2017;50(4):e12348. PubMed PMC
Liu Z, Lou Y, Cui J-C, Chen Y, Liu J-T, Yuan Y, Han Y, Huo Y-L, Qi Y-X, Jiang Z-L, et al. Circular RNA UVRAG mediated by alternative splicing factor NOVA1 regulates adhesion and migration of vascular smooth muscle cells. Genes. 2021;12(3):418. PubMed PMC
Knupp D, Cooper DA, Saito Y, Darnell RB, Miura P. NOVA2 regulates neural circRNA biogenesis. Nucleic Acids Res. 2021;49(12):6849–62. PubMed PMC
Hong Y-G, Xu G-S, Yu G-Y, Zhou J-D, Liu Q-Z, Ni J-S, Yan H-L, Zhang W, Hao L-Q. The RNA binding protein neuro-oncological ventral antigen 1 (NOVA1) regulates IL-6 mRNA stability to enhance JAK2-STAT3 signaling in CRC. Surg Oncol. 2019;31:67–74. PubMed
Górnicki T, Lambrinow J, Mrozowska M, Podhorska-Okołów M, Dzięgiel P, Grzegrzółka J. Role of RBMS3 novel potential regulator of the EMT phenomenon in physiological and pathological processes. Int J Mol Sci. 2022;23(18):10875. PubMed PMC
Ruan X, Liu Y, Wang P, Liu L, Ma T, Xue Y, Dong W, Zhao Y, E T, Lin H, et al. RBMS3-induced circHECTD1 encoded a novel protein to suppress the vasculogenic mimicry formation in glioblastoma multiforme. Cell Death Dis. 2023;14(11):745. PubMed PMC
Li Y, Wang S, Li G, Gao C, Cui Z, Cong M, Hu J, Zhang M, Jin X, Sun H, et al. The RNA-binding protein RBMS3 inhibits the progression of colon cancer by regulating the stability of LIMS1 mRNA. Cancer Med. 2024;13(7):e7129. PubMed PMC
Ashwal-Fluss R, Meyer M, Nagarjuna, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55-66. PubMed
Navvabi N, Kolikova P, Hosek P, Zitricky F, Navvabi A, Vycital O, Bruha J, Palek R, Rosendorf J, Liska V, et al. Altered expression of MBNL family of alternative splicing factors in colorectal cancer. Cancer Genomics - Proteomics. 2021;18(3):295–306. PubMed PMC
Ng AYE, Chan SN, Pek JW. Genetic compensation between ribosomal protein paralogs mediated by a cognate circular RNA. Cell Rep. 2024;43(5):114228. PubMed
Jia R, Xiao M-S, Li Z, Shan G, Huang C. Defining an evolutionarily conserved role of GW182 in circular RNA degradation. Cell Dis. 2019;5(1):45. PubMed PMC
Nguyen LH, Goel A, Chung DC. Pathways of colorectal carcinogenesis. Gastroenterology. 2020;158(2):291–302. PubMed PMC
Ngo LH, Bert AG, Dredge BK, Williams T, Murphy V, Li W, Hamilton WB, Carey KT, Toubia J, Pillman KA, et al. Nuclear export of circular RNA. Nature. 2024;627(8002):212–20. PubMed
Ye J, She X, Liu Z, He Z, Gao X, Lu L, Liang R, Lin Y. Eukaryotic initiation factor 4A–3: a review of its physiological role and involvement in oncogenesis. Front Oncol. 2021;11:712045. PubMed PMC
Raghu, Shi G, Acharya A, Eric, Lauren, Joselin, Abier, Glen, John, Adam, et al. An essential mesenchymal function for miR-143/145 in intestinal epithelial regeneration. Cell. 2014;157(5):1104–1116. PubMed PMC
Poli V, Seclì L, Avalle L. The microrna-143/145 cluster in tumors: a matter of where and when. Cancers. 2020;12(3):708. PubMed PMC
Chan JJ, Tabatabaeian H, Tay Y. 3′UTR heterogeneity and cancer progression. Trends in Cell Biol. 2023;33(7):568–82. PubMed
Chan JJ, Zhang B, Chew XH, Salhi A, Kwok ZH, Lim CY, Desi N, Subramaniam N, Siemens A, Kinanti T, et al. Pan-cancer pervasive upregulation of 3′ UTR splicing drives tumourigenesis. Nat Cell Biol. 2022;24(6):928–39. PubMed PMC
Shui B, Beyett TS, Chen Z, Li X, La Rocca G, Gazlay WM, Eck MJ, Lau KS, Ventura A, Haigis KM. Oncogenic K-Ras suppresses global miRNA function. Mol Cell. 2023;83(14):2509-2523.e2513. PubMed PMC
Vromman M, Anckaert J, Bortoluzzi S, Buratin A, Chen C-Y, Chu Q, Chuang T-J, Dehghannasiri R, Dieterich C, Dong X, et al. Large-scale benchmarking of circRNA detection tools reveals large differences in sensitivity but not in precision. Nat Methods. 2023;20(8):1159–69. PubMed PMC