Altered Expression of MBNL Family of Alternative Splicing Factors in Colorectal Cancer

. 2021 May-Jun ; 18 (3) : 295-306.

Jazyk angličtina Země Řecko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33893082

BACKGROUND/AIM: Colorectal cancer is currently the third leading cause of cancer-related deaths and recently, alternative splicing has risen as its important regulator and potential treatment target. In the present study, we analyzed gene expression of the MBNL family of regulators of alternative splicing in various stages of colorectal cancer development, together with the MBNL-target splicing events in FOXP1 and EPB41L3 genes and tumor-related CD44 variants. MATERIALS AND METHODS: Samples of tumor tissue and non-malignant mucosa from 108 patients were collected. After RNA isolation and reverse transcription, the relative gene expression of a selected gene panel was tested by quantitative real-time PCR, followed by statistical analysis. RESULTS: MBNL expression was decreased in tumor tissue compared to non-tumor mucosa. In addition, lower expression was observed for the variants of FOXP1 and EPB41L3, while higher expression in tumor tissue was detected both for total CD44 and its cancer-related variants 3 and 6. Transcript levels of the MBNL genes were not found to be related to any of the studied clinicopathological characteristics. Multiple significant associations were identified in the target gene panel, including higher transcript levels of FOXP1 and CD44v3 in patients with distant metastases and connections between recurrence-free survival and altered levels of FOXP1 and CD44v3. CONCLUSION: Our results identified for the first-time deregulation of MBNL genes in colorectal cancer. Down-regulation of their transcripts in tumor tissue compared to matched non-tumor mucosa can lead to transition of alternative splicing patterns towards a less differentiated phenotype, which highlights the importance of alternative splicing regulation for tumor growth and propagation.

Zobrazit více v PubMed

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492. PubMed DOI

Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A, Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941–1953. doi: 10.1002/ijc.31937. PubMed DOI

Soriano LC, Soriano-Gabarró M, García Rodríguez LA. Trends in the contemporary incidence of colorectal cancer and patient characteristics in the United Kingdom: A population-based cohort study using the health improvement network. BMC Cancer. 2018;18(1):402. doi: 10.1186/s12885-018-4265-1. PubMed DOI PMC

Schmoll HJ, Van Cutsem E, Stein A, Valentini V, Glimelius B, Haustermans K, Nordlinger B, van de Velde CJ, Balmana J, Regula J, Nagtegaal ID, Beets-Tan RG, Arnold D, Ciardiello F, Hoff P, Kerr D, Köhne CH, Labianca R, Price T, Scheithauer W, Sobrero A, Tabernero J, Aderka D, Barroso S, Bodoky G, Douillard JY, El Ghazaly H, Gallardo J, Garin A, Glynne-Jones R, Jordan K, Meshcheryakov A, Papamichail D, Pfeiffer P, Souglakos I, Turhal S, Cervantes A. ESMO consensus guidelines for management of patients with colon and rectal cancer. a personalized approach to clinical decision making. Ann Oncol. 2012;23(10):2479–2516. doi: 10.1093/annonc/mds236. PubMed DOI

Targeted Therapy Drugs for Colorectal Cancer. Available at:https//www.cancer.org/cancer/colon-rectal-cancer/treating/targeted-therapy.html [Last accessed on December 7, 2019]

Surgery for Colon Cancer. Available at: https://www.cancer.org/cancer/colon-rectal-cancer/treating/colon-surgery.html [Last accessed on December 7, 2019]

Marzouk O, Schofield J. Review of histopathological and molecular prognostic features in colorectal cancer. Cancers (Basel) 2011;3(2):2767–2810. doi: 10.3390/cancers3022767. PubMed DOI PMC

Yu Y, Carey M, Pollett W, Green J, Dicks E, Parfrey P, Yilmaz YE, Savas S. The long-term survival characteristics of a cohort of colorectal cancer patients and baseline variables associated with survival outcomes with or without time-varying effects. BMC Med. 2019;17(1):150. doi: 10.1186/s12916-019-1379-5. PubMed DOI PMC

Liu J, Li H, Shen S, Sun L, Yuan Y, Xing C. Alternative splicing events implicated in carcinogenesis and prognosis of colorectal cancer. J Cancer. 2018;9(10):1754–1764. doi: 10.7150/jca.24569. PubMed DOI PMC

García-Cárdenas JM, Guerrero S, López-Cortés A, Armendáriz-Castillo I, Guevara-Ramírez P, Pérez-Villa A, Yumiceba V, Zambrano AK, Leone PE, Paz-Y-Miño C. Post-transcriptional regulation of colorectal cancer: A focus on RNA-binding proteins. Front Mol Biosci. 2019;6:65. doi: 10.3389/fmolb.2019.00065. PubMed DOI PMC

Danan-Gotthold M, Golan-Gerstl R, Eisenberg E, Meir K, Karni R, Levanon EY. Identification of recurrent regulated alternative splicing events across human solid tumors. Nucleic Acids Res. 2015;43(10):5130–5144. doi: 10.1093/nar/gkv210. PubMed DOI PMC

Wang Y, Liu J, Huang BO, Xu YM, Li J, Huang LF, Lin J, Zhang J, Min QH, Yang WM, Wang XZ. Mechanism of alternative splicing and its regulation. Biomed Rep. 2015;3(2):152–158. doi: 10.3892/br.2014.407. PubMed DOI PMC

Manley JL. Mechanisms of alternative splicing of pre-mRNA. Columbia University, New York City, NY, USA. Available at:http://grantome.com/grant/NIH/R01-GM048259-25 [Last accessed on March 29, 2021]

Zhang J, Manley JL. Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov. 2013;3(11):1228–1237. doi: 10.1158/2159-8290.CD-13-0253. PubMed DOI PMC

Dassi E. Handshakes and Fights: The regulatory interplay of RNA-binding proteins. Front Mol Biosci. 2017;4:67. doi: 10.3389/fmolb.2017.00067. PubMed DOI PMC

Taylor K, Sznajder LJ, Cywoniuk P, Thomas JD, Swanson MS, Sobczak K. MBNL splicing activity depends on RNA binding site structural context. Nucleic Acids Res. 2018;46(17):9119–9133. doi: 10.1093/nar/gky565. PubMed DOI PMC

Ho TH, Charlet-B N, Poulos MG, Singh G, Swanson MS, Cooper TA. Muscleblind proteins regulate alternative splicing. EMBO J. 2004;23(15):3103–3112. doi: 10.1038/sj.emboj.7600300. PubMed DOI PMC

Batra R, Manchanda M, Swanson MS. Global insights into alternative polyadenylation regulation. RNA Biol. 2015;12(6):597–602. doi: 10.1080/15476286.2015.1040974. PubMed DOI PMC

Wang ET, Cody NA, Jog S, Biancolella M, Wang TT, Treacy DJ, Luo S, Schroth GP, Housman DE, Reddy S, Lécuyer E, Burge CB. Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell. 2012;150(4):710–724. doi: 10.1016/j.cell.2012.06.041. PubMed DOI PMC

Konieczny P, Stepniak-Konieczna E, Sobczak K. MBNL proteins and their target RNAs, interaction and splicing regulation. Nucleic Acids Res. 2014;42(17):10873–10887. doi: 10.1093/nar/gku767. PubMed DOI PMC

Holt I, Jacquemin V, Fardaei M, Sewry CA, Butler-Browne GS, Furling D, Brook JD, Morris GE. Muscleblind-like proteins: Similarities and differences in normal and myotonic dystrophy muscle. Am J Pathol. 2009;174(1):216–227. doi: 10.2353/ajpath.2009.080520. PubMed DOI PMC

Davis J, Salomonis N, Ghearing N, Lin SC, Kwong JQ, Mohan A, Swanson MS, Molkentin JD. MBNL1-mediated regulation of differentiation RNAs promotes myofibroblast transformation and the fibrotic response. Nat Commun. 2015;6:10084. doi: 10.1038/ncomms10084. PubMed DOI PMC

Lee KS, Cao Y, Witwicka HE, Tom S, Tapscott SJ, Wang EH. RNA-binding protein Muscleblind-like 3 (MBNL3) disrupts myocyte enhancer factor 2 (Mef2) {beta}-exon splicing. J Biol Chem. 2010;285(44):33779–33787. doi: 10.1074/jbc.M110.124255. PubMed DOI PMC

Wagner SD, Struck AJ, Gupta R, Farnsworth DR, Mahady AE, Eichinger K, Thornton CA, Wang ET, Berglund JA. Dose-dependent regulation of alternative splicing by MBNL proteins reveals biomarkers for myotonic dystrophy. PLoS Genet. 2016;12(9):e1006316. doi: 10.1371/journal.pgen.1006316. PubMed DOI PMC

Huang H, Wahlin KJ, McNally M, Irving ND, Adler R. Developmental regulation of muscleblind-like (MBNL) gene expression in the chicken embryo retina. Dev Dyn. 2008;237(1):286–296. doi: 10.1002/dvdy.21408. PubMed DOI

Han H, Irimia M, Ross PJ, Sung HK, Alipanahi B, David L, Golipour A, Gabut M, Michael IP, Nachman EN, Wang E, Trcka D, Thompson T, O’Hanlon D, Slobodeniuc V, Barbosa-Morais NL, Burge CB, Moffat J, Frey BJ, Nagy A, Ellis J, Wrana JL, Blencowe BJ. MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature. 2013;498(7453):241–245. doi: 10.1038/nature12270. PubMed DOI PMC

Holm F, Hellqvist E, Mason CN, Ali SA, Delos-Santos N, Barrett CL, Chun HJ, Minden MD, Moore RA, Marra MA, Runza V, Frazer KA, Sadarangani A, Jamieson CH. Reversion to an embryonic alternative splicing program enhances leukemia stem cell self-renewal. Proc Natl Acad Sci USA. 2015;112(50):15444–15449. doi: 10.1073/pnas.1506943112. PubMed DOI PMC

Chen YS, Liu CW, Lin YC, Tsai CY, Yang CH, Lin JC. The SRSF3-MBNL1-Acin1 circuit constitutes an emerging axis to lessen DNA fragmentation in colorectal cancer via an alternative splicing mechanism. Neoplasia. 2020;22(12):702–713. doi: 10.1016/j.neo.2020.10.002. PubMed DOI PMC

Colorectal Cancer—Patient Version - National Cancer Institute. Available at: https://www.cancer.gov/types/colorectal [Last accessed on December 11, 2019]

Kozera B, Rapacz M. Reference genes in real-time PCR. J Appl Genet. 2013;54(4):391–406. doi: 10.1007/s13353-013-0173-x. PubMed DOI PMC

Xu L, Luo H, Wang R, Wu WW, Phue JN, Shen RF, Juhl H, Wu L, Alterovitz WL, Simonyan V, Pelosof L, Rosenberg AS. Novel reference genes in colorectal cancer identify a distinct subset of high stage tumors and their associated histologically normal colonic tissues. BMC Med Genet. 2019;20(1):138. doi: 10.1186/s12881-019-0867-y. PubMed DOI PMC

Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23(10):1289–1291. doi: 10.1093/bioinformatics/btm091. PubMed DOI

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115. doi: 10.1093/nar/gks596. PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Pitule P, Vycital O, Bruha J, Novak P, Hosek P, Treska V, Hlavata I, Soucek P, Kralickova M, Liska V. Differential expression and prognostic role of selected genes in colorectal cancer patients. Anticancer Res. 2013;33(11):4855–4865. PubMed

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, O’Hanlon D, Sung HK, Alvarez M, Talukder S, Pan Q, Mazzoni EO, Nedelec S, Wichterle H, Woltjen K, Hughes TR, Zandstra PW, Nagy A, Wrana JL, Blencowe BJ. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell. 2011;147(1):132–146. doi: 10.1016/j.cell.2011.08.023. PubMed DOI

Prochazka L, Tesarik R, Turanek J. Regulation of alternative splicing of CD44 in cancer. Cell Signal. 2014;26(10):2234–2239. doi: 10.1016/j.cellsig.2014.07.011. PubMed DOI

Fish L, Pencheva N, Goodarzi H, Tran H, Yoshida M, Tavazoie SF. Muscleblind-like 1 suppresses breast cancer metastatic colonization and stabilizes metastasis suppressor transcripts. Genes Dev. 2016;30(4):386–398. doi: 10.1101/gad.270645.115. PubMed DOI PMC

Tang L, Zhao P, Kong D. Muscleblind-like 1 destabilizes Snail mRNA and suppresses the metastasis of colorectal cancer cells via the Snail/E-cadherin axis. Int J Oncol. 2019;54(3):955–965. doi: 10.3892/ijo.2019.4691. PubMed DOI PMC

Fischer S, Di Liddo A, Taylor K, Gerhardus JS, Sobczak K, Zarnack K, Weigand JE. Muscleblind-like 2 controls the hypoxia response of cancer cells. RNA. 2020;26(5):648–663. doi: 10.1261/rna.073353.119. PubMed DOI PMC

Tabaglio T, Low DH, Teo WKL, Goy PA, Cywoniuk P, Wollmann H, Ho J, Tan D, Aw J, Pavesi A, Sobczak K, Wee DKB, Guccione E. MBNL1 alternative splicing isoforms play opposing roles in cancer. Life Sci Alliance. 2018;1(5):e201800157. doi: 10.26508/lsa.201800157. PubMed DOI PMC

De Smedt L, Palmans S, Govaere O, Moisse M, Boeckx B, De Hertogh G, Prenen H, Van Cutsem E, Tejpar S, Tousseyn T, Sagaert X. Expression of FOXP1 and colorectal cancer prognosis. Lab Med. 2015;46(4):299–311. doi: 10.1309/LM7IHV2NJI1PHMXC. PubMed DOI

Feng J, Zhang X, Zhu H, Wang X, Ni S, Huang J. High expression of FoxP1 is associated with improved survival in patients with non-small cell lung cancer. Am J Clin Pathol. 2012;138(2):230–235. doi: 10.1309/AJCPDHQFNYJZ01YG. PubMed DOI

Pitule P, Cedikova M, Daum O, Vojtisek J, Vycital O, Hosek P, Treska V, Hes O, Kralickova M, Liska V. Immunohistochemical detection of cancer stem cell related markers CD44 and CD133 in metastatic colorectal cancer patients. Biomed Res Int. 2014;2014:432139. doi: 10.1155/2014/432139. PubMed DOI PMC

Wang Z, Tang Y, Xie L, Huang A, Xue C, Gu Z, Wang K, Zong S. The prognostic and clinical value of CD44 in colorectal cancer: A meta-analysis. Front Oncol. 2019;9:309. doi: 10.3389/fonc.2019.00309. PubMed DOI PMC

Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, Apuzzo T, Sperduti I, Volpe S, Cocorullo G, Gulotta G, Dieli F, De Maria R, Stassi G. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell. 2014;14(3):342–356. doi: 10.1016/j.stem.2014.01.009. PubMed DOI

Kim YD, Kim HS, Lee J, Choi JK, Han E, Jeong JE, Cho YS. ESRP1-induced CD44 v3 is important for controlling pluripotency in human pluripotent stem cells. Stem Cells. 2018;36(10):1525–1534. doi: 10.1002/stem.2864. PubMed DOI

Kuniyasu H, Oue N, Tsutsumi M, Tahara E, Yasui W. Heparan sulfate enhances invasion by human colon carcinoma cell lines through expression of CD44 variant exon 3. Clin Cancer Res. 2001;7(12):4067–4072. PubMed

Toden S, Kunitoshi S, Cardenas J, Gu J, Hutchins E, Van Keuren-Jensen K, Uetake H, Toiyama Y, Goel A. Cancer stem cell-associated miRNAs serve as prognostic biomarkers in colorectal cancer. JCI Insight. 2019;4(6) doi: 10.1172/jci.insight.125294. PubMed DOI PMC

Ropponen KM, Eskelinen MJ, Lipponen PK, Alhava E, Kosma VM. Expression of CD44 and variant proteins in human colorectal cancer and its relevance for prognosis. Scand J Gastroenterol. 1998;33(3):301–309. doi: 10.1080/00365529850170900. PubMed DOI

Ma L, Dong L, Chang P. CD44v6 engages in colorectal cancer progression. Cell Death Dis. 2019;10(1):30. doi: 10.1038/s41419-018-1265-7. PubMed DOI PMC

Wang Z, Zhao K, Hackert T, Zöller M. CD44/CD44v6 a reliable companion in cancer-initiating cell maintenance and tumor progression. Front Cell Dev Biol. 2018;6:97. doi: 10.3389/fcell.2018.00097. PubMed DOI PMC

Parra M, Gee S, Chan N, Ryaboy D, Dubchak I, Mohandas N, Gascard PD, Conboy JG. Differential domain evolution and complex RNA processing in a family of paralogous EPB41 (protein 4.1) genes facilitate expression of diverse tissue-specific isoforms. Genomics. 2004;84(4):637–646. doi: 10.1016/j.ygeno.2004.06.004. PubMed DOI

Baines AJ, Lu HC, Bennett PM. The protein 4.1 family: Hub proteins in animals for organizing membrane proteins. Biochim Biophys Acta. 2014;1838(2):605–619. doi: 10.1016/j.bbamem.2013.05.030. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...