New mouse model for inducible hACE2 expression enables to dissect SARS-CoV-2 pathology beyond the respiratory system
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GF22-17139K
Czech Science Foundation (GACR)
LM2023036
Ministry of Education, Youth and Sports of the Czech Republic
SLG-5404
European Molecular Biology Organization
RVO 61388963
Czech Academy of Sciences
RVO 68378050
Czech Academy of Sciences
LX22NPO5103
Ministry of Education, Youth and Sports of the Czech Republic, Programme EXCELES
PubMed
39985688
DOI
10.1007/s00335-025-10115-1
PII: 10.1007/s00335-025-10115-1
Knihovny.cz E-zdroje
- Klíčová slova
- Conditional mouse model, Infection, SARS-CoV-2, hACE2,
- Publikační typ
- časopisecké články MeSH
The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection is not limited to the respiratory tract as receptors, including the angiotensin-converting enzyme 2 (ACE2), are expressed across many tissues. This study employed a new conditional mouse model, Rosa26creERT2/chACE2, which expresses human ACE2 (hACE2) across multiple organs, to investigate the effects of SARS-CoV-2 infection beyond the respiratory system. This strain demonstrated susceptibility to SARS-CoV-2 infection in a dose and sex-dependent manner, showing that infected male mice exhibited more severe disease outcomes, including significant weight loss, pronounced lung pathology and dysfunction, and increased mortality, compared to females. In contrast to intratracheal infection, intranasal virus administration facilitated viral spread to the brain, thereby underscoring the nasal route's role in the pathogenesis of neurological manifestations. Intranasal infection also led to increased innate immune system activation as compared to intratracheal virus administration, even though both routes activated the adaptive immune response. This model provides a valuable tool to study SARS-CoV-2 in individual tissues or use a multisystemic approach, and it also advances possibilities for preclinical evaluation of antiviral therapies and vaccine strategies.
Zobrazit více v PubMed
Ahmed W, Feng J, Zhang Y, Chen L (2023) SARS-CoV-2 and Brain Health: New Challenges in the Era of the Pandemic. Microorganisms 11
Boldrini M, Canoll PD, Klein RS (2021) How COVID-19 affects the brain. JAMA Psychiatry 78:682–683 PubMed DOI PMC
Cai M, Xie Y, Topol EJ, Al-Aly Z (2024) Three-year outcomes of post-acute sequelae of COVID-19. Nat Med 30:1564–1573 PubMed DOI PMC
Chen X, Laurent S, Onur OA, Kleineberg NN, Fink GR, Schweitzer F, Warnke C (2021) A systematic review of neurological symptoms and complications of COVID-19. J Neurol 268:392–402 PubMed DOI
De Gasparo R, Pedotti M, Simonelli L, Nickl P, Muecksch F, Cassaniti I, Percivalle E, Lorenzi JCC, Mazzola F, Magri D, Michalcikova T, Haviernik J, Honig V, Mrazkova B, Polakova N, Fortova A, Tureckova J, Iatsiuk V, Di Girolamo S, Palus M, Zudova D, Bednar P, Bukova I, Bianchini F, Mehn D, Nencka R, Strakova P, Pavlis O, Rozman J, Gioria S, Sammartino JC, Giardina F, Gaiarsa S, Pan-Hammarstrom Q, Barnes CO, Bjorkman PJ, Calzolai L, Piralla A, Baldanti F, Nussenzweig MC, Bieniasz PD, Hatziioannou T, Prochazka J, Sedlacek R, Robbiani DF, Ruzek D, Varani L (2021) Bispecific IgG neutralizes SARS-CoV-2 variants and prevents escape in mice. Nature 593:424–428 PubMed DOI
Ding Q, Zhao H (2023) Long-term effects of SARS-CoV-2 infection on human brain and memory. Cell Death Discov 9:196 PubMed DOI PMC
Eddins DJ, Bassit LC, Chandler JD, Haddad NS, Musall KL, Yang J, Kosters A, Dobosh BS, Hernández MR, Ramonell RP, Tirouvanziam RM, Lee FE, Zandi K, Schinazi RF, Ghosn EEB (2022) Inactivation of SARS-CoV-2 and COVID-19 patient samples for contemporary immunology and Metabolomics studies. Immunohorizons 6:144–155 PubMed DOI
Fernández-Castañeda A, Lu P, Geraghty AC, Song E, Lee MH, Wood J, O’Dea MR, Dutton S, Shamardani K, Nwangwu K, Mancusi R, Yalçın B, Taylor KR, Acosta-Alvarez L, Malacon K, Keough MB, Ni L, Woo PJ, Contreras-Esquivel D, Toland AMS, Gehlhausen JR, Klein J, Takahashi T, Silva J, Israelow B, Lucas C, Mao T, Peña-Hernández MA, Tabachnikova A, Homer RJ, Tabacof L, Tosto-Mancuso J, Breyman E, Kontorovich A, McCarthy D, Quezado M, Vogel H, Hefti MM, Perl DP, Liddelow S, Folkerth R, Putrino D, Nath A, Iwasaki A, Monje M (2022) Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell 185:2452–2468e2416 PubMed DOI PMC
Guney C, Akar F (2021) Epithelial and endothelial expressions of ACE2: SARS-CoV-2 entry routes. J Pharm Pharm Sci 24:84–93
Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, Bikdeli B, Ahluwalia N, Ausiello JC, Wan EY, Freedberg DE, Kirtane AJ, Parikh SA, Maurer MS, Nordvig AS, Accili D, Bathon JM, Mohan S, Bauer KA, Leon MB, Krumholz HM, Uriel N, Mehra MR, Elkind MSV, Stone GW, Schwartz A, Ho DD, Bilezikian JP, Landry DW (2020) Extrapulmonary manifestations of COVID-19. Nat Med 26:1017–1032 PubMed DOI
Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, Péré H, Charbit B, Bondet V, Chenevier-Gobeaux C, Breillat P, Carlier N, Gauzit R, Morbieu C, Pène F, Marin N, Roche N, Szwebel T-A, Merkling SH, Treluyer J-M, Veyer D, Mouthon L, Blanc C, Tharaux P-L, Rozenberg F, Fischer A, Duffy D, Rieux-Laucat F, Kernéis S, Terrier B (2020) Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369:718–724 PubMed DOI PMC
Hortová-Kohoutková M, Lázničková P, Bendíčková K, De Zuani M, Andrejčinová I, Tomášková V, Suk P, Šrámek V, Helán M, Frič J (2020) Differences in monocyte subsets are associated with short-term survival in patients with septic shock. J Cell Mol Med 24:12504–12512 PubMed DOI PMC
HPA Human Protein Atlas
Iwata-Yoshikawa N, Kakizaki M, Shiwa-Sudo N Essential role of TMPRSS2 in SARS-CoV-2 infection in murine airways. et al (2022) https://doi.org/10.1038/s41467-022-33911-8 Karlsson M, Zhang C, Méar L, Zhong W, Digre A, Katona B, Sjöstedt E, Butler L, Odeberg J, Dusart P, Edfors F, Oksvold P, von Feilitzen K, Zwahlen M, Arif M, Altay O, Li X, Ozcan M, Mardinoglu A, Fagerberg L, Mulder J, Luo Y, Ponten F, Uhlén M, Lindskog C (2021) A single–cell type transcriptomics map of human tissues. Science Advances 7, eabh2169
Krasemann S, Haferkamp U, Pfefferle S, Woo MS, Heinrich F, Schweizer M, Appelt-Menzel A, Cubukova A, Barenberg J, Leu J, Hartmann K, Thies E, Littau JL, Sepulveda-Falla D, Zhang L, Ton K, Liang Y, Matschke J, Ricklefs F, Sauvigny T, Sperhake J, Fitzek A, Gerhartl A, Brachner A, Geiger N, Konig EM, Bodem J, Franzenburg S, Franke A, Moese S, Muller FJ, Geisslinger G, Claussen C, Kannt A, Zaliani A, Gribbon P, Ondruschka B, Neuhaus W, Friese MA, Glatzel M, Pless O (2022) The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Rep 17:307–320 DOI
Kujawska M, Mostafavi E, Kaushik A (2023) SARS-CoV-2 getting into the brain; neurological phenotype of COVID-19, and management by nano-biotechnology. Neural Regen Res 18:519–520 PubMed DOI
Kumari P, Rothan HA, Natekar JP, Stone S, Pathak H, Strate PG, Arora K, Brinton MA, Kumar M (2021) Neuroinvasion and Encephalitis following intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice. Viruses 13
Li MY, Li L, Zhang Y, Wang XS (2020) Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty 9:45 PubMed DOI PMC
Liepelt A, Hohlstein P, Gussen H, Xue J, Aschenbrenner AC, Ulas T, Buendgens L, Warzecha KT, Bartneck M, Luedde T, Trautwein C, Schultze JL, Koch A, Tacke F Differential Gene Expression in Circulating CD14(+) Monocytes Indicates the Prognosis of Critically Ill Patients with Sepsis. J Clin Med 9, Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2020) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13(1):133– 40. https://doi.org/10.1038/nn.2467 . Epub 2009 Dec 20. PMID: 20023653; PMCID: PMC2840225
McCray PB Jr., Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, Netland J, Jia HP, Halabi C, Sigmund CD, Meyerholz DK, Kirby P, Look DC, Perlman S (2007) Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol 81:813–821 PubMed DOI
Meghraoui-Kheddar A, Barthelemy S, Boissonnas A, Combadière C (2020) Revising CX3CR1 expression on murine classical and non-classical monocytes. Front Immunol 11:1117 PubMed DOI PMC
Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, Laue M, Schneider J, Brunink S, Greuel S, Lehmann M, Hassan O, Aschman T, Schumann E, Chua RL, Conrad C, Eils R, Stenzel W, Windgassen M, Rossler L, Goebel HH, Gelderblom HR, Martin H, Nitsche A, Schulz-Schaeffer WJ, Hakroush S, Winkler MS, Tampe B, Scheibe F, Kortvelyessy P, Reinhold D, Siegmund B, Kuhl AA, Elezkurtaj S, Horst D, Oesterhelweg L, Tsokos M, Ingold-Heppner B, Stadelmann C, Drosten C, Corman VM, Radbruch H, Heppner FL (2021) Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci 24:168–175 PubMed DOI
Menachery VD, Yount BL Jr., Sims AC, Debbink K, Agnihothram SS, Gralinski LE, Graham RL, Scobey T, Plante JA, Royal SR, Swanstrom J, Sheahan TP, Pickles RJ, Corti D, Randell SH, Lanzavecchia A, Marasco WA, Baric RS (2016) SARS-like WIV1-CoV poised for human emergence. Proc Natl Acad Sci U S A 113:3048–3053 PubMed DOI PMC
Nickl P, Raishbrook MJ, Syding LA, Sedlacek R (2022) Advances in Modelling COVID-19 in Animals. Frontiers in Drug Discovery 2
Park M, Won J, Choi BY, Lee CJ (2020) Optimization of primer sets and detection protocols for SARS-CoV-2 of coronavirus disease 2019 (COVID-19) using PCR and real-time PCR. Exp Mol Med 52:963–977 PubMed DOI PMC
Peckham H, de Gruijter NM, Raine C, Radziszewska A, Ciurtin C, Wedderburn LR, Rosser EC, Webb K, Deakin CT (2020) Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat Commun 11:6317 PubMed DOI PMC
Qu B, Miskey C, Gömer André, Kleinert RDV, Ibanez SC, Eberle R, Ebenig A, Postmus D, Maximilian K, Nocke M, Herrmann TK, Itotia ST, Herrmann N, Heinen S, Höck FD. Hastert, Christine von Rhein, Christoph Schürmann, Xue Li, Ger van Zandbergen, Marek Widera, Sandra Ciesek, Schnierle BS, Tarr AW, Eike Steinmann, Christine Goffinet, Stephanie Pfaender, Jacomina Krijnse, Locker MD, Mühlebach DT, Brown RJP (2024) ‘TMPRSS2-mediated SARS-CoV-2 uptake boosts innate immune activation, enhances cytopathology, and drives convergent virus evolution’, Proceedings of the National Academy of Sciences, 121: e2407437121
Sanyaolu A, Marinkovic A, Prakash S, Zhao A, Balendra V, Haider N, Jain I, Simic T, Okorie C (2022) Post-acute Sequelae in COVID-19 survivors: an overview. SN Compr Clin Med 4:91 PubMed DOI PMC
Spuntarelli V, Luciani M, Bentivegna E, Marini V, Falangone F, Conforti G, Rachele ES, Martelletti P (2020) COVID-19: is it just a lung disease? A case-based review. SN Compr Clin Med 2:1401–1406 PubMed DOI PMC
Sun SH, Chen Q, Gu HJ, Yang G, Wang YX, Huang XY, Liu SS, Zhang NN, Li XF, Xiong R, Guo Y, Deng YQ, Huang WJ, Liu Q, Liu QM, Shen YL, Zhou Y, Yang X, Zhao TY, Fan CF, Zhou YS, Qin CF, Wang YC (2020) A mouse model of SARS-CoV-2 infection and Pathogenesis. Cell Host Microbe 28:124–133e124 PubMed DOI PMC
Temgoua MN, Endomba FT, Nkeck JR, Kenfack GU, Tochie JN, Essouma M (2020) Coronavirus Disease 2019 (COVID-19) as a multi-systemic disease and its impact in low- and Middle-Income Countries (LMICs). SN Compr Clin Med 2:1377–1387 PubMed DOI PMC
Usai C, Mateu L, Brander C, Vergara-Alert J, Segales J (2023) Animal models to study the neurological manifestations of the post-COVID-19 condition. Lab Anim (NY) 52:202–210 PubMed DOI
Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT, Yu J, Fox JM, Chen RE, Earnest JT, Keeler SP, Ritter JH, Kang LI, Dort S, Robichaud A, Head R, Holtzman MJ, Diamond MS (2020) SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat Immunol 21:1327–1335 PubMed DOI PMC
Woo MS, Malsy J, Pottgen J, Seddiq Zai S, Ufer F, Hadjilaou A, Schmiedel S, Addo MM, Gerloff C, Heesen C, Schulze Zur Wiesch, Friese J (2020) MA Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Commun 2, fcaa205
Wozniak A, Cerda A, Ibarra-Henriquez C, Sebastian V, Armijo G, Lamig L, Miranda C, Lagos M, Solari S, Guzman AM, Quiroga T, Hitschfeld S, Riveras E, Ferres M, Gutierrez RA, Garcia P (2020) A simple RNA preparation method for SARS-CoV-2 detection by RT-qPCR. Sci Rep 10:16608 PubMed DOI PMC
Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H (2020) Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 158:1831–1833e1833 PubMed DOI
Zhang L, Zhou L, Bao L, Liu J, Zhu H, Lv Q, Liu R, Chen W, Tong W, Wei Q, Xu Y, Deng W, Gao H, Xue J, Song Z, Yu P, Han Y, Zhang Y, Sun X, Yu X, Qin C (2021) SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther 6:337 PubMed DOI PMC
Zheng KI, Feng G, Liu WY, Targher G, Byrne CD, Zheng MH (2021) Extrapulmonary complications of COVID-19: a multisystem disease? J Med Virol 93:323–335 PubMed DOI
Zhou R, To KK, Wong YC, Liu L, Zhou B, Li X, Huang H, Mo Y, Luk TY, Lau TT, Yeung P, Chan WM, Wu AK, Lung KC, Tsang OT, Leung WS, Hung IF, Yuen KY, Chen Z (2020) Acute SARS-CoV-2 infection impairs dendritic cell and T cell responses. Immunity 53:864–877e865 PubMed DOI PMC