Bispecific IgG neutralizes SARS-CoV-2 variants and prevents escape in mice
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
U01 AI151698
NIAID NIH HHS - United States
P01-AI138398-S1
NIH HHS - United States
2U19AI111825
NIH HHS - United States
Howard Hughes Medical Institute - United States
P50 AI150464
NIAID NIH HHS - United States
R37 AI064003
NIAID NIH HHS - United States
R01 AI078788
NIAID NIH HHS - United States
PubMed
33767445
DOI
10.1038/s41586-021-03461-y
PII: 10.1038/s41586-021-03461-y
Knihovny.cz E-zdroje
- MeSH
- angiotensin konvertující enzym 2 antagonisté a inhibitory genetika metabolismus MeSH
- COVID-19 imunologie prevence a kontrola virologie MeSH
- Dependovirus genetika MeSH
- epitopy B-lymfocytární chemie imunologie MeSH
- farmakoterapie COVID-19 MeSH
- glykoprotein S, koronavirus antagonisté a inhibitory chemie imunologie MeSH
- imunitní únik genetika MeSH
- imunoglobulin G imunologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- monoklonální protilátky imunologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neutralizující protilátky imunologie terapeutické užití MeSH
- protilátky bispecifické imunologie terapeutické užití MeSH
- SARS-CoV-2 genetika imunologie MeSH
- tělesná hmotnost MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ACE2 protein, human MeSH Prohlížeč
- angiotensin konvertující enzym 2 MeSH
- epitopy B-lymfocytární MeSH
- glykoprotein S, koronavirus MeSH
- imunoglobulin G MeSH
- monoklonální protilátky MeSH
- neutralizující protilátky MeSH
- protilátky bispecifické MeSH
- spike protein, SARS-CoV-2 MeSH Prohlížeč
Neutralizing antibodies that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are among the most promising approaches against COVID-191,2. A bispecific IgG1-like molecule (CoV-X2) has been developed on the basis of C121 and C135, two antibodies derived from donors who had recovered from COVID-193. Here we show that CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable spike binding to the cellular receptor of the virus, angiotensin-converting enzyme 2 (ACE2). Furthermore, CoV-X2 neutralizes wild-type SARS-CoV-2 and its variants of concern, as well as escape mutants generated by the parental monoclonal antibodies. We also found that in a mouse model of SARS-CoV-2 infection with lung inflammation, CoV-X2 protects mice from disease and suppresses viral escape. Thus, the simultaneous targeting of non-overlapping RBD epitopes by IgG-like bispecific antibodies is feasible and effective, and combines the advantages of antibody cocktails with those of single-molecule approaches.
Department of Biosciences and Nutrition Karolinska Institutet Huddinge Sweden
Division of Biology and Biological Engineering California Institute of Technology Pasadena CA USA
European Commission Joint Research Centre Ispra Italy
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Howard Hughes Medical Institute The Rockefeller University New York N> USA
Institute for Research in Biomedicine Università della Svizzera italiana Bellinzona Switzerland
Laboratory of Molecular Immunology The Rockefeller University New York NY USA
Laboratory of Retrovirology The Rockefeller University New York NY USA
Zobrazit více v PubMed
DeFrancesco, L. COVID-19 antibodies on trial. Nat. Biotechnol. 38, 1242–1252 (2020). PubMed DOI
Klasse, P. J. & Moore, J. P. Antibodies to SARS-CoV-2 and their potential for therapeutic passive immunization. eLife 9, e57877 (2020). PubMed DOI PMC
Robbiani, D. F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 584, 437–442 (2020). PubMed DOI PMC
Ecker, D. M. & Seymour, P. in CPhI Annual Report 2020: Postulating the Post-COVID Pharma Paradigm, 43–49 (Informamarkets, 2020).
Baum, A. et al. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science 370, 1110–1115 (2020). PubMed DOI PMC
Schäfer, A. et al. Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. J. Exp. Med. 218, e20201993 (2021). PubMed DOI
Schlake, T. et al. mRNA: a novel avenue to antibody therapy? Mol. Ther. 27, 773–784 (2019). PubMed DOI PMC
Tiwari, P. M. et al. Engineered mRNA-expressed antibodies prevent respiratory syncytial virus infection. Nat. Commun. 9, 3999 (2018). PubMed DOI PMC
Barnes, C. O. et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588, 682–687 (2020). PubMed DOI PMC
Schaefer, W. et al. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc. Natl Acad. Sci. USA 108, 11187–11192 (2011). PubMed DOI PMC
Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292.e6 (2020). PubMed DOI PMC
Kemp, S. et al. Recurrent emergence and transmission of a SARS-CoV-2 spike deletion ΔH69/V70. Preprint at https://doi.org/10.1101/2020.12.14.422555 (2020).
Tegally, H. et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. Preprint at https://doi.org/10.1101/2020.12.21.20248640 (2020).
Weisblum, Y. et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife 9, e61312 (2020). PubMed DOI PMC
Schmidt, F. et al. Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. J. Exp. Med. 217, e20201181 (2020). PubMed DOI PMC
Benton, D. J. et al. The effect of the D614G substitution on the structure of the spike glycoprotein of SARS-CoV-2. Proc. Natl Acad. Sci. USA 118, e2022586118 (2021). PubMed DOI PMC
Han, K. et al. Lung expression of human ACE2 sensitizes the mouse to SARS-CoV-2 infection. Am. J. Respir. Cell Mol. Biol. 64, 79–88 (2021). PubMed DOI PMC
Hassan, A. O. et al. A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies. Cell 182, 744–753.e4 (2020). PubMed DOI PMC
Sun, J. et al. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment. Cell 182, 734–743.e5 (2020). PubMed DOI PMC
Sun, S. H. et al. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe 28, 124–133.e4 (2020). PubMed DOI PMC
Deshmukh, V., Motwani, R., Kumar, A., Kumari, C. & Raza, K. Histopathological observations in COVID-19: a systematic review. J. Clin. Pathol. 74, 76–83 (2021). PubMed DOI
Greaney, A. J. et al. Comprehensive mapping of mutations to the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human serum antibodies. Cell Host Microbe 29, 463–476 (2021). PubMed DOI PMC
Chen, J., Wang, R., Wang, M. & Wei, G. W. Mutations strengthened SARS-CoV-2 infectivity. J. Mol. Biol. 432, 5212–5226 (2020). PubMed DOI PMC
Sabino, E. C. et al. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet 397, 452–455 (2021). PubMed DOI PMC
Dong, J. et al. Development of humanized tri-specific nanobodies with potent neutralization for SARS-CoV-2. Sci. Rep. 10, 17806 (2020). PubMed DOI PMC
Saunders, K. O. Conceptual approaches to modulating antibody effector functions and circulation half-life. Front. Immunol. 10, 1296 (2019). PubMed DOI PMC
Dejnirattisai, W. et al. Cross-reacting antibodies enhance dengue virus infection in humans. Science 328, 745–748 (2010). PubMed DOI
Yip, M. S. et al. Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus. Virol. J. 11, 82 (2014). PubMed DOI PMC
Yip, M. S. et al. Antibody-dependent enhancement of SARS coronavirus infection and its role in the pathogenesis of SARS. Hong Kong Med. J. 22 (Suppl 4), 25–31 (2016). PubMed
Klein, C. et al. Engineering therapeutic bispecific antibodies using CrossMab technology. Methods 154, 21–31 (2019). PubMed DOI
Bardelli, M. et al. A bispecific immunotweezer prevents soluble PrP oligomers and abolishes prion toxicity. PLoS Pathog. 14, e1007335 (2018). PubMed DOI PMC
Fu, B. et al. ALMOST: an all atom molecular simulation toolkit for protein structure determination. J. Comput. Chem. 35, 1101–1105 (2014). PubMed DOI
Yang, J. et al. The I-TASSER suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015). PubMed DOI PMC
Schrodinger. The PyMOL Molecular Graphics System, Version 1.8 (Schrodinger 2015).
Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005). DOI
Wang, Z. et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature (2021).
Percivalle, E. et al. West Nile or Usutu virus? A three-year follow-up of humoral and cellular response in a group of asymptomatic blood donors. Viruses 12, 157 (2020). DOI PMC
Zolotukhin, S. et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 6, 973–985 (1999). PubMed DOI
Aurnhammer, C. et al. Universal real-time PCR for the detection and quantification of adeno-associated virus serotype 2-derived inverted terminal repeat sequences. Hum. Gene Ther. Methods 23, 18–28 (2012). PubMed DOI
De Madrid, A. T. & Porterfield, J. S. A simple micro-culture method for the study of group B arboviruses. Bull. World Health Organ. 40, 113–121 (1969). PubMed PMC
Human neutralizing antibodies to cold linear epitopes and to subdomain 1 of SARS-CoV-2
The Present and Future of Virology in the Czech Republic-A New Phoenix Made of Ashes?