Uncovering pre-cytokinetic block in cancer cells under shear stress using a disturbed flow-generating device
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR 17-25976S
Grantová Agentura České Republiky
Large RI Project LM2023050
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
39987149
PubMed Central
PMC11846833
DOI
10.1038/s41598-024-83058-3
PII: 10.1038/s41598-024-83058-3
Knihovny.cz E-zdroje
- Klíčová slova
- Circulating tumor cells, Fluid shear stress, Fluidic systems, Metastasis, Mitosis,
- MeSH
- lidé MeSH
- mechanický stres * MeSH
- mitóza * MeSH
- nádorové buněčné linie MeSH
- nádory * patologie MeSH
- pevnost ve smyku MeSH
- proliferace buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
During metastasis, cancer cells navigate through harsh conditions, including various mechanical forces in the bloodstream, highlighting the need to understand the impact of mechanical and shear stresses on cancer cells. To overcome the current methodological limitations of such research, here we present a new device that replicates similar conditions by applying shear stress on cultured cells. The device provides a less complex, easily accessible alternative to traditional fluidics while generating fluid shear stress values comparable to those in human veins and capillaries. The device allows analyses of large cell numbers in standard cell culture flasks and incubators. Using this device to explore the shear stress-induced responses of various human cell lines, we discovered a previously unknown, reversible pre-cytokinetic block occurring in cells that lose anchorage during mitosis and are kept under constant shear stress. Notably, some cancer cell lines appear to bypass this unorthodox cell-cycle block, suggesting its role as a safety checkpoint to restrict the proliferation of cancer cells in the bloodstream and their overall spreading potential. These findings provide new insights into the diverse responses of normal and cancer cells to shear stress and highlight the potential of our technology for research on circulating tumor cells and metastatic spread.
Danish Cancer Institute Danish Cancer Society Copenhagen Denmark
Department of Optics Faculty of Science Palacky University Olomouc Czech Republic
Faculty of Mechanical Engineering Jan Evangelista Purkyně University Ústí Nad Labem Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cell metastasis. Science331, 1559–1564 (2011). PubMed
Huang, Q. et al. Fluid shear stress and tumor metastasis. Am. J. Cancer Res.8, 763–777 (2018). PubMed PMC
Follain, G. et al. Fluids and their mechanics in tumour transit: Shaping metastasis. Nat. Rev. Cancer20, 107–124 (2020). PubMed
Fan, R. et al. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells. Sci. Rep.6, 27073 (2016). PubMed PMC
Sinkala, E. et al. Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat. Commun.8, 14622 (2017). PubMed PMC
Abouleila, Y. et al. Live single cell mass spectrometry reveals cancer-specific metabolic profiles of circulating tumor cells. Cancer Sci.110, 697–706 (2019). PubMed PMC
Luo, C.-W., Wu, C.-C. & Ch’ang, H.-J. Radiation sensitization of tumor cells induced by shear stress: The roles of integrins and FAK. Biochim. Biophys. Acta1843, 2129–2137 (2014). PubMed
Chiu, J.-J. & Chien, S. Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives. Physiol. Rev.91, 327–387 (2011). PubMed PMC
Zhou, J., Li, Y. S. & Chien, S. Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler. Thromb. Vasc. Biol.34, 2191 (2014). PubMed PMC
Turitto, V. T. Blood viscosity, mass transport, and thrombogenesis. Prog. Hemost. Thromb.6, 139–177 (1982). PubMed
Shemesh, J. et al. Flow-induced stress on adherent cells in microfluidic devices. Lab. Chip15, 4114–4127 (2015). PubMed
World, C. J., Garin, G. & Berk, B. Vascular shear stress and activation of inflammatory genes. Curr. Atheroscler. Rep.8, 240–244 (2006). PubMed
Tanaka, K., Joshi, D., Timalsina, S. & Schwartz, M. A. Early events in endothelial flow sensing. Cytoskelet. Hoboken NJ78, 217–231 (2021). PubMed
Hahn, C. & Schwartz, M. A. The role of cellular adaptation to mechanical forces in atherosclerosis. Arterioscler. Thromb. Vasc. Biol.28, 2101–2107 (2008). PubMed PMC
Nagel, T., Resnick, N., Atkinson, W. J., Dewey, C. F. & Gimbrone, M. A. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J. Clin. Invest.94, 885–891 (1994). PubMed PMC
Bao, X., Lu, C. & Frangos, J. A. Mechanism of temporal gradients in shear-induced ERK1/2 activation and proliferation in endothelial cells. Am. J. Physiol. Heart Circ. Physiol.281, H22-29 (2001). PubMed
Ishida, T., Peterson, T. E., Kovach, N. L. & Berk, B. C. MAP kinase activation by flow in endothelial cells. Circ. Res.79, 310–316 (1996). PubMed
Mengistu, M., Brotzman, H., Ghadiali, S. & Lowe-Krentz, L. Fluid shear stress-induced JNK activity leads to actin remodeling for cell alignment. J. Cell. Physiol.226, 110–121 (2011). PubMed PMC
Thayse, K., Kindt, N., Laurent, S. & Carlier, S. VCAM-1 target in non-invasive imaging for the detection of atherosclerotic plaques. Biology9, 368 (2020). PubMed PMC
Taubenberger, A. V., Baum, B. & Matthews, H. K. The mechanics of mitotic cell rounding. Front. Cell Dev. Biol.8, 687 (2020). PubMed PMC
Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature437, 1043–1047 (2005). PubMed
Černík, M. et al. Luminal surface plasma treatment of closed cylindrical microchannels: A tool toward the creation of on-chip vascular endothelium. ACS Biomater. Sci. Eng.9, 2755–2763 (2023). PubMed PMC
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods9, 671–675 (2012). PubMed PMC
Kudlova, N. et al. An efficient, non-invasive approach for in-vivo sampling of hair follicles: Design and applications in monitoring DNA damage and aging. Aging13, 25004–25024 (2021). PubMed PMC