Uncovering pre-cytokinetic block in cancer cells under shear stress using a disturbed flow-generating device

. 2025 Feb 22 ; 15 (1) : 6457. [epub] 20250222

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39987149

Grantová podpora
GACR 17-25976S Grantová Agentura České Republiky
Large RI Project LM2023050 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 39987149
PubMed Central PMC11846833
DOI 10.1038/s41598-024-83058-3
PII: 10.1038/s41598-024-83058-3
Knihovny.cz E-zdroje

During metastasis, cancer cells navigate through harsh conditions, including various mechanical forces in the bloodstream, highlighting the need to understand the impact of mechanical and shear stresses on cancer cells. To overcome the current methodological limitations of such research, here we present a new device that replicates similar conditions by applying shear stress on cultured cells. The device provides a less complex, easily accessible alternative to traditional fluidics while generating fluid shear stress values comparable to those in human veins and capillaries. The device allows analyses of large cell numbers in standard cell culture flasks and incubators. Using this device to explore the shear stress-induced responses of various human cell lines, we discovered a previously unknown, reversible pre-cytokinetic block occurring in cells that lose anchorage during mitosis and are kept under constant shear stress. Notably, some cancer cell lines appear to bypass this unorthodox cell-cycle block, suggesting its role as a safety checkpoint to restrict the proliferation of cancer cells in the bloodstream and their overall spreading potential. These findings provide new insights into the diverse responses of normal and cancer cells to shear stress and highlight the potential of our technology for research on circulating tumor cells and metastatic spread.

Zobrazit více v PubMed

Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cell metastasis. Science331, 1559–1564 (2011). PubMed

Huang, Q. et al. Fluid shear stress and tumor metastasis. Am. J. Cancer Res.8, 763–777 (2018). PubMed PMC

Follain, G. et al. Fluids and their mechanics in tumour transit: Shaping metastasis. Nat. Rev. Cancer20, 107–124 (2020). PubMed

Fan, R. et al. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells. Sci. Rep.6, 27073 (2016). PubMed PMC

Sinkala, E. et al. Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat. Commun.8, 14622 (2017). PubMed PMC

Abouleila, Y. et al. Live single cell mass spectrometry reveals cancer-specific metabolic profiles of circulating tumor cells. Cancer Sci.110, 697–706 (2019). PubMed PMC

Luo, C.-W., Wu, C.-C. & Ch’ang, H.-J. Radiation sensitization of tumor cells induced by shear stress: The roles of integrins and FAK. Biochim. Biophys. Acta1843, 2129–2137 (2014). PubMed

Chiu, J.-J. & Chien, S. Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives. Physiol. Rev.91, 327–387 (2011). PubMed PMC

Zhou, J., Li, Y. S. & Chien, S. Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler. Thromb. Vasc. Biol.34, 2191 (2014). PubMed PMC

Turitto, V. T. Blood viscosity, mass transport, and thrombogenesis. Prog. Hemost. Thromb.6, 139–177 (1982). PubMed

Shemesh, J. et al. Flow-induced stress on adherent cells in microfluidic devices. Lab. Chip15, 4114–4127 (2015). PubMed

World, C. J., Garin, G. & Berk, B. Vascular shear stress and activation of inflammatory genes. Curr. Atheroscler. Rep.8, 240–244 (2006). PubMed

Tanaka, K., Joshi, D., Timalsina, S. & Schwartz, M. A. Early events in endothelial flow sensing. Cytoskelet. Hoboken NJ78, 217–231 (2021). PubMed

Hahn, C. & Schwartz, M. A. The role of cellular adaptation to mechanical forces in atherosclerosis. Arterioscler. Thromb. Vasc. Biol.28, 2101–2107 (2008). PubMed PMC

Nagel, T., Resnick, N., Atkinson, W. J., Dewey, C. F. & Gimbrone, M. A. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J. Clin. Invest.94, 885–891 (1994). PubMed PMC

Bao, X., Lu, C. & Frangos, J. A. Mechanism of temporal gradients in shear-induced ERK1/2 activation and proliferation in endothelial cells. Am. J. Physiol. Heart Circ. Physiol.281, H22-29 (2001). PubMed

Ishida, T., Peterson, T. E., Kovach, N. L. & Berk, B. C. MAP kinase activation by flow in endothelial cells. Circ. Res.79, 310–316 (1996). PubMed

Mengistu, M., Brotzman, H., Ghadiali, S. & Lowe-Krentz, L. Fluid shear stress-induced JNK activity leads to actin remodeling for cell alignment. J. Cell. Physiol.226, 110–121 (2011). PubMed PMC

Thayse, K., Kindt, N., Laurent, S. & Carlier, S. VCAM-1 target in non-invasive imaging for the detection of atherosclerotic plaques. Biology9, 368 (2020). PubMed PMC

Taubenberger, A. V., Baum, B. & Matthews, H. K. The mechanics of mitotic cell rounding. Front. Cell Dev. Biol.8, 687 (2020). PubMed PMC

Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature437, 1043–1047 (2005). PubMed

Černík, M. et al. Luminal surface plasma treatment of closed cylindrical microchannels: A tool toward the creation of on-chip vascular endothelium. ACS Biomater. Sci. Eng.9, 2755–2763 (2023). PubMed PMC

Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods9, 671–675 (2012). PubMed PMC

Kudlova, N. et al. An efficient, non-invasive approach for in-vivo sampling of hair follicles: Design and applications in monitoring DNA damage and aging. Aging13, 25004–25024 (2021). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...