Luminal Surface Plasma Treatment of Closed Cylindrical Microchannels: A Tool toward the Creation of On-Chip Vascular Endothelium
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37103011
PubMed Central
PMC10170472
DOI
10.1021/acsbiomaterials.2c00887
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, PDMS, endothelial cell, in vitro model, plasma oxidation, surface modification,
- MeSH
- buněčné kultury MeSH
- cévní endotel * MeSH
- endoteliální buňky * MeSH
- hydrofobní a hydrofilní interakce MeSH
- mikrofluidika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
On-chip vascular microfluidic models provide a great tool to study aspects of cardiovascular diseases in vitro. To produce such models, polydimethylsiloxane (PDMS) has been the most widely used material. For biological applications, its hydrophobic surface has to be modified. The major approach has been plasma-based surface oxidation, which has been very challenging in the case of channels enclosed within a microfluidic chip. The preparation of the chip combined a 3D-printed mold with soft lithography and commonly available materials. We have introduced the high-frequency low-pressure air-plasma surface modification of seamless channels enclosed within a PDMS microfluidic chip. The plasma treatment modified the luminal surface more uniformly than in previous works. Such a setup enabled a higher degree of design freedom and a possibility of rapid prototyping. Further, plasma treatment in combination with collagen IV coating created a biomimetic surface for efficient adhesion of vascular endothelial cells as well as promoted long-term cell culture stability under flow. The cells within the channels were highly viable and showed physiological behavior, confirming the benefit of the presented surface modification.
Zobrazit více v PubMed
Whitesides G. M. The Origins and the Future of Microfluidics. Nature 2006, 442, 368–373. 10.1038/nature05058. PubMed DOI
Dixon A.; Takayama S. Guided Corona Generates Wettability Patterns That Selectively Direct Cell Attachment inside Closed Microchannels. Biomed. Microdevices 2010, 12, 769–775. 10.1007/s10544-010-9431-4. PubMed DOI
Tan S. H.; Nguyen N.-T.; Chua Y. C.; Kang T. G. Oxygen Plasma Treatment for Reducing Hydrophobicity of a Sealed Polydimethylsiloxane Microchannel. Biomicrofluidics 2010, 4, 032204.10.1063/1.3466882. PubMed DOI PMC
Li J.; Wang X.; Cheng C.; Wang L.; Zhao E.; Wang X.; Wen W. Selective Modification for Polydimethylsiloxane Chip by Micro-Plasma. J. Mater. Sci. 2013, 48, 1310–1314. 10.1007/s10853-012-6875-3. DOI
Siddique A.; Meckel T.; Stark R. W.; Narayan S. Improved Cell Adhesion under Shear Stress in PDMS Microfluidic Devices. Colloids Surf., B 2017, 150, 456–464. 10.1016/j.colsurfb.2016.11.011. PubMed DOI
Hoek I.; Bubendorfer A.; Kemmitt T.; Arnold W. M.. In-Situ Sol-Gel Modification of PDMS Electrophoretic Analytical Devices. The 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2010; pp 3–7.
Chuah Y. J.; Koh Y. T.; Lim K.; Menon N. V.; Wu Y.; Kang Y. Simple Surface Engineering of Polydimethylsiloxane with Polydopamine for Stabilized Mesenchymal Stem Cell Adhesion and Multipotency. Sci. Rep. 2015, 5, 18162–18212. 10.1038/srep18162. PubMed DOI PMC
Kuddannaya S.; Chuah Y. J.; Lee M. H. A.; Menon N. V.; Kang Y.; Zhang Y. Surface Chemical Modification of Poly (dimethylsiloxane) for the Enhanced Adhesion and Proliferation of Mesenchymal Stem Cells. ACS Appl. Mater. Interfaces 2013, 5, 9777–9784. 10.1021/am402903e. PubMed DOI
Paulsson M. Basement Membrane Proteins: Structure, Assembly, and Cellular Interactions. Crit. Rev. Biochem. Mol. Biol. 1992, 27, 93–127. 10.3109/10409239209082560. PubMed DOI
Venzac B.; Madoun R.; Benarab T.; Monnier S.; Cayrac F.; Myram S.; Leconte L.; Amblard F.; Viovy J.-L.; Descroix S.; et al. Engineering Small Tubes with Changes in Diameter for the Study of Kidney Cell Organization. Biomicrofluidics 2018, 12, 024114.10.1063/1.5025027. PubMed DOI PMC
Bischel L. L.; Young E. W. K.; Mader B. R.; Beebe D. J. Tubeless Microfluidic Angiogenesis Assay with Three-Dimensional Endothelial-Lined Microvessels. Biomaterials 2013, 34, 1471–1477. 10.1016/j.biomaterials.2012.11.005. PubMed DOI PMC
Coelho N. M.; González-Garcia C.; Planell J.; Salmerón-Sánchez M.; Altankov G. Different Assembly of Type IV Collagen on Hydrophilic and Hydrophobic Substrata Alters Endothelial Cells Interaction. Eur. Cells Mater. 2010, 19, 262–272. 10.22203/eCM.v019a25. PubMed DOI
Pitingolo G.; Riaud A.; Nastruzzi C.; Taly V. Gelatin-Coated Microfluidic Channels for 3D Microtissue Formation: On-Chip Production and Characterization. Nat. Protoc. 2019, 10, 265.10.3390/mi10040265. PubMed DOI PMC
Huang Z.; Li X.; Martins-Green M.; Liu Y. Microfabrication of Cylindrical Microfluidic Channel Networks for Microvascular Research. Biomed. Microdevices 2012, 14, 873–883. 10.1007/s10544-012-9667-2. PubMed DOI
Sherman T. F. On Connecting Large Vessels to Small. The Meaning of Murray’s Law. J. Gen. Physiol. 1981, 78, 431–453. 10.1085/jgp.78.4.431. PubMed DOI PMC
Wong K. H. K.; Chan J. M.; Kamm R. D.; Tien J. Microfluidic Models of Vascular Functions. Annu. Rev. Biomed. Eng. 2012, 14, 205–230. 10.1146/annurev-bioeng-071811-150052. PubMed DOI
Baeyens N.; Bandyopadhyay C.; Coon B. G.; Yun S.; Schwartz M. A. Endothelial Fluid Shear Stress Sensing in Vascular Health and Disease. J. Clin. Invest. 2016, 126, 821–828. 10.1172/JCI83083. PubMed DOI PMC
Hesh C. A.; Qiu Y.; Lam W. A. Vascularized Microfluidics and the Blood-Endothelium Interface. Micromachines 2019, 11, 18.10.3390/mi11010018. PubMed DOI PMC
Yang X.; Forouzan O.; Burns J. M.; Shevkoplyas S. S. Traffic of Leukocytes in Microfluidic Channels with Rectangular and Rounded Cross-Sections. Lab Chip 2011, 11, 3231–3240. 10.1039/c1lc20293f. PubMed DOI
Fiddes L. K.; Raz N.; Srigunapalan S.; Tumarkan E.; Simmons C. A.; Wheeler A. R.; Kumacheva E. A Circular Cross-Section PDMS Microfluidics System for Replication of Cardiovascular Flow Conditions. Biomaterials 2010, 31, 3459–3464. 10.1016/j.biomaterials.2010.01.082. PubMed DOI
Vecchione R.; Pitingolo G.; Guarnieri D.; Falanga A. P.; Netti P. A. From Square to Circular Polymeric Microchannels by Spin Coating Technology: A Low Cost Platform for Endothelial Cell Culture. Biofabrication 2016, 8, 025005.10.1088/1758-5090/8/2/025005. PubMed DOI
Tang W.; Liu H.; Zhu L.; Shi J.; Li Z.; Xiang N.; Yang J. Fabrication of Different Microchannels by Adjusting the Extrusion Parameters for Sacrificial Molds. Micromachines 2019, 10, 544.10.3390/mi10080544. PubMed DOI PMC
Mannino R. G.; Myers D. R.; Ahn B.; Wang Y.; Rollins M.; Gole H.; Lin A. S.; Guldberg R. E.; Giddens D. P.; Timmins L. H.; et al. Do-It-Yourself in Vitro Vasculature That Recapitulates in Vivo Geometries for Investigating Endothelial-Blood Cell Interactions. Sci. Rep. 2015, 5, 12401.10.1038/srep12401. PubMed DOI PMC
Mannino R. G.; Pandian N. K.; Jain A.; Lam W. A. Engineering “Endothelialized” Microfluidics for Investigating Vascular and Hematologic Processes Using Non-Traditional Fabrication Techniques. Curr. Opin. Biomed. Eng. 2018, 5, 13–20. 10.1016/j.cobme.2017.11.006. PubMed DOI PMC
Shallan A. I.; Smejkal P.; Corban M.; Guijt R. M.; Breadmore M. C. Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes. Anal. Chem. 2014, 86, 3124–3130. 10.1021/ac4041857. PubMed DOI
Lee J. M.; Zhang M.; Yeong W. Y. Characterization and Evaluation of 3D Printed Microfluidic Chip for Cell Processing. Microfluid. Nanofluid. 2016, 20, 5.10.1007/s10404-015-1688-8. DOI
Samukawa S.; Hori M.; Rauf S.; Tachibana K.; Bruggeman P.; Kroesen G.; Whitehead J. C.; Murphy A. B.; Gutsol A. F.; Starikovskaia S.; et al. The 2012 Plasma Roadmap. J. Phys. D: Appl. Phys. 2012, 45, 253001.10.1088/0022-3727/45/25/253001. DOI
Zhou J.; Ellis A. V.; Voelcker N. H. Recent Developments in PDMS Surface Modification for Microfluidic Devices. Electrophoresis 2010, 31, 2–16. 10.1002/elps.200900475. PubMed DOI
Koh K.-S.; Chin J.; Chia J.; Chiang C.-L. Quantitative Studies on PDMS-PDMS Interface Bonding with Piranha Solution and Its Swelling Effect. Micromachines 2012, 3, 427–441. 10.3390/mi3020427. DOI
Abate A. R.; Lee D.; Do T.; Holtze C.; Weitz D. A. Glass Coating for PDMS Microfluidic Channels by Sol-Gel Methods. Lab Chip 2008, 8, 516–518. 10.1039/b800001h. PubMed DOI
Schneider C. A.; Rasband W. S.; Eliceiri K. W.; Schindelin J.; Arganda-Carreras I.; Frise E.; Kaynig V.; Longair M.; Pietzsch T.; Preibisch S.; et al. NIH Image to imageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. 10.1038/nmeth.2089. PubMed DOI PMC
Šafaříková E.; Švihálková Šindlerová L.; Stritesky S.; Kubala L.; Vala M.; Weiter M.; Vitecek J. Evaluation and Improvement of Organic Semiconductors’ Biocompatibility towards Fibroblasts and Cardiomyocytes. Sens. Actuators, B 2018, 260, 418–425. 10.1016/j.snb.2017.12.108. DOI
Nikitin D.; Mican J.; Toul M.; Bednar D.; Peskova M.; Kittova P.; Thalerova S.; Vitecek J.; Damborsky J.; Mikulik R.; et al. Computer-Aided Engineering of Staphylokinase toward Enhanced Affinity and Selectivity for Plasmin. Comput. Struct. Biotechnol. J. 2022, 20, 1366–1377. 10.1016/j.csbj.2022.03.004. PubMed DOI PMC
Vitecek J.; Wunschova A.; Petrek J.; Adam V.; Kizek R.; Havel L. Cell Death Induced by Sodium Nitroprusside and Hydrogen Peroxide in Tobacco BY-2 Cell Suspension. Biol. Plant. 2007, 51, 472–479. 10.1007/s10535-007-0099-4. DOI
Pestano V.; Pohlmann M.; Silva F. P. d. Effect of Acetone Vapor Smoothing Process on Surface Finish and Geometric Accuracy of Fused Deposition Modeling ABS Parts. J. Mater. Sci. Chem. Eng. 2022, 10, 1–9. 10.4236/msce.2022.1010001. DOI
Heyries K. A.; Marquette C. A.; Blum L. J. Straightforward Protein Immobilization on Sylgard 184 PDMS Microarray Surface. Langmuir 2007, 23, 4523–4527. 10.1021/la070018o. PubMed DOI
Song S.-H.; Lee C.-K.; Kim T.-J.; Shin I.; Jun S.-C.; Jung H.-I. A Rapid and Simple Fabrication Method for 3-Dimensional Circular Microfluidic Channel Using Metal Wire Removal Process. Microfluid. Nanofluid. 2010, 9, 533–540. 10.1007/s10404-010-0570-y. DOI
McDonald J.; Duffy D.; Anderson J.; Chiu D.; Wu H.; Schueller O.; Whitesides G. Fabrication of Microfluidic Systems in Poly(dimethylsiloxane). Electrophoresis 2000, 21, 27–40. 10.1002/(sici)1522-2683(20000101)21:1%3C27::aid-elps27%3E3.0.co;2-c. PubMed DOI
Haubert K.; Drier T.; Beebe D. PDMS Bonding by Means of a Portable, Low-Cost Corona System. Lab Chip 2006, 6, 1548–1549. 10.1039/b610567j. PubMed DOI
Xi W.; Sonam S.; Beng Saw T.; Ladoux B.; Teck Lim C. Emergent patterns of collective cell migration under tubular confinement. Nat. Commun. 2017, 8, 1517.10.1038/s41467-017-01390-x. PubMed DOI PMC
Rochfort K. D.; Cummins P. M.. In Vitro Cell Models of the Human Blood-Brain Barrier: Demonstrating the Beneficial Influence of Shear Stress on Brain Microvascular Endothelial Cell Phenotype. Blood-Brain Barrier; Springer, 2019; pp 71–98.