Luminal Surface Plasma Treatment of Closed Cylindrical Microchannels: A Tool toward the Creation of On-Chip Vascular Endothelium

. 2023 May 08 ; 9 (5) : 2755-2763. [epub] 20230427

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37103011

On-chip vascular microfluidic models provide a great tool to study aspects of cardiovascular diseases in vitro. To produce such models, polydimethylsiloxane (PDMS) has been the most widely used material. For biological applications, its hydrophobic surface has to be modified. The major approach has been plasma-based surface oxidation, which has been very challenging in the case of channels enclosed within a microfluidic chip. The preparation of the chip combined a 3D-printed mold with soft lithography and commonly available materials. We have introduced the high-frequency low-pressure air-plasma surface modification of seamless channels enclosed within a PDMS microfluidic chip. The plasma treatment modified the luminal surface more uniformly than in previous works. Such a setup enabled a higher degree of design freedom and a possibility of rapid prototyping. Further, plasma treatment in combination with collagen IV coating created a biomimetic surface for efficient adhesion of vascular endothelial cells as well as promoted long-term cell culture stability under flow. The cells within the channels were highly viable and showed physiological behavior, confirming the benefit of the presented surface modification.

Zobrazit více v PubMed

Whitesides G. M. The Origins and the Future of Microfluidics. Nature 2006, 442, 368–373. 10.1038/nature05058. PubMed DOI

Dixon A.; Takayama S. Guided Corona Generates Wettability Patterns That Selectively Direct Cell Attachment inside Closed Microchannels. Biomed. Microdevices 2010, 12, 769–775. 10.1007/s10544-010-9431-4. PubMed DOI

Tan S. H.; Nguyen N.-T.; Chua Y. C.; Kang T. G. Oxygen Plasma Treatment for Reducing Hydrophobicity of a Sealed Polydimethylsiloxane Microchannel. Biomicrofluidics 2010, 4, 032204.10.1063/1.3466882. PubMed DOI PMC

Li J.; Wang X.; Cheng C.; Wang L.; Zhao E.; Wang X.; Wen W. Selective Modification for Polydimethylsiloxane Chip by Micro-Plasma. J. Mater. Sci. 2013, 48, 1310–1314. 10.1007/s10853-012-6875-3. DOI

Siddique A.; Meckel T.; Stark R. W.; Narayan S. Improved Cell Adhesion under Shear Stress in PDMS Microfluidic Devices. Colloids Surf., B 2017, 150, 456–464. 10.1016/j.colsurfb.2016.11.011. PubMed DOI

Hoek I.; Bubendorfer A.; Kemmitt T.; Arnold W. M.. In-Situ Sol-Gel Modification of PDMS Electrophoretic Analytical Devices. The 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, 2010; pp 3–7.

Chuah Y. J.; Koh Y. T.; Lim K.; Menon N. V.; Wu Y.; Kang Y. Simple Surface Engineering of Polydimethylsiloxane with Polydopamine for Stabilized Mesenchymal Stem Cell Adhesion and Multipotency. Sci. Rep. 2015, 5, 18162–18212. 10.1038/srep18162. PubMed DOI PMC

Kuddannaya S.; Chuah Y. J.; Lee M. H. A.; Menon N. V.; Kang Y.; Zhang Y. Surface Chemical Modification of Poly (dimethylsiloxane) for the Enhanced Adhesion and Proliferation of Mesenchymal Stem Cells. ACS Appl. Mater. Interfaces 2013, 5, 9777–9784. 10.1021/am402903e. PubMed DOI

Paulsson M. Basement Membrane Proteins: Structure, Assembly, and Cellular Interactions. Crit. Rev. Biochem. Mol. Biol. 1992, 27, 93–127. 10.3109/10409239209082560. PubMed DOI

Venzac B.; Madoun R.; Benarab T.; Monnier S.; Cayrac F.; Myram S.; Leconte L.; Amblard F.; Viovy J.-L.; Descroix S.; et al. Engineering Small Tubes with Changes in Diameter for the Study of Kidney Cell Organization. Biomicrofluidics 2018, 12, 024114.10.1063/1.5025027. PubMed DOI PMC

Bischel L. L.; Young E. W. K.; Mader B. R.; Beebe D. J. Tubeless Microfluidic Angiogenesis Assay with Three-Dimensional Endothelial-Lined Microvessels. Biomaterials 2013, 34, 1471–1477. 10.1016/j.biomaterials.2012.11.005. PubMed DOI PMC

Coelho N. M.; González-Garcia C.; Planell J.; Salmerón-Sánchez M.; Altankov G. Different Assembly of Type IV Collagen on Hydrophilic and Hydrophobic Substrata Alters Endothelial Cells Interaction. Eur. Cells Mater. 2010, 19, 262–272. 10.22203/eCM.v019a25. PubMed DOI

Pitingolo G.; Riaud A.; Nastruzzi C.; Taly V. Gelatin-Coated Microfluidic Channels for 3D Microtissue Formation: On-Chip Production and Characterization. Nat. Protoc. 2019, 10, 265.10.3390/mi10040265. PubMed DOI PMC

Huang Z.; Li X.; Martins-Green M.; Liu Y. Microfabrication of Cylindrical Microfluidic Channel Networks for Microvascular Research. Biomed. Microdevices 2012, 14, 873–883. 10.1007/s10544-012-9667-2. PubMed DOI

Sherman T. F. On Connecting Large Vessels to Small. The Meaning of Murray’s Law. J. Gen. Physiol. 1981, 78, 431–453. 10.1085/jgp.78.4.431. PubMed DOI PMC

Wong K. H. K.; Chan J. M.; Kamm R. D.; Tien J. Microfluidic Models of Vascular Functions. Annu. Rev. Biomed. Eng. 2012, 14, 205–230. 10.1146/annurev-bioeng-071811-150052. PubMed DOI

Baeyens N.; Bandyopadhyay C.; Coon B. G.; Yun S.; Schwartz M. A. Endothelial Fluid Shear Stress Sensing in Vascular Health and Disease. J. Clin. Invest. 2016, 126, 821–828. 10.1172/JCI83083. PubMed DOI PMC

Hesh C. A.; Qiu Y.; Lam W. A. Vascularized Microfluidics and the Blood-Endothelium Interface. Micromachines 2019, 11, 18.10.3390/mi11010018. PubMed DOI PMC

Yang X.; Forouzan O.; Burns J. M.; Shevkoplyas S. S. Traffic of Leukocytes in Microfluidic Channels with Rectangular and Rounded Cross-Sections. Lab Chip 2011, 11, 3231–3240. 10.1039/c1lc20293f. PubMed DOI

Fiddes L. K.; Raz N.; Srigunapalan S.; Tumarkan E.; Simmons C. A.; Wheeler A. R.; Kumacheva E. A Circular Cross-Section PDMS Microfluidics System for Replication of Cardiovascular Flow Conditions. Biomaterials 2010, 31, 3459–3464. 10.1016/j.biomaterials.2010.01.082. PubMed DOI

Vecchione R.; Pitingolo G.; Guarnieri D.; Falanga A. P.; Netti P. A. From Square to Circular Polymeric Microchannels by Spin Coating Technology: A Low Cost Platform for Endothelial Cell Culture. Biofabrication 2016, 8, 025005.10.1088/1758-5090/8/2/025005. PubMed DOI

Tang W.; Liu H.; Zhu L.; Shi J.; Li Z.; Xiang N.; Yang J. Fabrication of Different Microchannels by Adjusting the Extrusion Parameters for Sacrificial Molds. Micromachines 2019, 10, 544.10.3390/mi10080544. PubMed DOI PMC

Mannino R. G.; Myers D. R.; Ahn B.; Wang Y.; Rollins M.; Gole H.; Lin A. S.; Guldberg R. E.; Giddens D. P.; Timmins L. H.; et al. Do-It-Yourself in Vitro Vasculature That Recapitulates in Vivo Geometries for Investigating Endothelial-Blood Cell Interactions. Sci. Rep. 2015, 5, 12401.10.1038/srep12401. PubMed DOI PMC

Mannino R. G.; Pandian N. K.; Jain A.; Lam W. A. Engineering “Endothelialized” Microfluidics for Investigating Vascular and Hematologic Processes Using Non-Traditional Fabrication Techniques. Curr. Opin. Biomed. Eng. 2018, 5, 13–20. 10.1016/j.cobme.2017.11.006. PubMed DOI PMC

Shallan A. I.; Smejkal P.; Corban M.; Guijt R. M.; Breadmore M. C. Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes. Anal. Chem. 2014, 86, 3124–3130. 10.1021/ac4041857. PubMed DOI

Lee J. M.; Zhang M.; Yeong W. Y. Characterization and Evaluation of 3D Printed Microfluidic Chip for Cell Processing. Microfluid. Nanofluid. 2016, 20, 5.10.1007/s10404-015-1688-8. DOI

Samukawa S.; Hori M.; Rauf S.; Tachibana K.; Bruggeman P.; Kroesen G.; Whitehead J. C.; Murphy A. B.; Gutsol A. F.; Starikovskaia S.; et al. The 2012 Plasma Roadmap. J. Phys. D: Appl. Phys. 2012, 45, 253001.10.1088/0022-3727/45/25/253001. DOI

Zhou J.; Ellis A. V.; Voelcker N. H. Recent Developments in PDMS Surface Modification for Microfluidic Devices. Electrophoresis 2010, 31, 2–16. 10.1002/elps.200900475. PubMed DOI

Koh K.-S.; Chin J.; Chia J.; Chiang C.-L. Quantitative Studies on PDMS-PDMS Interface Bonding with Piranha Solution and Its Swelling Effect. Micromachines 2012, 3, 427–441. 10.3390/mi3020427. DOI

Abate A. R.; Lee D.; Do T.; Holtze C.; Weitz D. A. Glass Coating for PDMS Microfluidic Channels by Sol-Gel Methods. Lab Chip 2008, 8, 516–518. 10.1039/b800001h. PubMed DOI

Schneider C. A.; Rasband W. S.; Eliceiri K. W.; Schindelin J.; Arganda-Carreras I.; Frise E.; Kaynig V.; Longair M.; Pietzsch T.; Preibisch S.; et al. NIH Image to imageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. 10.1038/nmeth.2089. PubMed DOI PMC

Šafaříková E.; Švihálková Šindlerová L.; Stritesky S.; Kubala L.; Vala M.; Weiter M.; Vitecek J. Evaluation and Improvement of Organic Semiconductors’ Biocompatibility towards Fibroblasts and Cardiomyocytes. Sens. Actuators, B 2018, 260, 418–425. 10.1016/j.snb.2017.12.108. DOI

Nikitin D.; Mican J.; Toul M.; Bednar D.; Peskova M.; Kittova P.; Thalerova S.; Vitecek J.; Damborsky J.; Mikulik R.; et al. Computer-Aided Engineering of Staphylokinase toward Enhanced Affinity and Selectivity for Plasmin. Comput. Struct. Biotechnol. J. 2022, 20, 1366–1377. 10.1016/j.csbj.2022.03.004. PubMed DOI PMC

Vitecek J.; Wunschova A.; Petrek J.; Adam V.; Kizek R.; Havel L. Cell Death Induced by Sodium Nitroprusside and Hydrogen Peroxide in Tobacco BY-2 Cell Suspension. Biol. Plant. 2007, 51, 472–479. 10.1007/s10535-007-0099-4. DOI

Pestano V.; Pohlmann M.; Silva F. P. d. Effect of Acetone Vapor Smoothing Process on Surface Finish and Geometric Accuracy of Fused Deposition Modeling ABS Parts. J. Mater. Sci. Chem. Eng. 2022, 10, 1–9. 10.4236/msce.2022.1010001. DOI

Heyries K. A.; Marquette C. A.; Blum L. J. Straightforward Protein Immobilization on Sylgard 184 PDMS Microarray Surface. Langmuir 2007, 23, 4523–4527. 10.1021/la070018o. PubMed DOI

Song S.-H.; Lee C.-K.; Kim T.-J.; Shin I.; Jun S.-C.; Jung H.-I. A Rapid and Simple Fabrication Method for 3-Dimensional Circular Microfluidic Channel Using Metal Wire Removal Process. Microfluid. Nanofluid. 2010, 9, 533–540. 10.1007/s10404-010-0570-y. DOI

McDonald J.; Duffy D.; Anderson J.; Chiu D.; Wu H.; Schueller O.; Whitesides G. Fabrication of Microfluidic Systems in Poly(dimethylsiloxane). Electrophoresis 2000, 21, 27–40. 10.1002/(sici)1522-2683(20000101)21:1%3C27::aid-elps27%3E3.0.co;2-c. PubMed DOI

Haubert K.; Drier T.; Beebe D. PDMS Bonding by Means of a Portable, Low-Cost Corona System. Lab Chip 2006, 6, 1548–1549. 10.1039/b610567j. PubMed DOI

Xi W.; Sonam S.; Beng Saw T.; Ladoux B.; Teck Lim C. Emergent patterns of collective cell migration under tubular confinement. Nat. Commun. 2017, 8, 1517.10.1038/s41467-017-01390-x. PubMed DOI PMC

Rochfort K. D.; Cummins P. M.. In Vitro Cell Models of the Human Blood-Brain Barrier: Demonstrating the Beneficial Influence of Shear Stress on Brain Microvascular Endothelial Cell Phenotype. Blood-Brain Barrier; Springer, 2019; pp 71–98.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Uncovering pre-cytokinetic block in cancer cells under shear stress using a disturbed flow-generating device

. 2025 Feb 22 ; 15 (1) : 6457. [epub] 20250222

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...