Optimization of the Preparation Process of Crosslinked Polyvinyl Alcohol and Its Thermal Stability in Cementing Slurry
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2023-YBGY-052
Shaanxi Key Research and Development Plan
21JY035
Key Scientific Research Project of Shaanxi Provincial Department of Education
RVO: 11000
Ministry of Education, Youth and Sports, the institutional research program
PubMed
39996641
PubMed Central
PMC11854849
DOI
10.3390/gels11020098
PII: gels11020098
Knihovny.cz E-zdroje
- Klíčová slova
- crosslinked, fluid loss additive, oil well cement slurry, polyvinyl alcohol,
- Publikační typ
- časopisecké články MeSH
This study focuses on addressing the limitations of fluid loss additive in cement slurry under higher temperatures. The synthesis process of glutaraldehyde-crosslinked polyvinyl alcohol (PVA) was optimized to develop an efficient fluid loss additive for oil well cement slurries. Using one-factor experiments and the uniform design method, the optimal synthesis parameters were established: a reaction temperature of 50 °C; an acid concentration of 1 mol/L; a PVA mass concentration of 8%; a molar ratio of glutaraldehyde to PVA hydroxyl group of 1.47; and a crosslinking degree of 1.49%. The optimized crosslinked PVA demonstrated the ability to control API fluid loss within 50 mL when applied at 1% concentration in cement slurry under conditions of 30-110 °C and 6.9 MPa. Rheological analysis at medium and high temperatures revealed improved slurry properties, including smooth thickening curves and unaffected compressive strength. Further analyses, including thermogravimetric analysis (TGA), Zeta potential testing, and scanning electron microscopy (SEM), revealed that the crosslinked PVA hydrogel remained thermally stable up to 260 °C. Chemical crosslinking transformed the linear PVA into a network structure, enhancing its molecular weight, viscoelasticity, and thermal stability. This thermal resistance mechanism is attributed to the hydrogel's high-strength reticular structure which forms a uniform, dense, and highly stable adsorption layer, thereby improving both the additive's efficiency and the hydrogel's temperature resistance.
Changqing Drilling Company of CCDC China National Petroleum Corporation Xi'an 710060 China
Xi'an Origin Chemical Technologies Co Ltd Xi'an 710061 China
Zobrazit více v PubMed
Yan S., Wang Y., Wang F., Yang S., Wu Y., Yan S. Synthesis and mechanism study of temperature-resistant fluid loss reducer for oil well cement. Adv. Cem. Res. 2017;29:183–193. doi: 10.1680/jadcr.16.00020. DOI
Cao L., Guo J., Tian J., Xu Y., Hu M., Guo C., Wang M., Fan J. Synthesis, characterization and working mechanism of a novel sustained-release-type fluid loss additive for seawater cement slurry. J. Colloid Interface Sci. 2018;524:434–444. doi: 10.1016/j.jcis.2018.03.079. PubMed DOI
Zhou B., Ma Y., Sha S., Wang Y., Liu Y., Xiao Y., Shi C. Synthesis, performance and mechanism of shrinkage-reducing agents with water-reducing function for cement-based materials. Constr. Build. Mater. 2024;425:135994. doi: 10.1016/j.conbuildmat.2024.135994. DOI
Abbas G., Irawan S., Memon K.R., Khan J. Application of cellulose-based polymers in oil well cementing. J. Pet. Explor. Prod. Technol. 2020;10:319–325. doi: 10.1007/s13202-019-00800-8. DOI
Al-Kindi S., Al-Bahry S., Al-Wahaibi Y., Taura U., Joshi S. Partially hydrolyzed polyacrylamide: Enhanced oil recovery applications, oil-field produced water pollution, and possible solutions. Environ. Monit. Assess. 2022;194:875. doi: 10.1007/s10661-022-10569-9. PubMed DOI PMC
Gautam L., Warkar S.G., Ahmad S.I., Kant R., Jain M. A review on carboxylic acid cross-linked polyvinyl alcohol: Properties and applications. Polym. Eng. Sci. 2022;62:225–246. doi: 10.1002/pen.25849. DOI
Vatanpour V., Teber O.O., Mehrabi M., Koyuncu I. Polyvinyl alcohol-based separation membranes: A comprehensive review on fabrication techniques, applications and future prospective. Mater. Today Chem. 2023;28:101381. doi: 10.1016/j.mtchem.2023.101381. DOI
Peng Z., Li Y., He X., Feng Q., Zheng Y. Synthesis and performance study of amphoteric polymer suspension stabilizer for cementing slurry at ultra-high temperature. Colloids Surf. A Physicochem. Eng. Asp. 2024;703:135366. doi: 10.1016/j.colsurfa.2024.135366. DOI
Huo X., Wang P., Wang S., Guo R., Wang Y. Experimental study on the mechanical properties and impermeability of basalt-PVA hybrid fibre reinforced concrete. Case Stud. Constr. Mater. 2024;21:e03646. doi: 10.1016/j.cscm.2024.e03646. DOI
Holland B.J., Hay J.N. The thermal degradation of poly(vinyl alcohol) Polymer. 2001;42:6775–6783. doi: 10.1016/S0032-3861(01)00166-5. DOI
Zhang B., Wang Q., Wei Y., Wei W., Du W., Zhang J., Chen G., Slaný M. Preparation and Swelling Inhibition of Mixed Metal Hydroxide to Bentonite Clay. Minerals. 2022;12:459. doi: 10.3390/min12040459. DOI
Song M., Yu H., Gu J., Ye S., Zhou Y. Chemical cross-linked polyvinyl alcohol/cellulose nanocrystal composite films with high structural stability by spraying Fenton reagent as initiator. Int. J. Biol. Macromol. 2018;113:171–178. doi: 10.1016/j.ijbiomac.2018.02.117. PubMed DOI
Liu M., Dai W., Li M., Jin W., Yang X., Han Y., Huang M. Mechanism of interface performance enhancement of nano-SiO2 modified polyvinyl alcohol fiber reinforced geopolymer concrete: Experiments, microscopic characterization, and molecular simulation. J. Build. Eng. 2024;98:111062. doi: 10.1016/j.jobe.2024.111062. DOI
Zhang B., Wang Q., Du W., Li Y., Zhang J., Zhang J., Matejdes M., Slaný M., Gang C. Multi-Mixed Metal Hydroxide as a Strong Stratigraphic Nanoclay Inhibitor in Solid-Free Drilling Fluid. Nanomaterials. 2022;12:3863. doi: 10.3390/nano12213863. PubMed DOI PMC
Aalaie J., Vasheghani-Farahani E., Semsarzadeh M.A., Rahmatpour A. Gelation and Swelling Behavior of Semi-Interpenetrating Polymer Network Hydrogels Based on Polyacrylamide and Poly(vinyl alcohol) J. Macromol. Sci. Part B. 2008;47:1017–1027. doi: 10.1080/00222340802219412. DOI
Tolinski M. Chapter 15—Crosslinking. In: Tolinski M., editor. Additives for Polyolefins. William Andrew Publishing; Norwich, NY, USA: 2009. pp. 215–220.
Kjøniksen A.-L., Nyström B. Effects of Polymer Concentration and Cross-Linking Density on Rheology of Chemically Cross-Linked Poly(vinyl alcohol) near the Gelation Threshold. Macromolecules. 1996;29:5215–5222. doi: 10.1021/ma960094q. DOI
do Nascimento F.C., de Aguiar L.C.V., Costa L.A.T., Fernandes M.T., Marassi R.J., Gomes A.d.S., de Castro J.A. Formulation and characterization of crosslinked polyvinyl alcohol (PVA) membranes: Effects of the crosslinking agents. Polym. Bull. 2021;78:917–929. doi: 10.1007/s00289-020-03142-2. DOI
Du J., Zhan X., Xu Y., Diao K., Zhang D., Qin S. High-performance zinc-ion hydrogel electrolytes based on molecular-level hybridization of PVA with polymer quantum dots. J. Mater. Sci. Technol. 2025;212:251–258. doi: 10.1016/j.jmst.2024.06.023. DOI
Kaśkosz F., Koperwas K., Grzybowski A., Paluch M. The breakdown of the direct relation between the density scaling exponent and the intermolecular interaction potential for molecular systems with purely repulsive intermolecular forces. J. Mol. Liq. 2024;408:125332. doi: 10.1016/j.molliq.2024.125332. DOI
Hatami B., Ramezanianpour A.M., Daryan A.S. Investigation on the Effect of Shrinkage Reducing Admixtures on Shrinkage and Durability of High-Performance Concrete. J. Test. Eval. 2018;46:141–150. doi: 10.1520/JTE20170055. DOI
Xie H., Liu X., Zheng Y., Chi B., Guo J., Dai X., Zhang Z., Sun M., Duan L., Wang Z., et al. Effect of complexation of alkanolamine in accelerators on the initial stage of cement hydration. Constr. Build. Mater. 2023;393:132105. doi: 10.1016/j.conbuildmat.2023.132105. DOI
Hekal E.E., Abo-El-Enein S.A., El-Korashy S.A., Megahed G.M., El-Sayed T.M. Utilization of electric arc furnace dust as an admixture to Portland cement pastes. J. Therm. Anal. Calorim. 2013;114:613–619. doi: 10.1007/s10973-013-2992-8. DOI
Zhang B., Wang Q., Chang X., Du W., Zhang F., Kuruc M., Slaný M., Chen G. Use of Highly Dispersed Mixed Metal Hydroxide Gel Compared to Bentonite Based Gel for Application in Drilling Fluid under Ultra-High Temperatures. Gels. 2023;9:513. doi: 10.3390/gels9070513. PubMed DOI PMC
John E., Lothenbach B. Cement hydration mechanisms through time—A review. J. Mater. Sci. 2023;58:9805–9833. doi: 10.1007/s10853-023-08651-9. DOI
Baueregger S., Perello M., Plank J. Influence of carboxylated styrene-butadiene latex copolymer on Portland cement hydration. Cem. Concr. Compos. 2015;63:42–50. doi: 10.1016/j.cemconcomp.2015.06.004. DOI
Liu F., Wang B., Xing Y., Zhang K., Jiang W. Effect of Polyvinyl Alcohol on the Rheological Properties of Cement Mortar. Molecules. 2020;25:754. doi: 10.3390/molecules25030754. PubMed DOI PMC
Yang H., Wang L., Yang C., Zhao J., Huang G., Guo Y., Liu W.V. Mechanical performance of oil-well cement slurries cured and tested under high-temperatures and high-pressures for deep-well applications. Cem. Concr. Res. 2024;175:107355. doi: 10.1016/j.cemconres.2023.107355. DOI
Knapen E., Van Gemert D. Polymer film formation in cement mortars modified with water-soluble polymers. Cem. Concr. Compos. 2015;58:23–28. doi: 10.1016/j.cemconcomp.2014.11.015. DOI
Test Method for Application Performance of Oil Well Cement. Field Test Asia Pte. Ltd.; Singapore: 2008.