Optimization of the Preparation Process of Crosslinked Polyvinyl Alcohol and Its Thermal Stability in Cementing Slurry

. 2025 Jan 30 ; 11 (2) : . [epub] 20250130

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39996641

Grantová podpora
2023-YBGY-052 Shaanxi Key Research and Development Plan
21JY035 Key Scientific Research Project of Shaanxi Provincial Department of Education
RVO: 11000 Ministry of Education, Youth and Sports, the institutional research program

This study focuses on addressing the limitations of fluid loss additive in cement slurry under higher temperatures. The synthesis process of glutaraldehyde-crosslinked polyvinyl alcohol (PVA) was optimized to develop an efficient fluid loss additive for oil well cement slurries. Using one-factor experiments and the uniform design method, the optimal synthesis parameters were established: a reaction temperature of 50 °C; an acid concentration of 1 mol/L; a PVA mass concentration of 8%; a molar ratio of glutaraldehyde to PVA hydroxyl group of 1.47; and a crosslinking degree of 1.49%. The optimized crosslinked PVA demonstrated the ability to control API fluid loss within 50 mL when applied at 1% concentration in cement slurry under conditions of 30-110 °C and 6.9 MPa. Rheological analysis at medium and high temperatures revealed improved slurry properties, including smooth thickening curves and unaffected compressive strength. Further analyses, including thermogravimetric analysis (TGA), Zeta potential testing, and scanning electron microscopy (SEM), revealed that the crosslinked PVA hydrogel remained thermally stable up to 260 °C. Chemical crosslinking transformed the linear PVA into a network structure, enhancing its molecular weight, viscoelasticity, and thermal stability. This thermal resistance mechanism is attributed to the hydrogel's high-strength reticular structure which forms a uniform, dense, and highly stable adsorption layer, thereby improving both the additive's efficiency and the hydrogel's temperature resistance.

Zobrazit více v PubMed

Yan S., Wang Y., Wang F., Yang S., Wu Y., Yan S. Synthesis and mechanism study of temperature-resistant fluid loss reducer for oil well cement. Adv. Cem. Res. 2017;29:183–193. doi: 10.1680/jadcr.16.00020. DOI

Cao L., Guo J., Tian J., Xu Y., Hu M., Guo C., Wang M., Fan J. Synthesis, characterization and working mechanism of a novel sustained-release-type fluid loss additive for seawater cement slurry. J. Colloid Interface Sci. 2018;524:434–444. doi: 10.1016/j.jcis.2018.03.079. PubMed DOI

Zhou B., Ma Y., Sha S., Wang Y., Liu Y., Xiao Y., Shi C. Synthesis, performance and mechanism of shrinkage-reducing agents with water-reducing function for cement-based materials. Constr. Build. Mater. 2024;425:135994. doi: 10.1016/j.conbuildmat.2024.135994. DOI

Abbas G., Irawan S., Memon K.R., Khan J. Application of cellulose-based polymers in oil well cementing. J. Pet. Explor. Prod. Technol. 2020;10:319–325. doi: 10.1007/s13202-019-00800-8. DOI

Al-Kindi S., Al-Bahry S., Al-Wahaibi Y., Taura U., Joshi S. Partially hydrolyzed polyacrylamide: Enhanced oil recovery applications, oil-field produced water pollution, and possible solutions. Environ. Monit. Assess. 2022;194:875. doi: 10.1007/s10661-022-10569-9. PubMed DOI PMC

Gautam L., Warkar S.G., Ahmad S.I., Kant R., Jain M. A review on carboxylic acid cross-linked polyvinyl alcohol: Properties and applications. Polym. Eng. Sci. 2022;62:225–246. doi: 10.1002/pen.25849. DOI

Vatanpour V., Teber O.O., Mehrabi M., Koyuncu I. Polyvinyl alcohol-based separation membranes: A comprehensive review on fabrication techniques, applications and future prospective. Mater. Today Chem. 2023;28:101381. doi: 10.1016/j.mtchem.2023.101381. DOI

Peng Z., Li Y., He X., Feng Q., Zheng Y. Synthesis and performance study of amphoteric polymer suspension stabilizer for cementing slurry at ultra-high temperature. Colloids Surf. A Physicochem. Eng. Asp. 2024;703:135366. doi: 10.1016/j.colsurfa.2024.135366. DOI

Huo X., Wang P., Wang S., Guo R., Wang Y. Experimental study on the mechanical properties and impermeability of basalt-PVA hybrid fibre reinforced concrete. Case Stud. Constr. Mater. 2024;21:e03646. doi: 10.1016/j.cscm.2024.e03646. DOI

Holland B.J., Hay J.N. The thermal degradation of poly(vinyl alcohol) Polymer. 2001;42:6775–6783. doi: 10.1016/S0032-3861(01)00166-5. DOI

Zhang B., Wang Q., Wei Y., Wei W., Du W., Zhang J., Chen G., Slaný M. Preparation and Swelling Inhibition of Mixed Metal Hydroxide to Bentonite Clay. Minerals. 2022;12:459. doi: 10.3390/min12040459. DOI

Song M., Yu H., Gu J., Ye S., Zhou Y. Chemical cross-linked polyvinyl alcohol/cellulose nanocrystal composite films with high structural stability by spraying Fenton reagent as initiator. Int. J. Biol. Macromol. 2018;113:171–178. doi: 10.1016/j.ijbiomac.2018.02.117. PubMed DOI

Liu M., Dai W., Li M., Jin W., Yang X., Han Y., Huang M. Mechanism of interface performance enhancement of nano-SiO2 modified polyvinyl alcohol fiber reinforced geopolymer concrete: Experiments, microscopic characterization, and molecular simulation. J. Build. Eng. 2024;98:111062. doi: 10.1016/j.jobe.2024.111062. DOI

Zhang B., Wang Q., Du W., Li Y., Zhang J., Zhang J., Matejdes M., Slaný M., Gang C. Multi-Mixed Metal Hydroxide as a Strong Stratigraphic Nanoclay Inhibitor in Solid-Free Drilling Fluid. Nanomaterials. 2022;12:3863. doi: 10.3390/nano12213863. PubMed DOI PMC

Aalaie J., Vasheghani-Farahani E., Semsarzadeh M.A., Rahmatpour A. Gelation and Swelling Behavior of Semi-Interpenetrating Polymer Network Hydrogels Based on Polyacrylamide and Poly(vinyl alcohol) J. Macromol. Sci. Part B. 2008;47:1017–1027. doi: 10.1080/00222340802219412. DOI

Tolinski M. Chapter 15—Crosslinking. In: Tolinski M., editor. Additives for Polyolefins. William Andrew Publishing; Norwich, NY, USA: 2009. pp. 215–220.

Kjøniksen A.-L., Nyström B. Effects of Polymer Concentration and Cross-Linking Density on Rheology of Chemically Cross-Linked Poly(vinyl alcohol) near the Gelation Threshold. Macromolecules. 1996;29:5215–5222. doi: 10.1021/ma960094q. DOI

do Nascimento F.C., de Aguiar L.C.V., Costa L.A.T., Fernandes M.T., Marassi R.J., Gomes A.d.S., de Castro J.A. Formulation and characterization of crosslinked polyvinyl alcohol (PVA) membranes: Effects of the crosslinking agents. Polym. Bull. 2021;78:917–929. doi: 10.1007/s00289-020-03142-2. DOI

Du J., Zhan X., Xu Y., Diao K., Zhang D., Qin S. High-performance zinc-ion hydrogel electrolytes based on molecular-level hybridization of PVA with polymer quantum dots. J. Mater. Sci. Technol. 2025;212:251–258. doi: 10.1016/j.jmst.2024.06.023. DOI

Kaśkosz F., Koperwas K., Grzybowski A., Paluch M. The breakdown of the direct relation between the density scaling exponent and the intermolecular interaction potential for molecular systems with purely repulsive intermolecular forces. J. Mol. Liq. 2024;408:125332. doi: 10.1016/j.molliq.2024.125332. DOI

Hatami B., Ramezanianpour A.M., Daryan A.S. Investigation on the Effect of Shrinkage Reducing Admixtures on Shrinkage and Durability of High-Performance Concrete. J. Test. Eval. 2018;46:141–150. doi: 10.1520/JTE20170055. DOI

Xie H., Liu X., Zheng Y., Chi B., Guo J., Dai X., Zhang Z., Sun M., Duan L., Wang Z., et al. Effect of complexation of alkanolamine in accelerators on the initial stage of cement hydration. Constr. Build. Mater. 2023;393:132105. doi: 10.1016/j.conbuildmat.2023.132105. DOI

Hekal E.E., Abo-El-Enein S.A., El-Korashy S.A., Megahed G.M., El-Sayed T.M. Utilization of electric arc furnace dust as an admixture to Portland cement pastes. J. Therm. Anal. Calorim. 2013;114:613–619. doi: 10.1007/s10973-013-2992-8. DOI

Zhang B., Wang Q., Chang X., Du W., Zhang F., Kuruc M., Slaný M., Chen G. Use of Highly Dispersed Mixed Metal Hydroxide Gel Compared to Bentonite Based Gel for Application in Drilling Fluid under Ultra-High Temperatures. Gels. 2023;9:513. doi: 10.3390/gels9070513. PubMed DOI PMC

John E., Lothenbach B. Cement hydration mechanisms through time—A review. J. Mater. Sci. 2023;58:9805–9833. doi: 10.1007/s10853-023-08651-9. DOI

Baueregger S., Perello M., Plank J. Influence of carboxylated styrene-butadiene latex copolymer on Portland cement hydration. Cem. Concr. Compos. 2015;63:42–50. doi: 10.1016/j.cemconcomp.2015.06.004. DOI

Liu F., Wang B., Xing Y., Zhang K., Jiang W. Effect of Polyvinyl Alcohol on the Rheological Properties of Cement Mortar. Molecules. 2020;25:754. doi: 10.3390/molecules25030754. PubMed DOI PMC

Yang H., Wang L., Yang C., Zhao J., Huang G., Guo Y., Liu W.V. Mechanical performance of oil-well cement slurries cured and tested under high-temperatures and high-pressures for deep-well applications. Cem. Concr. Res. 2024;175:107355. doi: 10.1016/j.cemconres.2023.107355. DOI

Knapen E., Van Gemert D. Polymer film formation in cement mortars modified with water-soluble polymers. Cem. Concr. Compos. 2015;58:23–28. doi: 10.1016/j.cemconcomp.2014.11.015. DOI

Test Method for Application Performance of Oil Well Cement. Field Test Asia Pte. Ltd.; Singapore: 2008.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...