Trace Detection of Di-Isopropyl Methyl Phosphonate DIMP, a By-Product, Precursor, and Simulant of Sarin, Using Either Ion Mobility Spectrometry or GC-MS
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39997917
PubMed Central
PMC11861048
DOI
10.3390/toxics13020102
PII: toxics13020102
Knihovny.cz E-zdroje
- Klíčová slova
- di-isopropyl methyl phosphonate (DIMP), gas chromatography with mass spectrometry (GC-MS), ion mobility spectrometry (IMS), sarin (GB), simulants for chemical warfare agents (CWAs), soman (GD), trace detection,
- Publikační typ
- časopisecké články MeSH
Di-isopropyl methyl phosphonate (DIMP) has no major commercial uses but is a by-product or a precursor in the synthesis of the nerve agent sarin (GB). Also, DIMP is utilized as a simulant compound for the chemical warfare agents sarin and soman in order to test and calibrate sensitive IMS instrumentation that warns against the deadly chemical weapons. DIMP was measured from 2 ppbv (15 μg m-3) to 500 ppbv in the air using a pocket-held ToF ion mobility spectrometer, model LCD-3.2E, with a non-radioactive ionization source and ammonia doping in positive ion mode. Excellent sensitivity (LoD of 0.24 ppbv and LoQ of 0.80 ppbv) was noticed; the linear response was up to 10 ppbv, while saturation occurred at >500 ppbv. DIMP identification by IMS relies on the formation of two distinct peaks: the monomer M·NH4+, with a reduced ion mobility K0 = 1.41 cm2 V-1 s-1, and the dimer M2·NH4+, with K0 = 1.04 cm2 V-1 s-1 (where M is the DIMP molecule); positive reactant ions (Pos RIP) have K0 = 2.31 cm2 V-1 s-1. Quantification of DIMP at trace levels was also achieved by GC-MS over the concentration range of 1.5 to 150 μg mL-1; using a capillary column (30 m × 0.25 mm × 0.25 μm) with a TG-5 SilMS stationary phase and temperature programming from 60 to 110 °C, DIMP retention time (RT) was ca. 8.5 min. The lowest amount of DIMP measured by GC-MS was 1.5 ng, with an LoD of 0.21 μg mL-1 and an LoQ of 0.62 μg mL-1 DIMP. Our results demonstrate that these methods provide robust tools for both on-site and off-site detection and quantification of DIMP at trace levels, a finding which has significant implications for forensic investigations of chemical agent use and for environmental monitoring of contamination by organophosphorus compounds.
Zobrazit více v PubMed
Moedritzer K., Miller R.E. A Convenient One-Step, High-Yield Preparation of Methylphosphonyl Dichloride from Dimethyl Methylphosphonate. Synth. React. Inorg. Met. Org. Chem. 1974;4:417–427. doi: 10.1080/00945717408069671. DOI
PubChem. National Library of Medicine. Compound summary: Diisopropyl Methylphosphonate. [(accessed on 25 September 2024)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/3073.
Pacsial-Ong E.J., Aguilar Z.P. Chemical warfare agent detection: A review of current trends and future perspective. Front. Biosci. 2013;5:516–543. doi: 10.2741/S387. PubMed DOI
Eiceman G., Karpas Z. Ion Mobility Spectrometry. 2nd ed. CRC Press; Boca Raton, FL, USA: Taylor & Francis; Boca Raton, FL, USA: 2005.
Du Z., Sun T., Zhao J., Wang D., Zhang Z., Yu W. Development of a plug-type IMS-MS instrument and its applications in resolving problems existing in in-situ detection of illicit drugs and explosives by IMS. Talanta. 2018;184:65–72. doi: 10.1016/j.talanta.2018.02.086. PubMed DOI
Giannoukos S., Brkić B., Taylor S., Marshall A., Verbeek G.F. Chemical Sniffing Instrumentation for Security Applications. Chem. Rev. 2016;116:8146–8172. doi: 10.1021/acs.chemrev.6b00065. PubMed DOI
Reiss R., Hauser F., Ehlert S., Pütz M., Zimmermann R. Comparison of Different Analytical Methods for the On-Site Analysis of Traces at Clandestine Drug Laboratories. Appl. Sci. 2021;11:3754. doi: 10.3390/app11093754. DOI
Sisco E., Verkouteren J., Staymates J., Lawrence J. Rapid detection of fentanyl, fentanyl analogues, and opioids for on-site or laboratory based drug seizure screening using thermal desorption DART-MS and ion mobility spectrometry. Forensic Chem. 2017;4:108–115. doi: 10.1016/j.forc.2017.04.001. PubMed DOI PMC
Bocos-Bintintan V., Brittain A., Thomas C.L.P. The response of a membrane inlet ion mobility spectrometer to chlorine and the effect of water contamination of the drying media on ion mobility spectrometric responses to chlorine. Analyst. 2001;126:1539–1544. doi: 10.1039/b100524n. DOI
Wolańska I., Piwowarski K., Budzyńska E., Puton J. Effect of Humidity on the Mobilities of Small Ions in Ion Mobility Spectrometry. [(accessed on 5 January 2025)];Anal. Chem. 2023 95:8505–8511. Available online: https://pubs.acs.org/doi/10.1021/acs.analchem.3c00435. PubMed DOI PMC
Moura P.C., Santos F., Fujão C., Vassilenko V. In Situ Indoor Air Volatile Organic Compounds Assessment in a Car Factory Painting Line. Processes. 2023;11:2259. doi: 10.3390/pr11082259. DOI
Bocos-Bintintan V., Ratiu I.A. Fast Sensing of Hydrogen Cyanide (HCN) Vapors Using a Hand-Held Ion Mobility Spectrometer with Nonradioactive Ionization Source. Sensors. 2021;21:5045. doi: 10.3390/s21155045. PubMed DOI PMC
Gallegos J., Arce C., Jordano R., Arce L., Medina L.M. Target identification of volatile metabolites to allow the differentiation of lactic acid bacteria by gas chromatography-ion mobility spectrometry. Food Chem. 2017;220:362–370. doi: 10.1016/j.foodchem.2016.10.022. PubMed DOI
Maddula S., Blank L.M., Schmid A., Baumbach J.I. Detection of volatile metabolites of Escherichia coli by multi capillary column coupled ion mobility spectrometry. Anal. Bioanal. Chem. 2009;394:791–800. doi: 10.1007/s00216-009-2758-0. PubMed DOI
Perl T., Jünger M., Vautz W., Nolte J., Kuhns M., Borg-von Zepelin M., Quintel M. Detection of characteristic metabolites of Aspergillus fumigatus and Candida species using mobility spectrometry-metabolic profiling by volatile organic compounds. Mycoses. 2011;54:828–837. doi: 10.1111/j.1439-0507.2011.02037.x. PubMed DOI
Dodds J.N., Kirkwood-Donelson K.I., Boatman A.K., Knappe D.R.U., Hall N.S., Schnetzer A., Baker E.S. Evaluating Solid Phase Adsorption Toxin Tracking (SPATT) for passive monitoring of per- and polyfluoroalkyl substances (PFAS) with Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS) Sci. Total Environ. 2024;947:174574. doi: 10.1016/j.scitotenv.2024.174574. PubMed DOI PMC
Eiceman G.A., Nazarov E.G., Stone J.A. Chemical standards in ion mobility spectrometry. Anal. Chim. Acta. 2003;493:185–194. doi: 10.1016/S0003-2670(03)00762-1. DOI
European Medicines Agency Note for Guidance on Validation of Analytical Procedures: Text and Methodology (CPMP/ICH/381/95) [(accessed on 18 November 2024)]. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-q2r1-validation-analytical-procedures-text-methodology-step-5-first-version_en.pdf.
Hauck B.C., Davis E.J., Clark A.E., Siems W.F., Harden C.S., McHugh V.M., Hill H.H. Determining the water content of a drift gas using reduced ion mobility measurements. Int. J. Mass Spectrom. 2014;368:37–44. doi: 10.1016/j.ijms.2014.05.010. DOI
Bohnhorst A., Kirk A.T., Berger M., Zimmermann S. Fast Orthogonal Separation by Superposition of Time of Flight and Field Asymmetric Ion Mobility Spectrometry. Anal. Chem. 2018;90:1114–1121. doi: 10.1021/acs.analchem.7b03200. PubMed DOI
Ungethüm B., Walte A., Münchmeyer W., Matz G. Comparative measurements of toxic industrial compounds with a differential mobility spectrometer and a time of flight ion mobility spectrometer. Int. J. Ion Mobil. Spec. 2009;12:131–137. doi: 10.1007/s12127-009-0028-7. DOI
Ahrens A., Allers M., Bock H., Hitzemann M., Ficks A., Zimmermann S. Detection of Chemical Warfare Agents with a Miniaturized High-Performance Drift Tube Ion Mobility Spectrometer Using High-Energetic Photons for Ionization. Anal. Chem. 2022;94:15440–15447. doi: 10.1021/acs.analchem.2c03422. PubMed DOI PMC
Rearden P., Harrington P.B. Rapid screening of precursor and degradation products of chemical warfare agents in soil by solid-phase microextraction ion mobility spectrometry (SPME–IMS) Anal. Chim. Acta. 2005;545:13–20. doi: 10.1016/j.aca.2005.04.035. DOI
Waitt T. Sampling and Analysis of Chemical Threat in Maritime Cargo Containers. American Security Today, May 20, 2023. [(accessed on 15 June 2024)]. Available online: https://americansecuritytoday.com/sampling-and-analysis-of-chemical-threat-in-maritime-cargo-containers/
Sielemann S., Li F., Schmidt H., Baumbach J.I. Ion Mobility Spectrometer with UV-Ionization Source for the Determination of Chemical Warfare Agent Simulants. Int. J. Ion Mobil. Spec. 2001;4:81–84.
Kanu A.B., Haigh P.E., Hill H.H. Surface detection of chemical warfare agent simulants and degradation products. Anal. Chim. Acta. 2005;553:148–159. doi: 10.1016/j.aca.2005.08.012. DOI
Viitanen A.K., Mauriala T., Mattila T., Adamov A., Pedersen C.S., Makela J.M., Marjamaki M., Sysoev A., Keskinen J., Kotiaho T. Adjusting mobility scales of ion mobility spectrometers using 2,6-DtBP as a reference compound. Talanta. 2008;76:1218–1223. doi: 10.1016/j.talanta.2008.05.030. PubMed DOI
Budiman H. Analysis and Identification Spiking Chemical Compounds Related to Chemical Weapon Convention in Unknown Water Samples Using Gas Chromatography and Gas Chromatography Electron Ionization Mass Spectrometry. Indones. J. Chem. 2007;7:297–302. doi: 10.22146/ijc.21672. DOI