The ancient and helical architecture of Elasmobranchii's spermatozoa enables progressive motility in viscous environments
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39999125
PubMed Central
PMC11856307
DOI
10.1371/journal.pone.0319354
PII: PONE-D-24-52456
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- Elasmobranchii fyziologie anatomie a histologie MeSH
- hlavička spermie fyziologie MeSH
- motilita spermií * fyziologie MeSH
- spermie * fyziologie MeSH
- viskozita MeSH
- žraloci fyziologie anatomie a histologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Subclass Elasmobranchii belongs to an old evolutionary class of Chondrichthyes that diverged 450 mya, presenting a wide diversity of reproductive strategies while preserving the ancient mode of internal fertilization. Despite such evolutionary success, many species in this group are at serious risk of extinction. Understanding the principles of sperm progressive motility and physiology of such an ancient group of vertebrates is crucial for advancing future assisted reproductive techniques to safeguard this species and for deepening our understanding of the evolution of reproduction. Elasmobranchii species possess big spermatozoa (compared to bony fishes) with an elongated helical head and tail similar to one currently existing (but later diverged) in birds, reptiles, and amphibians, which can be considered an evolutionary ancient. These structures may be associated with the necessity to penetrate viscous ovarian fluid or the jelly layer of eggs, suggesting environmental viscosity as the driving pressure shaping large-sized sperm heads into helical shapes through evolution. We observed spermatozoa motility with high-speed video microscopy to capture sperm and flagellar motion in three Elasmobranchii species: the freshwater ray Potamotrygon motoro, the marine skate Raja asterias and the shark Scyliorhinus canicula. We investigated the effect of viscosity on spermatozoa motility parameters and its ability to break free from spermatozeugmata, move progressively, and perform directional changes. After 20 min of observation, the spermatozeugmata conserved their structure in a low viscosity media of 1000 mOsm/kg osmolality. In comparison, no remaining structure of spermatozeugmata could be found in high-viscosity media with 2% methylcellulose (MC) in all three species due to progressive spermatozoa motion. We find that spermatozoa's unique helical head-to-flagellum architecture is specific to promote locomotion in high-viscosity fluid; they cannot move progressively in low viscosity. The highest velocity for shark sperm was observed at 0.75% MC and 1% MC for ray and skate sperm. Viscosity stabilizes the flagellar propagation, producing rotational forces and allowing the helical head to "screw" into the media. Our observations suggest that the surrounding viscosity is critical to allowing spermatozoa progressive motility and enabling spermatozoa to control direction via newly observed head buckling in high viscosity. As such, the viscosity may be a key element controlling and regulating sperm performance and navigation during fertilization in the Elasmobranchii species.
Zobrazit více v PubMed
Amaral CRL, Pereira F, Silva DA, Amorim A, de Carvalho EF. The mitogenomic phylogeny of the Elasmobranchii (Chondrichthyes). Mitochondrial DNA A DNA Mapp Seq Anal. 2018;29(6):867–78. doi: 10.1080/24701394.2017.1376052 PubMed DOI
Walker TI. Reproduction of Chondrichthyans. In: Yoshida M, Asturiano JF, editors. Reproduction in aquatic animals: from basic biology to aquaculture technology. Singapore: Springer Singapore; 2020. p. 193–223.
Fitzpatrick JL. Sperm competition and fertilization mode in fishes. Philos Trans R Soc London Ser B. 2020;375(1813):20200074. doi: 10.1098/rstb.2020.0074 PubMed DOI PMC
Pitnick S, Hosken DJ, Birkhead TR. 3 - Sperm morphological diversity. In: Birkhead TR, Hosken DJ, Pitnick S, editors. Sperm biology. London: Academic Press; 2009. p. 69–149.
Kahrl AF, Snook RR, Fitzpatrick JL. Fertilization mode drives sperm length evolution across the animal tree of life. Nat Ecol Evol. 2021;5(8):1153–64. doi: 10.1038/s41559-021-01488-y PubMed DOI
Long JA, Mark-Kurik E, Johanson Z, Lee MSY, Young GC, Min Z, et al.. Copulation in antiarch placoderms and the origin of gnathostome internal fertilization. Nature. 2015;517(7533):196–9. doi: 10.1038/nature13825 PubMed DOI
Støstad HN, Johnsen A, Lifjeld JT, Rowe M. Sperm head morphology is associated with sperm swimming speed: a comparative study of songbirds using electron microscopy. Evolution. 2018;72(9):1918–32. doi: 10.1111/evo.13555 PubMed DOI
Simon CO, Barrie GMJ, David MS. The Ultrastructure of spermatozoa of Squamata. II. Agamidae, Varanidae, Colubridae, Elapidae, and Boidae (Reptilia). Herpetologica. 1996;52(2):216–41.
Carrick FN, Hughes RL. Aspects of the structure and development of monotreme spermatozoa and their relevance to the evolution of mammalian sperm morphology. Cell Tissue Res. 1982;222(1):127–41. Epub 1982/01/01. doi: 10.1007/BF00218293 PubMed DOI
Ecroyd H, Nixon B, Dacheux JL, Jones RC. Testicular descent, sperm maturation and capacitation. Lessons from our most distant relatives, the monotremes. Reprod Fertil Dev. 2009;21(8):992–1001. Epub 2009/10/31. doi: 10.1071/RD09081 PubMed DOI
Nixon B, Ecroyd H, Dacheux J-L, Dacheux F, Labas V, Johnston SD, et al.. Formation and dissociation of sperm bundles in monotremes1. Biol Reprod. 2016;95(4):91. doi: 10.1095/biolreprod.116.140491 PubMed DOI
Scheltinga J. Spermatogenesis and the mature spermatozoon: Form, function and phylogenetic implications. In: Jamieson BGM, editor. Reproductive biology and phylogeny of anura CRC Press; 2003. p. 119–217.
Lisicki M, Velho Rodrigues MF, Goldstein RE, Lauga E. Swimming eukaryotic microorganisms exhibit a universal speed distribution. eLife. 2019;8:e44907. doi: 10.7554/eLife.44907 PubMed DOI PMC
Wang P, Al Azad MAR, Yang X, Martelli PR, Cheung KY, Shi J, et al.. Self-adaptive and efficient propulsion of Ray sperms at different viscosities enabled by heterogeneous dual helixes. Proc Natl Acad Sci USA. 2021;118(23):e2024329118. doi: 10.1073/pnas.2024329118 PubMed DOI PMC
Gadêlha H, Gaffney EA. Flagellar ultrastructure suppresses buckling instabilities and enables mammalian sperm navigation in high-viscosity media. J R Soc Interface. 2019;16(152):20180668. doi: 10.1098/rsif.2018.0668 PubMed DOI PMC
Ivic A, Onyeaka H, Girling A, Brewis IA, Ola B, Hammadieh N, et al.. Critical evaluation of methylcellulose as an alternative medium in sperm migration tests. Hum Reprod. 2002;17(1):143–9. doi: 10.1093/humrep/17.1.143 PubMed DOI
Tanaka S, Kurokawa H, Masako H. Comparative Morphology of the Sperm in Chondrichthyan Fishes. In: Jamieson BG, Ausio J, Jean-Lou J, editors. Advances in spermatozoal phylogeny and taxonomy. Paris: Editions du Muséum national d’Histoire naturelle; 1995. p. 313–20.
Rowley A, Locatello L, Kahrl A, Rego M, Boussard A, Garza-Gisholt E, et al.. Sexual selection and the evolution of sperm morphology in sharks. J Evol Biol. 2019;32(10):1027–35. doi: 10.1111/jeb.13501 PubMed DOI
Penfold LM, Wyffels JT. Reproductive Science in Sharks and Rays. Adv Exp Med Biol. 2019;1200:465–88. Epub 2019/09/01. doi: 10.1007/978-3-030-23633-5_15 PubMed DOI
Oriola D, Needleman DJ, Brugués J. The physics of the metaphase spindle. Annu Rev Biophys. 2018;47:655–73. Epub 2018/05/25. doi: 10.1146/annurev-biophys-060414-034107 PubMed DOI
Kahrl AF, Snook RR, Fitzpatrick JL. Fertilization mode differentially impacts the evolution of vertebrate sperm components. Nat Commun. 2022;13(1):6809. doi: 10.1038/s41467-022-34609-7 PubMed DOI PMC
Jamieson BGM. Chondrichthyan Spermatozoa and Phylogeny. In: Hamlett WC, editor. Reproductive biology and phylogeny of Chondrichthyes. 1st ed. Boca Raton, Florida: CRC Press; 2005. p. 201–36.
Gadêlha H, Gaffney EA, Smith DJ, Kirkman-Brown JC. Nonlinear instability in flagellar dynamics: a novel modulation mechanism in sperm migration? J R Soc Interface. 2010;7(53):1689–97. doi: 10.1098/rsif.2010.0136 PubMed DOI PMC
Cass JF, Bloomfield-Gadêlha H. The reaction-diffusion basis of animated patterns in eukaryotic flagella. Nat Commun. 2023;14(1):5638. doi: 10.1038/s41467-023-40338-2 PubMed DOI PMC
Woolley DM. A novel motility pattern in quail spermatozoa with implications for the mechanism of flagellar beating. Biol Cell. 2007;99(12):663–75. Epub 2007/06/15. doi: 10.1042/bc20070050 PubMed DOI
Leung MR, Roelofs MC, Ravi RT, Maitan P, Henning H, Zhang M, et al.. The multi-scale architecture of mammalian sperm flagella and implications for ciliary motility. EMBO J. 2021;40(7):e107410. Epub 2021/03/12. doi: 10.15252/embj.2020107410 PubMed DOI PMC
Andrietti F, Bernardini G. The movement of spermatozoa with helical head: theoretical analysis and experimental results. Biophys J. 1994;67(4):1767–74. doi: 10.1016/S0006-3495(94)80651-4 PubMed DOI PMC
Smith DJ, Gaffney EA, Gadêlha H, Kapur N, Kirkman-Brown JC. Bend propagation in the flagella of migrating human sperm, and its modulation by viscosity. Cell Motil Cytoskeleton. 2009;66(4):220–36. doi: 10.1002/cm.20345 PubMed DOI
Fitzpatrick JL, Montgomerie R, Desjardins JK, Stiver KA, Kolm N, Balshine S. Female promiscuity promotes the evolution of faster sperm in cichlid fishes. Proc Natl Acad Sci USA. 2009;106(4):1128–32. doi: 10.1073/pnas.0809990106 PubMed DOI PMC
Briskie JV, Montgomerie R. Sperm size and sperm competition in birds. Proc Biol Sci. 1992;247(1319):89–95. doi: 10.1098/rspb.1992.0013 PubMed DOI
Immler S, Pitnick S, Parker GA, Durrant KL, Lüpold S, Calhim S, et al.. Resolving variation in the reproductive tradeoff between sperm size and number. Proc Natl Acad Sci USA. 2011;108(13):5325–30. doi: 10.1073/pnas.1009059108 PubMed DOI PMC
Lüpold S, Calhim S, Immler S, Birkhead TR. Sperm morphology and sperm velocity in passerine birds. Proc Biol Sci. 2009;276(1659):1175–81. doi: 10.1098/rspb.2008.1645 PubMed DOI PMC
Tourmente M, Gomendio M, Roldan ER. Sperm competition and the evolution of sperm design in mammals. BMC Evol Biol. 2011;11(1):1–10. doi: 10.1186/1471-2148-11-12 PubMed DOI PMC
Stockley P, Gage MJG, Parker GA, Møller AP. Sperm competition in fishes: the evolution of testis size and ejaculate characteristics. Am Naturalist. 1997;149(5):933–54. doi: 10.1086/286031 PubMed DOI
Gage MJG, Macfarlane C, Yeates S, Shackleton R, Parker GA. Relationships between sperm morphometry and sperm motility in the Atlantic salmon. J Fish Biol. 2002;61(6):1528–39. doi: 10.1111/j.1095-8649.2002.tb02495.x DOI
Gage MJG, Freckleton RP. Relative testis size and sperm morphometry across mammals: no evidence for an association between sperm competition and sperm length. Proc Biol Sci. 2003;270(1515):625–32. doi: 10.1098/rspb.2002.2258 PubMed DOI PMC
Langen K, Thünken T, Klemm J, Sandmann S, Bakker TCM. Sperm size is negatively related to relative testis size in West African riverine cichlid fishes. Sci Nature. 2019;106(5–6):30. doi: 10.1007/s00114-019-1622-0 PubMed DOI
Gilbert PW, Heath GW. The clasper-siphon sac mechanism in Squalus acanthias and Mustelus canis. Comp Biochem Physiol A Comp Physiol. 1972;42(1):97–119. Epub 1972/05/01. doi: 10.1016/0300-9629(72)90371-4 PubMed DOI
Whitney NM, Pratt HL, Carrier JC. Group courtship, mating behaviour and siphon sac function in the whitetip reef shark, Triaenodon obesus. Anim Behav. 2004;68(6):1435–42. doi: 10.1016/j.anbehav.2004.02.018 DOI
Piercy A, Gelsleichter J, Snelson FF, Jr. Morphological changes in the clasper gland of the Atlantic stingray, Dasyatis sabina, associated with the seasonal reproductive cycle. J Morphol. 2006;267(1):109–14. Epub 2005/11/05. doi: 10.1002/jmor.10389 PubMed DOI
Cosson J. The ionic and osmotic factors controlling motility of fish spermatozoa. Aquac Int. 2004;12(1):69–85. doi: 10.1023/b:aqui.0000017189.44263.bc DOI
Dzyuba V, Sampels S, Ninhaus-Silveira A, Kahanec M, Veríssimo-Silveira R, Rodina M, et al.. Sperm motility and lipid composition in internally fertilizing ocellate river stingray Potamotrygon motoro. Theriogenology. 2019;130:26–35. doi: 10.1016/j.theriogenology.2019.02.029 PubMed DOI
Del Mar Pedreros-Sierra T, Ramírez-Pinilla MP. Morphology of the reproductive tract and acquisition of sexual maturity in males of Potamotrygon magdalenae (Elasmobranchii: Potamotrygonidae). J Morphol. 2015;276(3):273–89. doi: 10.1002/jmor.20337 PubMed DOI
Girard M, Rivalan P, Sinquin G. Testis and sperm morphology in two deep-water squaloid sharks, Centroscymnus coelolepis and Centrophorus squamosus. J Fish Biol. 2000;57(6):1575–89. doi: 10.1111/j.1095-8649.2000.tb02233.x DOI
Jones CJP, Hamlett WC. Glycosylation of the male genital ducts and spermatozeugmata formation in the clearnose skate Raja eglanteria. Histochem J. 2003;34(11):601–15. doi: 10.1023/A:1026093902502 PubMed DOI
McClusky LM. Sperm of Galeorhinus galeus (Elasmobranchii, Triakidae) traverse an excurrent duct system characterized by pronounced regionalization: a scanning electron and light microscopy study. Anat Rec (Hoboken). 2015;298(11):1938–49. doi: 10.1002/ar.23204 PubMed DOI
Wyffels JT, George R, Adams L, Adams C, Clauss T, Newton A, et al.. Testosterone and semen seasonality for the sand tiger shark Carcharias taurus. Biol Reprod. 2019;102(4):876–87. doi: 10.1093/biolre/ioz221 PubMed DOI PMC
Pratt HL Jr, Tanaka S. Sperm storage in male elasmobranchs: a description and survey. J Morphol. 1994;219(3):297–308. doi: 10.1002/jmor.1052190309 PubMed DOI
Hamlett WC, Knight DP, Koob TJ, Jezior M, Luong T, Rozycki T, et al.. Survey of oviducal gland structure and function in elasmobranchs. J Exp Zool. 1998;282(45):399–420. doi: 10.1002/(sici)1097-010x(199811/12)282:4/5<399::aid-jez2>3.3.co;2-y DOI
Moura T, Serra-Pereira B, Gordo LS, Figueiredo I. Sperm storage in males and females of the deepwater shark Portuguese dogfish with notes on oviducal gland microscopic organization. J Zool. 2011;283(3):210–9. doi: 10.1111/j.1469-7998.2010.00775.x DOI
Storrie MT, Walker TI, Laurenson LJ, Hamlett WC. Microscopic organization of the sperm storage tubules in the oviducal gland of the female gummy shark (Mustelus antarcticus), with observations on sperm distribution and storage. J Morphol. 2008;269(11):1308–24. doi: 10.1002/jmor.10646 PubMed DOI
Lamarca F, Carvalho PH, Vilasboa A, Netto-Ferreira AL, Vianna M. Is multiple paternity in elasmobranchs a plesiomorphic characteristic? Environ Biol Fishes. 2020;103(12):1463–70. doi: 10.1007/s10641-020-01034-y DOI
Pearcy M, Delescaille N, Lybaert P, Aron S. Team swimming in ant spermatozoa. Biol Lett. 2014;10(6):20140308. doi: 10.1098/rsbl.2014.0308 PubMed DOI PMC
Dzyuba V, Cosson J. Motility of fish spermatozoa: from external signaling to flagella response. Reprod Biol. 2014;14(3):165–75. Epub 2014/08/26. doi: 10.1016/j.repbio.2013.12.005 PubMed DOI
Perez-Cerezales S, Boryshpolets S, Eisenbach M. Behavioral mechanisms of mammalian sperm guidance. Asian J Androl. 2015;17(4):628–32. Epub 2015/05/23. doi: 10.4103/1008-682X.154308 ; PMCID: PMC4492055 PubMed DOI PMC
Dzyuba V, Ninhaus-Silveira A, Kahanec M, Veríssimo-Silveira R, Rodina M, Holt WV, et al.. Sperm motility in ocellate river stingrays: evidence for post-testicular sperm maturation and capacitation in Chondrichthyes. J Zool. 2019;307(1):9–16. doi: 10.1111/jzo.12610 DOI
Pérez LM. Fish sperm maturation, capacitation, and motility activation. In: Yoshida M, Asturiano JF, editors. Reproduction in aquatic animals. 1st ed. Singapore: Springer Nature Singapore Pte Ltd; 2020. p. 47–68.
Muñoz-Baquero M, Marco-Jiménez F, García-Domínguez X, Ros-Santaella JL, Pintus E, Jiménez-Movilla M, et al.. Comparative study of semen parameters and hormone profile in small-spotted catshark (Scyliorhinus canicula): Aquarium-housed vs. wild-captured. Animals (Basel). 2021;11(10):2884. Epub 2021/10/24. doi: 10.3390/ani11102884 PubMed DOI PMC
Hermo L, Oliveira RL, Smith CE, Bergeron JJM. Inherent sperm maturation: a role for the hermes body (cytoplasmic droplet) of sperm. In: Skinner MK, editor. Encyclopedia of reproduction. 2nd ed. Oxford: Academic Press; 2018. p. 72–84.
Au CE, Hermo L, Byrne E, Smirle J, Fazel A, Kearney RE, et al.. Compartmentalization of membrane trafficking, glucose transport, glycolysis, actin, tubulin and the proteasome in the cytoplasmic droplet/Hermes body of epididymal sperm. Open Biology. 2015;5(8):150080. Epub 2015/08/28. doi: 10.1098/rsob.150080 PubMed DOI PMC
Hamlett WC, Musick JA, Hysell CK, Sever DM. Uterine epithelial-sperm interaction, endometrial cycle and sperm storage in the terminal zone of the oviducal gland in the placental smoothhound, Mustelus canis. J Exp Zool. 2002;292(2):129–44. Epub 2001/12/26. doi: 10.1002/jez.1149 PubMed DOI
Woolley DM, Vernon GG. A study of helical and planar waves on sea urchin sperm flagella, with a theory of how they are generated. J Exp Biol. 2001;204(Pt 7):1333–45. Epub 2001/03/16. doi: 10.1242/jeb.204.7.1333 PubMed DOI
Schmoll T, Rudolfsen G, Schielzeth H, Kleven O. Sperm velocity in a promiscuous bird across experimental media of different viscosities. Proc Biol Sci. 2020;287(1931):20201031. doi: 10.1098/rspb.2020.1031 PubMed DOI PMC
Muto K, Kubota HY. A novel mechanism of sperm motility in a viscous environment: Corkscrew‐shaped spermatozoa cruise by spinning. Cell Motil Cytoskeleton. 2009;66(5):281–91. doi: 10.1002/cm.20358 PubMed DOI
Eisenbach M, Giojalas LC. Sperm guidance in mammals — an unpaved road to the egg. Nat Rev Mol Cell Biol. 2006;7(4):276–85. doi: 10.1038/nrm1893 PubMed DOI
Jawed MK, Khouri NK, Da F, Grinspun E, Reis PM. Propulsion and instability of a flexible helical rod rotating in a viscous fluid. Phys Rev Lett. 2015;115(16):168101. doi: 10.1103/PhysRevLett.115.168101 PubMed DOI
Son K, Guasto JS, Stocker R. Bacteria can exploit a flagellar buckling instability to change direction. Nat Phys. 2013;9(8):494–8. doi: 10.1038/nphys2676 DOI
Minamikawa S, Morisawa M. Acquisition, initiation and maintenance of sperm motility in the shark, Triakis scyllia. Comp Biochem Physiol Part A. 1996;113(4):387–92. doi: 10.1016/0300-9629(95)02080-2 DOI
Coy R, Gadêlha H. The counterbend dynamics of cross-linked filament bundles and flagella. J R Soc Interface. 2017;14(130):20170065. doi: 10.1098/rsif.2017.0065 PubMed DOI PMC
García-Salinas P, Gallego V, Asturiano JF. Development of sperm cryopreservation protocols for sharks and rays: new tools for elasmobranch conservation. Front Mar Sci. 2021;8:1–13. doi: 10.3389/fmars.2021.689089 PubMed DOI
Stamper AM. Immobilization of Elasmobranchs In: Smith MFL, Warmolts D, Thoney DA, Hueter RE, Murray M, Ezcurra JM, et al.., editors. The elasmobranch husbandry manual II: recent advances in the care of sharks, rays and their relatives. The Ohio State University; 2017. p. 281–96.
García-Salinas P, Gallego V, Asturiano JF. Reproductive anatomy of chondrichthyans: notes on specimen handling and sperm extraction. I. Rays and Skates. Animals. 2021;11(7):1888–16. doi: 10.3390/ani11071888 PubMed DOI PMC
García-Salinas P, Gallego V, Asturiano JF. Reproductive anatomy of chondrichthyans: notes on specimen handling and sperm extraction. II. Sharks and Chimaeras. Animals (Basel). 2021;11(8):2191–20. Epub 2021/08/28. doi: 10.3390/ani11082191 PubMed DOI PMC