Computation screening for incorrectly determined cocrystal structures
Status Publisher Language English Country England, Great Britain Media print-electronic
Document type Journal Article
Grant support
90254
e-INFRA CZ
A2_FCHT_2024_054
Specific university research IGA
A1_FCHT_2024_006
Specific university research IGA
21-05926X
Grantová agentura České republiky
PubMed
40009614
PubMed Central
PMC11970119
DOI
10.1107/s205252062500068x
PII: S205252062500068X
Knihovny.cz E-resources
- Keywords
- DFT-D, cocrystal, cocrystal structures, salt, verification,
- Publication type
- Journal Article MeSH
Pharmaceutical solid forms, like salts and cocrystals, play a crucial role in drug formulation. Despite differing mainly by a single hydrogen atom, the regulatory requirements set by the US Food and Drug Administration for these forms vary significantly. We previously developed a DFT-based computational method to distinguish salts from cocrystals. This method, validated on 95 structures, performed well for systems where hydrogen bonds were longer than 2.613 (16) Å. Here, benefits of the rSCAN functional over the PBE functional are discussed. We expand the dataset to 404 cocrystal models. Analysis confirms that 301 of these forms are indeed cocrystals. Additionally, 87 salt-cocrystal continuum forms are identified and 16 cocrystals are classified as possible salts. These 16 problematic structures are further investigated and for seven of them, single crystals were grown and their structure determined using single-crystal X-ray diffraction. Among the phases exhibiting salt-like behaviour, five of them are identified as salts. In some cases, rSCAN alone gives unreliable results for strong hydrogen bonds, but these discrepancies are often corrected using better-renormalized or hybrid functionals (i.e. r2SCAN, PBE0 and PBE50). For future calculations, we recommend using the r2SCAN functional for salt-cocrystal differentiation, as it provides reliable results for O-H...N bonds longer than 2.554 (5) Å. The r2SCAN functional offers a good balance between accuracy and computational efficiency for systems with longer O-H...N bonds.
See more in PubMed
Aakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439. PubMed PMC
Aitipamula, S., Banerjee, R., Bansal, A. K., Biradha, K., Cheney, M. L., Choudhury, A. R., Desiraju, G. R., Dikundwar, A. G., Dubey, R., Duggirala, N., Ghogale, P. P., Ghosh, S., Goswami, P. K., Goud, N. R., Jetti, R. R. K. R., Karpinski, P., Kaushik, P., Kumar, D., Kumar, V., Moulton, B., Mukherjee, A., Mukherjee, G., Myerson, A. S., Puri, V., Ramanan, A., Rajamannar, T., Reddy, C. M., Rodriguez-Hornedo, N., Rogers, R. D., Row, T. N. G., Sanphui, P., Shan, N., Shete, G., Singh, A., Sun, C. C., Swift, J. A., Thaimattam, R., Thakur, T. S., Kumar Thaper, R., Thomas, S. P., Tothadi, S., Vangala, V. R., Variankaval, N., Vishweshwar, P., Weyna, D. R. & Zaworotko, M. J. (2012). Cryst. Growth Des.12, 2147–2152.
Akutagawa, T., Uchimaru, T., Sakai, K., Hasegawa, T. & Nakamura, T. (2003). J. Phys. Chem. B, 107, 6248–6251.
Arora, K. K. & Pedireddi, V. R. (2003). J. Org. Chem.68, 9177–9185. PubMed
Bal, K. M. & Collas, A. (2024). CrystEngComm, 26, 6765–6773.
Bartók, A. P. & Yates, J. R. (2019). J. Chem. Phys.150, 161101.
Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100–117. PubMed
Bu, T.-J., Li, B. & Wu, L.-X. (2007). Acta Cryst. E63, 3466–3466.
Bursch, M., Mewes, J., Hansen, A. & Grimme, S. (2022). Angew. Chem. Int. Ed.61, e202205735. PubMed PMC
Capelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. (2014). IUCrJ, 1, 361–379. PubMed PMC
Chatterjee, S., Pedireddi, V. & Rao, C. (1998). Tetrahedron Lett.39, 2843–2846.
Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K. & Payne, M. C. (2005). Z. Kristallogr. Cryst. Mater.220, 567–570.
Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 6362.
Czugler, M., Angyan, J. G., Naray-Szabo, G. & Weber, E. (1986). J. Am. Chem. Soc.108, 1275–1281.
FDA (2018). Regulatory Classification of Pharmaceutical Co-Crystals Guidance for Industry. US Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER), February 2018 Pharmaceutical Quality/CMC Revision 1.
Fňukal, F. (2022). MSc Thesis. University of Chemistry and Technology in Prague, Czechia.
Furness, J. W., Kaplan, A. D., Ning, J., Perdew, J. P. & Sun, J. (2020). J. Phys. Chem. Lett.11, 8208–8215. PubMed
Gardiennet-Doucet, C., Henry, B. & Tekely, P. (2006). Prog. Nucl. Magn. Reson. Spectrosc.49, 129–149.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. PubMed PMC
Gupta, D., Bhatia, D., Dave, V., Sutariya, V. & Varghese Gupta, S. (2018). Molecules, 23, 1719. PubMed PMC
Hermann, J. & Tkatchenko, A. (2018). J. Chem. Theory Comput.14, 1361–1369. PubMed
Hušák, M., Šajbanová, S., Klimeš, J. & Jegorov, A. (2022). Acta Cryst. B78, 781–788.
Jayatilaka, D. & Dittrich, B. (2008). Acta Cryst. A64, 383–393. PubMed
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York and Oxford: Oxford University Press.
Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci.12, 1675–1692. PubMed PMC
Li, W., Zhang, J., Tong, M. & Chen, X. (2001). Aust. J. Chem.54, 213.
Lombard, J., Haynes, D. A. & le Roex, T. (2020). Cryst. Growth Des.20, 7840–7849.
López, C., Claramunt, R. M., García, M. Á., Pinilla, E., Torres, M. R., Alkorta, I. & Elguero, J. (2007). Cryst. Growth Des.7, 1176–1184.
Lynch, D., Smith, G., Freney, D., Byriel, K. & Kennard, C. (1994). Aust. J. Chem.47, 1097.
Lynch, D. E., Hayer, R., Beddows, S., Howdle, J. & Thake, C. D. (2006). J. Heterocycl. Chem.43, 191–197.
Midgley, L., Bourhis, L. J., Dolomanov, O. V., Grabowsky, S., Kleemiss, F., Puschmann, H. & Peyerimhoff, N. (2021). Acta Cryst. A77, 519–533. PubMed
Neese, F. (2022). WIREs Comput. Mol. Sci.12, e1606.
Nygren, C. L., Wilson, C. C. & Turner, J. F. C. (2005). J. Phys. Chem. A, 109, 1911–1919. PubMed
Qin, J.-H., Hao, E.-J. & Wang, J.-G. (2008). Acta Cryst. E64, 2398–2398.
Qiu, L., Li, W., Fan, X., Ju, X., Cao, G. & Luo, S. (2008). Inorg. Chem. Commun.11, 727–729.
Reddy, L. S., Basavoju, S., Vangala, V. R. & Nangia, A. (2006). Cryst. Growth Des.6, 161–173.
Schmidtmann, M., Farrugia, L. J., Middlemiss, D. S., Gutmann, M. J., McIntyre, G. J. & Wilson, C. C. (2009). J. Phys. Chem. A, 113, 13985–13997. PubMed
Schmidtmann, M., Gutmann, M. J., Middlemiss, D. S. & Wilson, C. C. (2007). CrystEngComm, 9, 743.
Steiner, T., Majerz, I. & Wilson, C. C. (2001). Angew. Chem. Int. Ed.40, 2651–2654. PubMed
Stevens, J. S., Byard, S. J. & Schroeder, S. L. (2010). J. Pharm. Sci.99, 4453–4457. PubMed
Štoček, J. R., Blahut, J., Chalupná, S., Čejka, J., Štěpánová, S., Kašička, V., Hušák, M. & Dracinsky, M. (2024). Chem. Eur. J.30, e202402946. PubMed
Štoček, J. R., Socha, O., Císařová, I., Slanina, T. & Dračínský, M. (2022). J. Am. Chem. Soc.144, 7111–7116. PubMed
Varughese, S. & Pedireddi, V. (2005). Tetrahedron Lett.46, 2411–2415.
Wang, W., Xi, P., Su, X., Lan, J., Mao, Z., You, J. & Xie, R. (2007). Cryst. Growth Des.7, 741–746.