Diethyldithiocarbamate-copper complex ignites the tumor microenvironment through NKG2D-NKG2DL axis
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40013140
PubMed Central
PMC11860975
DOI
10.3389/fimmu.2025.1491450
Knihovny.cz E-zdroje
- Klíčová slova
- NK cells, NKG2D, colorectal cancer, copper bis-diethyldithiocarbamate, disulfiram,
- MeSH
- buňky NK imunologie účinky léků metabolismus MeSH
- dithiokarb * farmakologie MeSH
- kolorektální nádory * farmakoterapie imunologie metabolismus patologie MeSH
- lektinové receptory NK-buněk - podrodina K * metabolismus MeSH
- lidé MeSH
- měď MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádorové mikroprostředí * účinky léků imunologie MeSH
- protinádorové látky farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dithiokarb * MeSH
- KLRK1 protein, human MeSH Prohlížeč
- lektinové receptory NK-buněk - podrodina K * MeSH
- měď MeSH
- protinádorové látky MeSH
Advanced metastatic colorectal cancer (CRC) with deficient DNA mismatch repair (MMR-d), or immune-hot CRCs, show significantly improved clinical outcomes compared to MMR-proficient (MMR-p), or immune-cold CRCs. While the prior represents about 5% of all CRCs, the latter represent 95% and are characterized by low immunogenicity. This study investigates bis-diethyldithiocarbamate (CuET), a novel anticancer compound, and its impact on the colorectal cancer tumor microenvironment (TME). CuET is shown to convert immunologically inactive tumors into hotbeds of antitumor immune responses, marked by increased lymphocyte infiltration, heightened cytotoxicity of natural killer (NK) and T cells, and enhanced non-self recognition by lymphocytes. The potent anticancer cytotoxicity and in vivo safety and efficacy of CuET are established. In summary, CuET transforms the colorectal cancer TME, bolstering NK and T cell cytotoxicity and refining tumor cell recognition through non-classical activation via the NKG2D/NKG2DL axis. This study unveils a novel mechanism of action for CuET: a potent immunomodulator capable of turning cold tumors hot.
Czech Advanced Technology and Research Institute Palacky University Olomouc Olomouc Czechia
Department of Biomedical Engineering McGill University Montreal QC Canada
Department of Experimental Medicine Faculty of Medicine McGill University Montreal QC Canada
Zobrazit více v PubMed
Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA: A Cancer J Clin. (2023) 73:233–54. doi: 10.3322/caac.21772 PubMed DOI
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. (2019) 394:1467–80. doi: 10.1016/S0140-6736(19)32319-0 PubMed DOI
Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. . PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. (2015) 372:2509–20. doi: 10.1056/NEJMoa1500596 PubMed DOI PMC
Foote MB, Argiles G, Rousseau B, Segal NH. Facts and hopes in colorectal cancer immunotherapy. Clin Cancer Res. (2023) 29(20):4032–9. doi: 10.1158/1078-0432.CCR-22-2176 PubMed DOI
Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, et al. . Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. (2006) 313:1960–4. doi: 10.1126/science.1129139 PubMed DOI
Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, et al. . PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. (2014) 515:568–71. doi: 10.1038/nature13954 PubMed DOI PMC
Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. (2015) 348:69–74. doi: 10.1126/science.aaa4971 PubMed DOI
Wang M, Wang S, Desai J, Trapani JA, Neeson PJ. Therapeutic strategies to remodel immunologically cold tumors. Clin Transl Immunol. (2020) 9:e1226. doi: 10.1002/cti2.v9.12 PubMed DOI PMC
Yourick JJ, Faiman MD. Disulfiram metabolism as a requirement for the inhibition of rat liver mitochondrial low Km aldehyde dehydrogenase. Biochem Pharmacol. (1991) 42:1361–6. doi: 10.1016/0006-2952(91)90446-C PubMed DOI
Wang L, Yu Y, Zhou C, Wan R, Li Y. Anticancer effects of disulfiram: a systematic review of in vitro, animal, and human studies. Systematic Rev. (2022) 11:109. doi: 10.1186/s13643-021-01858-4 PubMed DOI PMC
Hu Y, Qian Y, Wei J, Jin T, Kong X, Cao H, et al. . The disulfiram/copper complex induces autophagic cell death in colorectal cancer by targeting ULK1. Front Pharmacol. (2021) 12:752825. doi: 10.3389/fphar.2021.752825 PubMed DOI PMC
Jiapaer Z, Zhang L, Ma W, Liu H, Li C, Huang W, et al. . Disulfiram-loaded hollow copper sulfide nanoparticles show anti-tumor effects in preclinical models of colorectal cancer. Biochem Biophys Res Commun. (2022) 635:291–8. doi: 10.1016/j.bbrc.2022.10.027 PubMed DOI
Najlah M, Said Suliman A, Tolaymat I, Kurusamy S, Kannappan V, Elhissi AMA, et al. . Development of injectable PEGylated liposome encapsulating disulfiram for colorectal cancer treatment. Pharmaceutics. (2019) 11(11). doi: 10.3390/pharmaceutics11110610 PubMed DOI PMC
Abu-Serie MM. Synergistic eradicating impact of 5-fluouracil with FeO nanoparticles-diethyldithiocarbamate in colon cancer spheroids. Nanomedicine (Lond). (2024) 19:979–94. doi: 10.2217/nnm-2024-0007 PubMed DOI PMC
Abu-Serie MM, El-Rashidy FH. In vitro collapsing colon cancer cells by selectivity of disulfiram-loaded charge switchable nanoparticles against cancer stem cells. Recent Pat Anticancer Drug Discovery. (2017) 12:260–71. doi: 10.2174/1574892812666170424144925 PubMed DOI
Iljin K, Ketola K, Vainio P, Halonen P, Kohonen P, Fey V, et al. . High-throughput cell-based screening of 4910 known drugs and drug-like small molecules identifies disulfiram as an inhibitor of prostate cancer cell growth. Clin Cancer Res. (2009) 15:6070–8. doi: 10.1158/1078-0432.CCR-09-1035 PubMed DOI
Chen D, Cui QC, Yang H, Dou QP. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res. (2006) 66:10425–33. doi: 10.1158/0008-5472.CAN-06-2126 PubMed DOI
Zha J, Chen F, Dong H, Shi P, Yao Y, Zhang Y, et al. . Disulfiram targeting lymphoid Malignant cell lines via ROS-JNK activation as well as Nrf2 and NF-kB pathway inhibition. J Transl Med. (2014) 12:163. doi: 10.1186/1479-5876-12-163 PubMed DOI PMC
Kannappan V, Ali M, Small B, Rajendran G, Elzhenni S, Taj H, et al. . Recent advances in repurposing disulfiram and disulfiram derivatives as copper-dependent anticancer agents. Front Mol Biosci. (2021) 8. doi: 10.3389/fmolb.2021.741316 PubMed DOI PMC
Allensworth JL, Evans MK, Bertucci F, Aldrich AJ, Festa RA, Finetti P, et al. . Disulfiram (DSF) acts as a copper ionophore to induce copper-dependent oxidative stress and mediate anti-tumor efficacy in inflammatory breast cancer. Mol Oncol. (2015) 9:1155–68. doi: 10.1016/j.molonc.2015.02.007 PubMed DOI PMC
Skrott Z, Mistrik M, Andersen KK, Friis S, Majera D, Gursky J, et al. . Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature. (2017) 552:194–9. doi: 10.1038/nature25016 PubMed DOI PMC
Zhang J, Pu K, Bai S, Peng Y, Li F, Ji R, et al. . The anti-alcohol dependency drug disulfiram inhibits the viability and progression of gastric cancer cells by regulating the Wnt and NF-κB pathways. J Int Med Res. (2020) 48:300060520925996. doi: 10.1177/0300060520925996 PubMed DOI PMC
Liu Y, Guan X, Wang M, Wang N, Chen Y, Li B, et al. . Disulfiram/Copper induces antitumor activity against gastric cancer via the ROS/MAPK and NPL4 pathways. Bioengineered. (2022) 13:6579–89. doi: 10.1080/21655979.2022.2038434 PubMed DOI PMC
Skrott Z, Cvek B. Diethyldithiocarbamate complex with copper: the mechanism of action in cancer cells. Mini Rev Med Chem. (2012) 12:1184–92. doi: 10.2174/138955712802762068 PubMed DOI
Li Y, Chen F, Chen J, Chan S, He Y, Liu W, et al. . Disulfiram/Copper Induces Antitumor Activity against Both Nasopharyngeal Cancer Cells and Cancer-Associated Fibroblasts through ROS/MAPK and Ferroptosis Pathways. Cancers (Basel). (2020) 12(1). doi: 10.3390/cancers12010138 PubMed DOI PMC
Papaioannou M, Mylonas I, Kast RE, Brüning A. Disulfiram/copper causes redox-related proteotoxicity and concomitant heat shock response in ovarian cancer cells that is augmented by auranofin-mediated thioredoxin inhibition. Oncoscience. (2014) 1:21–9. doi: 10.18632/oncoscience.v1i1 PubMed DOI PMC
Paranjpe A, Zhang R, Ali-Osman F, Bobustuc GC, Srivenugopal KS. Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage. Carcinogenesis. (2014) 35:692–702. doi: 10.1093/carcin/bgt366 PubMed DOI PMC
Zhang W, Zhai Q, Li M, Huang S, Sun Z, Yan Z, et al. . Anti-cancer effects of disulfiram in cervical cancer cell lines are mediated by both autophagy and apoptosis. Bull Exp Biol Med. (2022) 172:642–8. doi: 10.1007/s10517-022-05447-w PubMed DOI
Swetha KL, Sharma S, Chowdhury R, Roy A. Disulfiram potentiates docetaxel cytotoxicity in breast cancer cells through enhanced ROS and autophagy. Pharmacol Rep. (2020) 72:1749–65. doi: 10.1007/s43440-020-00122-1 PubMed DOI
Zhang X, Hu P, Ding SY, Sun T, Liu L, Han S, et al. . Induction of autophagy-dependent apoptosis in cancer cells through activation of ER stress: an uncovered anti-cancer mechanism by anti-alcoholism drug disulfiram. Am J Cancer Res. (2019) 9:1266–81. PubMed PMC
Tundo GR, Sbardella D, Oddone F, Kudriaeva AA, Lacal PM, Belogurov AA, Jr, et al. . At the cutting edge against cancer: A perspective on immunoproteasome and immune checkpoints modulation as a potential therapeutic intervention. Cancers (Basel). (2021) 13(19). doi: 10.3390/cancers13194852 PubMed DOI PMC
Zheng X, Liu Z, Mi M, Wen Q, Wu G, Zhang L. Disulfiram improves the anti-PD-1 therapy efficacy by regulating PD-L1 expression via epigenetically reactivation of IRF7 in triple negative breast cancer. Front Oncol. (2021) 11:734853. doi: 10.3389/fonc.2021.734853 PubMed DOI PMC
Wang Q, Zhu T, Miao N, Qu Y, Wang Z, Chao Y, et al. . Disulfiram bolsters T-cell anti-tumor immunity through direct activation of LCK-mediated TCR signaling. EMBO J. (2022) 41:e110636. doi: 10.15252/embj.2022110636 PubMed DOI PMC
Voli F, Valli E, Lerra L, Kimpton K, Saletta F, Giorgi FM, et al. . Intratumoral copper modulates PD-L1 expression and influences tumor immune evasion. Cancer Res. (2020) 80:4129–44. doi: 10.1158/0008-5472.CAN-20-0471 PubMed DOI
Zhang J, Basher F, Wu JD. NKG2D ligands in tumor immunity: two sides of a coin. Front Immunol. (2015) 6:97. doi: 10.3389/fimmu.2015.00097 PubMed DOI PMC
Zingoni A, Molfetta R, Fionda C, Soriani A, Paolini R, Cippitelli M, et al. . NKG2D and its ligands: "One for all, all for one. Front Immunol. (2018) 9:476. doi: 10.3389/fimmu.2018.00476 PubMed DOI PMC
Duan S, Guo W, Xu Z, He Y, Liang C, Mo Y, et al. . Natural killer group 2D receptor and its ligands in cancer immune escape. Mol Cancer. (2019) 18:29. doi: 10.1186/s12943-019-0956-8 PubMed DOI PMC
Dhar P, Wu JD. NKG2D and its ligands in cancer. Curr Opin Immunol. (2018) 51:55–61. doi: 10.1016/j.coi.2018.02.004 PubMed DOI PMC
Fuertes MB, Domaica CI, Zwirner NW. Leveraging NKG2D ligands in immuno-oncology. Front Immunol. (2021) 12:713158. doi: 10.3389/fimmu.2021.713158 PubMed DOI PMC
Goto K, Arai J, Stephanou A, Kato N. Novel therapeutic features of disulfiram against hepatocellular carcinoma cells with inhibitory effects on a disintegrin and metalloproteinase 10. Oncotarget. (2018) 9:18821–31. doi: 10.18632/oncotarget.24568 PubMed DOI PMC
Brattain MG, Strobel-Stevens J, Fine D, Webb M, Sarrif AM. Establishment of mouse colonic carcinoma cell lines with different metastatic properties. Cancer Res. (1980) 40:2142–6. PubMed
Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. (2006) 1:1112–6. doi: 10.1038/nprot.2006.179 PubMed DOI
Wong P, Wagner JA, Berrien-Elliott MM, Schappe T, Fehniger TA. Flow cytometry-based ex vivo murine NK cell cytotoxicity assay. STAR Protoc. (2021) 2:100262. doi: 10.1016/j.xpro.2020.100262 PubMed DOI PMC
Inoda S, Hirohashi Y, Torigoe T, Morita R, Takahashi A, Asanuma H, et al. . Cytotoxic T lymphocytes efficiently recognize human colon cancer stem-like cells. Am J Pathol. (2011) 178:1805–13. doi: 10.1016/j.ajpath.2011.01.004 PubMed DOI PMC
Davidson WF. Cellular requirements for the induction of cytotoxic T cells. vitro. Immunol Rev. (1977) 35:261–304. doi: 10.1111/j.1600-065X.1977.tb00242.x PubMed DOI
Grosjean C, Quessada J, Nozais M, Loosveld M, Payet-Bornet D, Mionnet C. Isolation and enrichment of mouse splenic T cells for ex vivo and in vivo T cell receptor stimulation assays. STAR Protoc. (2021) 2:100961. doi: 10.1016/j.xpro.2021.100961 PubMed DOI PMC
Paty PB, Garcia-Aguilar J. Colorectal cancer. J Surg Oncol. (2022) 126:881–7. doi: 10.1002/jso.v126.5 PubMed DOI
Ciardiello D, Vitiello PP, Cardone C, Martini G, Troiani T, Martinelli E, et al. . Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat Rev. (2019) 76:22–32. doi: 10.1016/j.ctrv.2019.04.003 PubMed DOI
Picard E, Verschoor CP, Ma GW, Pawelec G. Relationships between immune landscapes, genetic subtypes and responses to immunotherapy in colorectal cancer. Front Immunol. (2020) 11:369. doi: 10.3389/fimmu.2020.00369 PubMed DOI PMC
Fridman WH, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. (2012) 12:298–306. doi: 10.1038/nrc3245 PubMed DOI
Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, Wullschleger S, et al. . A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med. (2013) 19:619–25. doi: 10.1038/nm.3175 PubMed DOI PMC
Bai Z, Zhou Y, Ye Z, Xiong J, Lan H, Wang F. Tumor-infiltrating lymphocytes in colorectal cancer: the fundamental indication and application on immunotherapy. Front Immunol. (2021) 12. PubMed PMC
Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, et al. . Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. (2011) 71:1263–71. doi: 10.1158/0008-5472.CAN-10-2907 PubMed DOI
Zhang J, Huang D, Saw PE, Song E. Turning cold tumors hot: from molecular mechanisms to clinical applications. Trends Immunol. (2022) 43:523–45. doi: 10.1016/j.it.2022.04.010 PubMed DOI
Lerner EC, Woroniecka KI, D’Anniballe VM, Wilkinson DS, Mohan AA, Lorrey SJ, et al. . CD8+ T cells maintain killing of MHC-I-negative tumor cells through the NKG2D–NKG2DL axis. Nat Cancer. (2023) 4:1258–72. doi: 10.1038/s43018-023-00600-4 PubMed DOI PMC
Prajapati K, Perez C, Rojas LBP, Burke B, Guevara-Patino JA. Functions of NKG2D in CD8(+) T cells: an opportunity for immunotherapy. Cell Mol Immunol. (2018) 15:470–9. doi: 10.1038/cmi.2017.161 PubMed DOI PMC
Krijgsman D, de Vries NL, Skovbo A, Andersen MN, Swets M, Bastiaannet E, et al. . Characterization of circulating T-, NK-, and NKT cell subsets in patients with colorectal cancer: the peripheral blood immune cell profile. Cancer Immunology Immunotherapy. (2019) 68:1011–24. doi: 10.1007/s00262-019-02343-7 PubMed DOI PMC
de Kruijf EM, Sajet A, van Nes JGH, Putter H, Smit VT, Eagle RA, et al. . NKG2D ligand tumor expression and association with clinical outcome in early breast cancer patients: an observational study. BMC Cancer. (2012) 12:24. doi: 10.1186/1471-2407-12-24 PubMed DOI PMC
McGilvray RW, Eagle RA, Watson NFS, Al-Attar A, Ball G, Jafferji I, et al. . NKG2D ligand expression in human colorectal cancer reveals associations with prognosis and evidence for immunoediting. Clin Cancer Res. (2009) 15:6993–7002. doi: 10.1158/1078-0432.CCR-09-0991 PubMed DOI PMC
Cosman D, Müllberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, et al. . ULBPs, novel MHC class I–related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity. (2001) 14:123–33. doi: 10.1016/S1074-7613(01)00095-4 PubMed DOI
Valés-Gómez M, Chisholm SE, Cassady-Cain RL, Roda-Navarro P. amp]]amp; Reyburn, H.T. Selective induction of expression of a ligand for the NKG2D receptor by proteasome inhibitors. Cancer Res. (2008) 68:1546–54. doi: 10.1158/0008-5472.CAN-07-2973 PubMed DOI
Liu H, Wang S, Xin J, Wang J, Yao C, Zhang Z. Role of NKG2D and its ligands in cancer immunotherapy. Am J Cancer Res. (2019) 9:2064–78. PubMed PMC
Della Chiesa M, Setti C, Giordano C, Obino V, Greppi M, Pesce S, et al. . NK cell-based immunotherapy in colorectal cancer. Vaccines. (2022) 10:1033. doi: 10.3390/vaccines10071033 PubMed DOI PMC
Xiao L, Cen D, Gan H, Sun Y, Huang N, Xiong H, et al. . Adoptive transfer of NKG2D CAR mRNA-engineered natural killer cells in colorectal cancer patients. Mol Ther. (2019) 27:1114–25. doi: 10.1016/j.ymthe.2019.03.011 PubMed DOI PMC
Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer. (2019) 18:155. doi: 10.1186/s12943-019-1091-2 PubMed DOI PMC
Rhyner Agocs G, Assarzadegan N, Kirsch R, Dawson H, Galván JA, Lugli A, et al. . LAG-3 expression predicts outcome in stage II colon cancer. J Pers Med. (2021) 11(8). doi: 10.3390/jpm11080749 PubMed DOI PMC
Huang RY, Francois A, McGray AR, Miliotto A, Odunsi K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology. (2017) 6:e1249561. doi: 10.1080/2162402X.2016.1249561 PubMed DOI PMC