New evidence for the photocatalytic efficiency of natural raw vermiculites to produce hydrogen from aqueous methanol solution

. 2025 Feb 28 ; 11 (4) : e42366. [epub] 20250130

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40034279
Odkazy

PubMed 40034279
PubMed Central PMC11874548
DOI 10.1016/j.heliyon.2025.e42366
PII: S2405-8440(25)00746-7
Knihovny.cz E-zdroje

The potential of vermiculites as environmentally friendly photocatalysts for hydrogen production and pollutant degradation was demonstrated by a photocatalytic test in an aqueous 50 % methanol solution (MeOH50). After 4 h of irradiation with the commercial TiO2 Evonik P25 catalyst, the H2 yield was of 656.9 ± 4.2 μmol/gcat. For vermiculites Vm1, Vm3, and Vm4, hydrogen yields were comparable (H₂ = 420.6 ± 5.8 μmol/gcat; H₂ = 414.2 ± 1.8 μmol/gcat, and 449.3 ± 1.8 μmol/gcat, respectively) but were lower in the presence of vermiculite-chlorite intermediate Vm2 (H₂ = 385.1 ± 6.6 μmol/gcat). After the extended 24-h irradiation, hydrogen yield was promoted by the negative tetrahedral charge, while the positive octahedral charge inhibited the photocatalytic decomposition of the MeOH50 into hydrogen in favor of the formation of CO and CH4 byproducts. The decrease in methanol yield in the MeOH50 was effectively assessed by the red shift of the C-O and C-H bands in the Raman spectrum, corresponding to the photocatalytic production of H2.

Zobrazit více v PubMed

Nielsen M., Alberico E., Baumann W., Drexler H.J., Junge H., Gladiali S., Beller M. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature. 2013;495:85–89. doi: 10.1038/nature11891. PubMed DOI

Cortright R.D., Davda R.R., Dumesic J.A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature. 2002;418:964–967. doi: 10.1038/nature01009. PubMed DOI

Shabaker J., Davda R., Huber G., Cortright R., Dumesic J. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts. J. Catal. 2003;215:344–352. doi: 10.1016/S0021-9517(03)00032-0. DOI

Garcia G., Arriola E., Chen W.-H., De Luna M.D. A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability. Energy. 2021;217 doi: 10.1016/j.energy.2020.119384. DOI

Opoku F., Govender K., Sittert C., Govender P. Recent progress in the development of semiconductor-based photocatalyst materials for applications in photocatalytic water splitting and degradation of pollutants. Adv. Sustain. Syst. 2017;1 doi: 10.1002/adsu.201700006. DOI

Belver C., Bedia J., Gómez-Avilés A., Peñas-Garzón M., Rodriguez J.J. In: Nanoscale Materials in Water Purification. Thomas S., Pasquini D., Leu S.-Y., Gopakumar D.A., editors. Elsevier; 2019. Chapter 22 - semiconductor photocatalysis for water purification; pp. 581–651.

Zhou D., Jiang D., Jing H., Yin C., Li C. Natural aluminosilicate nanoclay mineral for photocatalytic applications: influence of the surface properties in photocatalysis. Appl. Clay Sci. 2024;249 doi: 10.1016/j.clay.2023.107240. DOI

Jia H., Zhao J., Fan X., Dilimulati K., Wang C. Photodegradation of phenanthrene on cation-modified clays under visible light. Appl. Catal., B. 2012;123–124:43–51. doi: 10.1016/j.apcatb.2012.04.017. DOI

Wang M., Shi H., Shao S., Lu K., Wang H., Yang Y., Gong Z., Zuo Y., Gao S. Montmorillonite promoted photodegradation of amlodipine in natural water via formation of surface complexes. Chemosphere. 2022;286 doi: 10.1016/j.chemosphere.2021.131641. PubMed DOI

Thomas N., Dionysiou D.D., Pillai S.C. Heterogeneous Fenton catalysts: a review of recent advances. J. Hazard Mater. 2021;404 doi: 10.1016/j.jhazmat.2020.124082. PubMed DOI PMC

Li C., Zhu N., Yang S., He X., Zheng S., Sun Z., Dionysiou D.D. A review of clay based photocatalysts: role of phyllosilicate mineral in interfacial assembly, microstructure control and performance regulation. Chemosphere. 2021;273 doi: 10.1016/j.chemosphere.2021.129723. PubMed DOI

Purceno A.D., Teixeira A.P.C., Souza A.B., Ardisson J.D., de Mesquita J.P., Lago R.M. Ground vermiculite as catalyst for the Fenton reaction. Appl. Clay Sci. 2012;69:87–92. doi: 10.1016/j.clay.2012.08.010. DOI

dos Santos A.J., Sirés I., Alves A.P.M., Martínez-Huitle C.A., Brillas E. Vermiculite as heterogeneous catalyst in electrochemical Fenton-based processes: application to the oxidation of Ponceau SS dye. Chemosphere. 2020;240 doi: 10.1016/j.chemosphere.2019.124838. PubMed DOI

Martínez-Costa J.I., Rivera-Utrilla J., Leyva-Ramos R., Sánchez-Polo M., Velo-Gala I. Individual and simultaneous degradation of antibiotics sulfamethoxazole and trimethoprim by UV and solar radiation in aqueous solution using bentonite and vermiculite as photocatalysts. Appl. Clay Sci. 2018;160:217–225. doi: 10.1016/j.clay.2017.12.026. DOI

Rojas-Mantilla H.D., Ayala-Duran S.C., Pupo Nogueira R.F. Modification of a Brazilian natural clay and catalytic activity in heterogeneous photo-Fenton process. Chemosphere. 2022;291 doi: 10.1016/j.chemosphere.2021.132966. PubMed DOI

Zhang J., Liu T., Chen R., Liu X. Vermiculite as a natural silicate crystal for hydrogen generation from photocatalytic splitting of water under visible light. RSC Adv. 2014;4:406–408. https://10.1039/C3RA45301D DOI

Valášková M., Tokarský J., Pavlovský J., Prostějovský T., Kočí K. α-Fe2O3 nanoparticles/vermiculite clay material: structural, optical and photocatalytic properties. Materials. 2019;12 doi: 10.3390/ma12111880. PubMed DOI PMC

Valášková M., Kočí K., Madejová J., Matějová L., Pavlovský J., Barrocas B.T., Klemencová K. α-Fe2O3 nanoparticles/iron-containing vermiculite composites: structural, textural, optical and photocatalytic properties. Minerals. 2022;12 doi: 10.3390/min12050607. DOI

Valášková M., Leštinský P., Edelmannová M.F., Madejová J., Kočí K. NiO/vermiculite composites prepared for photocatalytic degradation of methanol-water solution and hydrogen generation. Appl. Clay Sci. 2024;259 doi: 10.1016/j.clay.2024.107509. DOI

Reli M., Ambrožová N., Valášková M., Edelmannová M., Čapek L., Schimpf C., Motylenko M., Rafaja D., Kočí K. Photocatalytic water splitting over CeO2/Fe2O3/Ver photocatalysts. Energy Convers. Manag. 2021;238 doi: 10.1016/j.enconman.2021.114156. DOI

Kloprogge J.T. In: Developments in Clay Science. Gates W.P., Kloprogge J.T., Madejová J., Bergaya F., editors. Elsevier; 2017. Chapter 6 - Raman spectroscopy of clay minerals; pp. 150–199.

Rull F. Structural investigation of water and aqueous solutions by Raman spectroscopy. Pure Appl. Chem. 2002;74 doi: 10.1351/pac200274101859. DOI

White S.N. Qualitative and quantitative analysis of CO2 and CH4 dissolved in water and seawater using laser Raman spectroscopy. Appl. Spectrosc. 2010;64:819–827. doi: 10.1366/000370210791666354. PubMed DOI

Scatena L.F., Brown M.G., Richmond G.L. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science. 2001;292:908–912. doi: 10.1126/science.1059514. PubMed DOI

Laaksonen A., Kusalik P.G., Svishchev I.M. Three-dimensional structure in Water−Methanol mixtures. J. Phys. Chem. A. 1997;101:5910–5918. doi: 10.1021/jp970673c. DOI

Pethes I., Pusztai L., Temleitner L. Evolution of the hydrogen-bonded network in methanol-water mixtures upon cooling. J. Mol. Liq. 2023;386 doi: 10.1016/j.molliq.2023.122494. DOI

Ebukuro T., Takami A., Oshima Y., Koda S. Raman spectroscopic studies on hydrogen bonding in methanol and methanol/water mixtures under high temperature and pressure. J. Supercrit. Fluids. 1999;15:73–78. doi: 10.1016/S0896-8446(98)00126-0. DOI

Bakó I., Megyes T., Bálint S., Grósz T., Chihaia V. Water–methanol mixtures: topology of hydrogen bonded network. Phys. Chem. Chem. Phys. 2008;10:5004–5011. doi: 10.1039/B808326F. PubMed DOI

Li F., Men Z., Li S., Wang S., Li Z., Sun C. Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy. Spectrochim. Acta, Part A. 2018;189:621–624. doi: 10.1016/j.saa.2017.08.077. PubMed DOI

Yang B., Cao X., Lang H., Wang S., Sun C. Study on hydrogen bonding network in aqueous methanol solution by Raman spectroscopy. Spectrochim. Acta, Part A. 2020;225 doi: 10.1016/j.saa.2019.117488. PubMed DOI

Xiao M., Baktash A., Lyu M., Zhao G., Jin Y., Wang L. Unveiling the role of water in heterogeneous photocatalysis of methanol conversion for efficient hydrogen production. Angew. Chem. Int. Ed. 2024;63 doi: 10.1002/anie.202402004. PubMed DOI

Xu B.-B., Zhou M., Zhang R., Ye M., Yang L.-Y., Huang R., Wang H.F., Wang X.L., Yao Y.-F. Solvent water controls photocatalytic methanol reforming. J. Phys. Chem. Lett. 2020;11:3738–3744. doi: 10.1021/acs.jpclett.0c00972. PubMed DOI

Mohamed H.H., Wazan G., Besisa D.H.A. Natural clay minerals as heterojunctions of multi-metal oxides for superior photocatalytic activity. Mater. Sci. Eng. B. 2022;286 doi: 10.1016/j.mseb.2022.116077. DOI

Macedo H.A.O., Della Giustina M.E.S., de Oliveira C.G., Praxedes I.F. The São Luís de Montes Belos vermiculite deposit, central Brazil: Hydrothermal mineralization associated with intracontinental strike slip zones. J. South. Am. Earth. Sci. 2018;88:459–479. doi: 10.1016/j.jsames.2018.08.012. DOI

Badreddine R., Grandjean F., Vandormael D., Fransolet A.M., Long G.J. An 57Fe Mössbauer spectral study of vermiculitization in the Palabora Complex, Republic of South Africa. Clay Miner. 2000;35:653–663. doi: 10.1180/000985500547115. DOI

Wiewióra A., Dubińska E. Origin of minerals with intermediate chlorite-vermiculite structure (Szklary, Poland) Chem. Geol. 1987;60:185–197. doi: 10.1016/0009-2541(87)90124-0. DOI

Foster M.D. Professional Paper; 1962. Interpretation of the Composition and a Classification of the Chlorites.

Prieto A.C., Lobón J.M., Alía J.M., Rull F., Martin F. Thermal and spectroscopic analysis of natural trioctahedral chlorites. J. Therm. Anal. 1991;37:969–981. doi: 10.1007/BF01932795. DOI

Makuła P., Pacia M., Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–vis spectra. J. Phys. Chem. Lett. 2018;9:6814–6817. doi: 10.1021/acs.jpclett.8b02892. PubMed DOI

Tauc J., Grigorovici R., Vancu A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B. 1966;15:627–637. doi: 10.1002/pssb.19660150224. DOI

Phanichphant S., Nakaruk A., Chansaenpak K., Channei D. Evaluating the photocatalytic efficiency of the BiVO4/rGO photocatalyst. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-52589-5. PubMed DOI PMC

Žerjav G., Žižek K., Zavašnik J., Pintar A. Brookite vs. rutile vs. anatase: what's behind their various photocatalytic activities? J. Environ. Chem. Eng. 2022;10 doi: 10.1016/j.jece.2022.107722. DOI

Somaiah K., Venkatanarayana M., Sathyanarayana B. Thermally stimulated luminescence of montmorillonite clay. Cryst. Res. Technol. 1991;26:357–362. doi: 10.1002/crat.2170260320. DOI

Mahadik M.A., Shinde S.S., Mohite V.S., Kumbhar S.S., Rajpure K.Y., Moholkar A.V., Bhosale C.H. Photoelectrocatalytic activity of ferric oxide nanocatalyst: a synergestic effect of thickness. Ceram. Int. 2014;40:9463–9471. doi: 10.1016/j.ceramint.2014.02.019. DOI

Gondal M.A., Hameed A., Yamani Z.H. Hydrogen generation by laser transformation of methanol using n-type WO3 semiconductor catalyst. J. Mol. Catal. Chem. 2004;222:259–264. doi: 10.1016/j.molcata.2004.08.022. DOI

Guo W., Guo T., Zhang Y., Yin L., Dai Y. Progress on simultaneous photocatalytic degradation of pollutants and production of clean energy: a review. Chemosphere. 2023;339 doi: 10.1016/j.chemosphere.2023.139486. PubMed DOI

Schoonheydt R.A. Reflections on the material science of clay minerals. Appl. Clay Sci. 2016;131:107–112. doi: 10.1016/j.clay.2015.12.005. DOI

Brandt F., Bosbach D., Krawczyk-Bärsch E., Arnold T., Bernhard G. Chlorite dissolution in the acid ph-range: a combined microscopic and macroscopic approach. Geochem. Cosmochim. Acta. 2003;67:1451–1461. doi: 10.1016/S0016-7037(02)01293-0. DOI

Frost R.L., Rintoul L. Lattice vibrations of montmorillonite: an FT Raman and X-ray diffraction study. Appl. Clay Sci. 1996;11:171–183. doi: 10.1016/S0169-1317(96)00017-8. DOI

Arab M., Bougeard D., Smirnov K.S. Experimental and computer simulation study of the vibrational spectra of vermiculite. Phys. Chem. Chem. Phys. 2002;4:1957–1963. doi: 10.1039/B110768B. DOI

Rinaudo C., Roz M., Boero V., Franchini-Angela M. FT-Raman spectroscopy on several di- and trioctahedral T-O-T phyllosilicates. Neu. Jb. Mineral., Mh. 2004;2004:537–554. doi: 10.1127/0028-3649/2004/2004-0537. DOI

Ritz M., Zdrálková J., Valášková M. Vibrational spectroscopy of acid treated vermiculites. Vib. Spectrosc. 2014;70:63–69. doi: 10.1016/j.vibspec.2013.11.007. DOI

Ritz M., Valášková M. Infrared and Raman spectroscopy of three commercial vermiculites doped with cerium dioxide nanoparticles. Spectrochim. Acta, Part A. 2018;201:39–45. doi: 10.1016/j.saa.2018.04.053. PubMed DOI

Tlili A., Smith D.C., Beny J.M., Boyer H. A Raman microprobe study of natural micas. Mineral. Mag. 1989;53:165–179. doi: 10.1180/minmag.1989.053.370.04. DOI

Ulian G., Moro D., Valdrè G. Infrared and Raman spectroscopic features of clinochlore Mg6Si4O10(OH)8: a density functional theory contribution. Appl. Clay Sci. 2020;197 doi: 10.1016/j.clay.2020.105779. DOI

Li F., Wang Y., Li Z., Men Z., Sun C. Enhanced stimulated Raman scattering by a pressure-controlled shock wave in liquid water. J. Phys. Chem. Lett. 2019;10:4812–4816. doi: 10.1021/acs.jpclett.9b01956. PubMed DOI

Giguère P.A. Bifurcated hydrogen bonds in water. J. Raman Spectrosc. 1984;15:354–359. doi: 10.1002/jrs.1250150513. DOI

Pal J., Patla A., Subramanian R. Thermodynamic properties of forming methanol-water and ethanol-water clusters at various temperatures and pressures and implications for atmospheric chemistry: a DFT study. Chemosphere. 2021;272 doi: 10.1016/j.chemosphere.2021.129846. PubMed DOI

Dixit S., Poon W.C.K., Crain J., Dixit S., Poon W.C.K. Hydration of methanol in aqueous solutions: a Raman spectroscopic study. J. Phys. Condens. Matter. 2000;12:L323. doi: 10.1088/0953-8984/12/21/103. DOI

Tomza P., Wrzeszcz W., Mazurek S., Szostak R., Czarnecki M.A. Microheterogeneity in binary mixtures of water with CH3OH and CD3OH: ATR-IR spectroscopic, chemometric and DFT studies. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2018;197:88–94. doi: 10.1016/j.saa.2018.01.068. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...