New evidence for the photocatalytic efficiency of natural raw vermiculites to produce hydrogen from aqueous methanol solution
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40034279
PubMed Central
PMC11874548
DOI
10.1016/j.heliyon.2025.e42366
PII: S2405-8440(25)00746-7
Knihovny.cz E-zdroje
- Klíčová slova
- Methanol water solution, Photocatalytic hydrogen production, Raman spectra, Vermiculite,
- Publikační typ
- časopisecké články MeSH
The potential of vermiculites as environmentally friendly photocatalysts for hydrogen production and pollutant degradation was demonstrated by a photocatalytic test in an aqueous 50 % methanol solution (MeOH50). After 4 h of irradiation with the commercial TiO2 Evonik P25 catalyst, the H2 yield was of 656.9 ± 4.2 μmol/gcat. For vermiculites Vm1, Vm3, and Vm4, hydrogen yields were comparable (H₂ = 420.6 ± 5.8 μmol/gcat; H₂ = 414.2 ± 1.8 μmol/gcat, and 449.3 ± 1.8 μmol/gcat, respectively) but were lower in the presence of vermiculite-chlorite intermediate Vm2 (H₂ = 385.1 ± 6.6 μmol/gcat). After the extended 24-h irradiation, hydrogen yield was promoted by the negative tetrahedral charge, while the positive octahedral charge inhibited the photocatalytic decomposition of the MeOH50 into hydrogen in favor of the formation of CO and CH4 byproducts. The decrease in methanol yield in the MeOH50 was effectively assessed by the red shift of the C-O and C-H bands in the Raman spectrum, corresponding to the photocatalytic production of H2.
Zobrazit více v PubMed
Nielsen M., Alberico E., Baumann W., Drexler H.J., Junge H., Gladiali S., Beller M. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature. 2013;495:85–89. doi: 10.1038/nature11891. PubMed DOI
Cortright R.D., Davda R.R., Dumesic J.A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature. 2002;418:964–967. doi: 10.1038/nature01009. PubMed DOI
Shabaker J., Davda R., Huber G., Cortright R., Dumesic J. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts. J. Catal. 2003;215:344–352. doi: 10.1016/S0021-9517(03)00032-0. DOI
Garcia G., Arriola E., Chen W.-H., De Luna M.D. A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability. Energy. 2021;217 doi: 10.1016/j.energy.2020.119384. DOI
Opoku F., Govender K., Sittert C., Govender P. Recent progress in the development of semiconductor-based photocatalyst materials for applications in photocatalytic water splitting and degradation of pollutants. Adv. Sustain. Syst. 2017;1 doi: 10.1002/adsu.201700006. DOI
Belver C., Bedia J., Gómez-Avilés A., Peñas-Garzón M., Rodriguez J.J. In: Nanoscale Materials in Water Purification. Thomas S., Pasquini D., Leu S.-Y., Gopakumar D.A., editors. Elsevier; 2019. Chapter 22 - semiconductor photocatalysis for water purification; pp. 581–651.
Zhou D., Jiang D., Jing H., Yin C., Li C. Natural aluminosilicate nanoclay mineral for photocatalytic applications: influence of the surface properties in photocatalysis. Appl. Clay Sci. 2024;249 doi: 10.1016/j.clay.2023.107240. DOI
Jia H., Zhao J., Fan X., Dilimulati K., Wang C. Photodegradation of phenanthrene on cation-modified clays under visible light. Appl. Catal., B. 2012;123–124:43–51. doi: 10.1016/j.apcatb.2012.04.017. DOI
Wang M., Shi H., Shao S., Lu K., Wang H., Yang Y., Gong Z., Zuo Y., Gao S. Montmorillonite promoted photodegradation of amlodipine in natural water via formation of surface complexes. Chemosphere. 2022;286 doi: 10.1016/j.chemosphere.2021.131641. PubMed DOI
Thomas N., Dionysiou D.D., Pillai S.C. Heterogeneous Fenton catalysts: a review of recent advances. J. Hazard Mater. 2021;404 doi: 10.1016/j.jhazmat.2020.124082. PubMed DOI PMC
Li C., Zhu N., Yang S., He X., Zheng S., Sun Z., Dionysiou D.D. A review of clay based photocatalysts: role of phyllosilicate mineral in interfacial assembly, microstructure control and performance regulation. Chemosphere. 2021;273 doi: 10.1016/j.chemosphere.2021.129723. PubMed DOI
Purceno A.D., Teixeira A.P.C., Souza A.B., Ardisson J.D., de Mesquita J.P., Lago R.M. Ground vermiculite as catalyst for the Fenton reaction. Appl. Clay Sci. 2012;69:87–92. doi: 10.1016/j.clay.2012.08.010. DOI
dos Santos A.J., Sirés I., Alves A.P.M., Martínez-Huitle C.A., Brillas E. Vermiculite as heterogeneous catalyst in electrochemical Fenton-based processes: application to the oxidation of Ponceau SS dye. Chemosphere. 2020;240 doi: 10.1016/j.chemosphere.2019.124838. PubMed DOI
Martínez-Costa J.I., Rivera-Utrilla J., Leyva-Ramos R., Sánchez-Polo M., Velo-Gala I. Individual and simultaneous degradation of antibiotics sulfamethoxazole and trimethoprim by UV and solar radiation in aqueous solution using bentonite and vermiculite as photocatalysts. Appl. Clay Sci. 2018;160:217–225. doi: 10.1016/j.clay.2017.12.026. DOI
Rojas-Mantilla H.D., Ayala-Duran S.C., Pupo Nogueira R.F. Modification of a Brazilian natural clay and catalytic activity in heterogeneous photo-Fenton process. Chemosphere. 2022;291 doi: 10.1016/j.chemosphere.2021.132966. PubMed DOI
Zhang J., Liu T., Chen R., Liu X. Vermiculite as a natural silicate crystal for hydrogen generation from photocatalytic splitting of water under visible light. RSC Adv. 2014;4:406–408. https://10.1039/C3RA45301D DOI
Valášková M., Tokarský J., Pavlovský J., Prostějovský T., Kočí K. α-Fe2O3 nanoparticles/vermiculite clay material: structural, optical and photocatalytic properties. Materials. 2019;12 doi: 10.3390/ma12111880. PubMed DOI PMC
Valášková M., Kočí K., Madejová J., Matějová L., Pavlovský J., Barrocas B.T., Klemencová K. α-Fe2O3 nanoparticles/iron-containing vermiculite composites: structural, textural, optical and photocatalytic properties. Minerals. 2022;12 doi: 10.3390/min12050607. DOI
Valášková M., Leštinský P., Edelmannová M.F., Madejová J., Kočí K. NiO/vermiculite composites prepared for photocatalytic degradation of methanol-water solution and hydrogen generation. Appl. Clay Sci. 2024;259 doi: 10.1016/j.clay.2024.107509. DOI
Reli M., Ambrožová N., Valášková M., Edelmannová M., Čapek L., Schimpf C., Motylenko M., Rafaja D., Kočí K. Photocatalytic water splitting over CeO2/Fe2O3/Ver photocatalysts. Energy Convers. Manag. 2021;238 doi: 10.1016/j.enconman.2021.114156. DOI
Kloprogge J.T. In: Developments in Clay Science. Gates W.P., Kloprogge J.T., Madejová J., Bergaya F., editors. Elsevier; 2017. Chapter 6 - Raman spectroscopy of clay minerals; pp. 150–199.
Rull F. Structural investigation of water and aqueous solutions by Raman spectroscopy. Pure Appl. Chem. 2002;74 doi: 10.1351/pac200274101859. DOI
White S.N. Qualitative and quantitative analysis of CO2 and CH4 dissolved in water and seawater using laser Raman spectroscopy. Appl. Spectrosc. 2010;64:819–827. doi: 10.1366/000370210791666354. PubMed DOI
Scatena L.F., Brown M.G., Richmond G.L. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science. 2001;292:908–912. doi: 10.1126/science.1059514. PubMed DOI
Laaksonen A., Kusalik P.G., Svishchev I.M. Three-dimensional structure in Water−Methanol mixtures. J. Phys. Chem. A. 1997;101:5910–5918. doi: 10.1021/jp970673c. DOI
Pethes I., Pusztai L., Temleitner L. Evolution of the hydrogen-bonded network in methanol-water mixtures upon cooling. J. Mol. Liq. 2023;386 doi: 10.1016/j.molliq.2023.122494. DOI
Ebukuro T., Takami A., Oshima Y., Koda S. Raman spectroscopic studies on hydrogen bonding in methanol and methanol/water mixtures under high temperature and pressure. J. Supercrit. Fluids. 1999;15:73–78. doi: 10.1016/S0896-8446(98)00126-0. DOI
Bakó I., Megyes T., Bálint S., Grósz T., Chihaia V. Water–methanol mixtures: topology of hydrogen bonded network. Phys. Chem. Chem. Phys. 2008;10:5004–5011. doi: 10.1039/B808326F. PubMed DOI
Li F., Men Z., Li S., Wang S., Li Z., Sun C. Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy. Spectrochim. Acta, Part A. 2018;189:621–624. doi: 10.1016/j.saa.2017.08.077. PubMed DOI
Yang B., Cao X., Lang H., Wang S., Sun C. Study on hydrogen bonding network in aqueous methanol solution by Raman spectroscopy. Spectrochim. Acta, Part A. 2020;225 doi: 10.1016/j.saa.2019.117488. PubMed DOI
Xiao M., Baktash A., Lyu M., Zhao G., Jin Y., Wang L. Unveiling the role of water in heterogeneous photocatalysis of methanol conversion for efficient hydrogen production. Angew. Chem. Int. Ed. 2024;63 doi: 10.1002/anie.202402004. PubMed DOI
Xu B.-B., Zhou M., Zhang R., Ye M., Yang L.-Y., Huang R., Wang H.F., Wang X.L., Yao Y.-F. Solvent water controls photocatalytic methanol reforming. J. Phys. Chem. Lett. 2020;11:3738–3744. doi: 10.1021/acs.jpclett.0c00972. PubMed DOI
Mohamed H.H., Wazan G., Besisa D.H.A. Natural clay minerals as heterojunctions of multi-metal oxides for superior photocatalytic activity. Mater. Sci. Eng. B. 2022;286 doi: 10.1016/j.mseb.2022.116077. DOI
Macedo H.A.O., Della Giustina M.E.S., de Oliveira C.G., Praxedes I.F. The São Luís de Montes Belos vermiculite deposit, central Brazil: Hydrothermal mineralization associated with intracontinental strike slip zones. J. South. Am. Earth. Sci. 2018;88:459–479. doi: 10.1016/j.jsames.2018.08.012. DOI
Badreddine R., Grandjean F., Vandormael D., Fransolet A.M., Long G.J. An 57Fe Mössbauer spectral study of vermiculitization in the Palabora Complex, Republic of South Africa. Clay Miner. 2000;35:653–663. doi: 10.1180/000985500547115. DOI
Wiewióra A., Dubińska E. Origin of minerals with intermediate chlorite-vermiculite structure (Szklary, Poland) Chem. Geol. 1987;60:185–197. doi: 10.1016/0009-2541(87)90124-0. DOI
Foster M.D. Professional Paper; 1962. Interpretation of the Composition and a Classification of the Chlorites.
Prieto A.C., Lobón J.M., Alía J.M., Rull F., Martin F. Thermal and spectroscopic analysis of natural trioctahedral chlorites. J. Therm. Anal. 1991;37:969–981. doi: 10.1007/BF01932795. DOI
Makuła P., Pacia M., Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–vis spectra. J. Phys. Chem. Lett. 2018;9:6814–6817. doi: 10.1021/acs.jpclett.8b02892. PubMed DOI
Tauc J., Grigorovici R., Vancu A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B. 1966;15:627–637. doi: 10.1002/pssb.19660150224. DOI
Phanichphant S., Nakaruk A., Chansaenpak K., Channei D. Evaluating the photocatalytic efficiency of the BiVO4/rGO photocatalyst. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-52589-5. PubMed DOI PMC
Žerjav G., Žižek K., Zavašnik J., Pintar A. Brookite vs. rutile vs. anatase: what's behind their various photocatalytic activities? J. Environ. Chem. Eng. 2022;10 doi: 10.1016/j.jece.2022.107722. DOI
Somaiah K., Venkatanarayana M., Sathyanarayana B. Thermally stimulated luminescence of montmorillonite clay. Cryst. Res. Technol. 1991;26:357–362. doi: 10.1002/crat.2170260320. DOI
Mahadik M.A., Shinde S.S., Mohite V.S., Kumbhar S.S., Rajpure K.Y., Moholkar A.V., Bhosale C.H. Photoelectrocatalytic activity of ferric oxide nanocatalyst: a synergestic effect of thickness. Ceram. Int. 2014;40:9463–9471. doi: 10.1016/j.ceramint.2014.02.019. DOI
Gondal M.A., Hameed A., Yamani Z.H. Hydrogen generation by laser transformation of methanol using n-type WO3 semiconductor catalyst. J. Mol. Catal. Chem. 2004;222:259–264. doi: 10.1016/j.molcata.2004.08.022. DOI
Guo W., Guo T., Zhang Y., Yin L., Dai Y. Progress on simultaneous photocatalytic degradation of pollutants and production of clean energy: a review. Chemosphere. 2023;339 doi: 10.1016/j.chemosphere.2023.139486. PubMed DOI
Schoonheydt R.A. Reflections on the material science of clay minerals. Appl. Clay Sci. 2016;131:107–112. doi: 10.1016/j.clay.2015.12.005. DOI
Brandt F., Bosbach D., Krawczyk-Bärsch E., Arnold T., Bernhard G. Chlorite dissolution in the acid ph-range: a combined microscopic and macroscopic approach. Geochem. Cosmochim. Acta. 2003;67:1451–1461. doi: 10.1016/S0016-7037(02)01293-0. DOI
Frost R.L., Rintoul L. Lattice vibrations of montmorillonite: an FT Raman and X-ray diffraction study. Appl. Clay Sci. 1996;11:171–183. doi: 10.1016/S0169-1317(96)00017-8. DOI
Arab M., Bougeard D., Smirnov K.S. Experimental and computer simulation study of the vibrational spectra of vermiculite. Phys. Chem. Chem. Phys. 2002;4:1957–1963. doi: 10.1039/B110768B. DOI
Rinaudo C., Roz M., Boero V., Franchini-Angela M. FT-Raman spectroscopy on several di- and trioctahedral T-O-T phyllosilicates. Neu. Jb. Mineral., Mh. 2004;2004:537–554. doi: 10.1127/0028-3649/2004/2004-0537. DOI
Ritz M., Zdrálková J., Valášková M. Vibrational spectroscopy of acid treated vermiculites. Vib. Spectrosc. 2014;70:63–69. doi: 10.1016/j.vibspec.2013.11.007. DOI
Ritz M., Valášková M. Infrared and Raman spectroscopy of three commercial vermiculites doped with cerium dioxide nanoparticles. Spectrochim. Acta, Part A. 2018;201:39–45. doi: 10.1016/j.saa.2018.04.053. PubMed DOI
Tlili A., Smith D.C., Beny J.M., Boyer H. A Raman microprobe study of natural micas. Mineral. Mag. 1989;53:165–179. doi: 10.1180/minmag.1989.053.370.04. DOI
Ulian G., Moro D., Valdrè G. Infrared and Raman spectroscopic features of clinochlore Mg6Si4O10(OH)8: a density functional theory contribution. Appl. Clay Sci. 2020;197 doi: 10.1016/j.clay.2020.105779. DOI
Li F., Wang Y., Li Z., Men Z., Sun C. Enhanced stimulated Raman scattering by a pressure-controlled shock wave in liquid water. J. Phys. Chem. Lett. 2019;10:4812–4816. doi: 10.1021/acs.jpclett.9b01956. PubMed DOI
Giguère P.A. Bifurcated hydrogen bonds in water. J. Raman Spectrosc. 1984;15:354–359. doi: 10.1002/jrs.1250150513. DOI
Pal J., Patla A., Subramanian R. Thermodynamic properties of forming methanol-water and ethanol-water clusters at various temperatures and pressures and implications for atmospheric chemistry: a DFT study. Chemosphere. 2021;272 doi: 10.1016/j.chemosphere.2021.129846. PubMed DOI
Dixit S., Poon W.C.K., Crain J., Dixit S., Poon W.C.K. Hydration of methanol in aqueous solutions: a Raman spectroscopic study. J. Phys. Condens. Matter. 2000;12:L323. doi: 10.1088/0953-8984/12/21/103. DOI
Tomza P., Wrzeszcz W., Mazurek S., Szostak R., Czarnecki M.A. Microheterogeneity in binary mixtures of water with CH3OH and CD3OH: ATR-IR spectroscopic, chemometric and DFT studies. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2018;197:88–94. doi: 10.1016/j.saa.2018.01.068. PubMed DOI