α-Fe2O3 Nanoparticles/Vermiculite Clay Material: Structural, Optical and Photocatalytic Properties

. 2019 Jun 11 ; 12 (11) : . [epub] 20190611

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31212663

Photocatalysis is increasingly becoming a center of interest due to its wide use in environmental remediation. Hematite (α-Fe2O3) is one promising candidate for photocatalytic applications. Clay materials as vermiculite (Ver) can be used as a carrier to accommodate and stabilize photocatalysts. Two different temperatures (500 °C and 700 °C) were used for preparation of α-Fe2O3 nanoparticles/vermiculite clay materials. The experimental methods used for determination of structural, optical and photocatalytic properties were X-ray fluorescence (ED-XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray spectrometry (EDS), N2 adsorption method (BET), diffuse reflectance UV-Vis spectroscopy (DRS), photoluminescence spectroscopy (PL) and photocatalytic reduction of CO2, respectively. The data from XRD were confronted with molecular modeling of the material arrangement in the interlayer space of vermiculite structure and the possibility of anchoring the α-Fe2O3 nanoparticles to the surface and edge of vermiculite. Correlations between structural, textural, optical and electrical properties and photocatalytic activity have been studied in detail. The α-Fe2O3 and α-Fe2O3/Ver materials with higher specific surface areas, a smaller crystallite size and structural defects (oxygen vacancies) that a play crucial role in photocatalytic activity, were prepared at a lower calcination temperature of 500 °C.

Zobrazit více v PubMed

Guggenheim S., Adams J.M., Bain D.C., Bergaya F., Brigatti M.F., Drits V.A., Formoso M.L.L., Galán E., Kogure T., Stanjek H. Summary of recommendations of nomenclature committees relevant to clay mineralogy: Report of the association Internationale pour l’etude des argiles (AIPEA) nomenclature committee for 2006. Clay Clay Miner. 2006;54:761–772. doi: 10.1346/CCMN.2006.0540610. DOI

Brigatti M.F., Galan E., Theng B.K.G. Structures and Mineralogy of Clay minerals. In: Bergaya F., Theng B.K.G., Lagaly G., editors. Handbook of Clay Science. Volume 1. Elsevier Ltd.; Amsterdam, The Netherlands: 2006. pp. 19–86. Developments in Clay Science.

Zhou C.H., Keeling J. Fundamental and applied research on clay minerals: From climate and environment to nanotechnology. Appl. Clay Sci. 2013;274:3–9. doi: 10.1016/j.clay.2013.02.013. DOI

Stucki J. Properties and behaviour of iron in clay minerals. In: Bergaya F., Theng B.K.G., Lagaly G., editors. Handbook of Clay Science. Volume 1. Elsevier Ltd.; Amsterdam, The Netherlands: 2006. pp. 423–475. Developments in Clay Science.

Neumann A., Olson T.L., Scherer M.M. Spectroscopic evidence for Fe (II)–Fe (III) electron transfer at clay mineral edge and basal sites. Environ. Sci. Technol. 2013;47:6969–6977. doi: 10.1021/es304744v. PubMed DOI

Alexandrov V., Rosso K.M. Insights into the mechanism of Fe (II) adsorption and oxidation at Fe–clay mineral surfaces from first-principles calculations. J. Phys. Chem. C. 2013;117:22880–22886. doi: 10.1021/jp4073125. DOI

Gorski C.A., Klüpfel L.E., Voegelin A., Sander M., Hofstetter T.B. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties. Environ. Sci. Technol. 2013;47:13477–13485. doi: 10.1021/es403824x. PubMed DOI

Oliveira L.C.A., Rios R.V.R.A., Fabris J.D., Sapag K., Garg V.K., Lago R.M. Clay-iron oxide magnetic composites for the adsorption of contaminants in water. Appl. Clay Sci. 2003;22:169–177. doi: 10.1016/S0169-1317(02)00156-4. DOI

Son Y.-H., Lee J.-K., Soong Y., Martello D., Chyu M. Structure–property correlation in iron oxide nanoparticle−clay hybrid materials. Chem. Mater. 2010;22:2226–2232. doi: 10.1021/cm9024843. DOI

Da Silva D.C., Skeff Neto K., Coaquira J.A.H., Araujo P.P., Cintra D.O.S., Lima E.C.D., Guilherme L.R., Mosiniewicz-Szablewska E., Morais P.C. Magnetic characterization of vermiculite-based magnetic nanocomposites. J. Non Cryst. Solids. 2010;356:2574–2577. doi: 10.1016/j.jnoncrysol.2010.03.035. DOI

Gao Z., Lia X., Wu H., Zhao S., Deligeer W., Asuha S. Magnetic modification of acid-activated kaolin: Synthesis, characterization, and adsorptive properties. Micropor. Mesopor. Mater. 2015;202:1–7. doi: 10.1016/j.micromeso.2014.09.029. DOI

Tao L.X., Zou D.X. Clay-intercalated metal complex catalysts and their molecular recognition catalysis. Prog. Chem. 2002;14:200–206.

Garrido-Ramírez E.G., Theng B.K.G., Moram M.L. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—A review. Appl. Clay Sci. 2010;47:182–192. doi: 10.1016/j.clay.2009.11.044. DOI

Chen J., Xu L., Li W., Gou X. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 2005;17:582–586. doi: 10.1002/adma.200401101. DOI

Khedr M.H., Bahgat M., Nasr M.I., Sedeek E.K. CO2 decomposition over freshly reduced nanocrystalline Fe2O3. Colloid Surf. A Physicochem. Eng. Asp. 2007;302:517–524. doi: 10.1016/j.colsurfa.2007.03.024. DOI

Nasibulin A.G., Rackauskas S., Jiang H., Tian Y., Mudimela P.R., Shandakov S.D., Nasibulina L.I., Sainio J., Kauppinen E.I. Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res. 2009;2:373–379. doi: 10.1007/s12274-009-9036-5. DOI

Mishra M., Chun D.-M. α-Fe2O3 as a photocatalytic material: A review. Appl. Catal. A Gen. 2015;498:126–141. doi: 10.1016/j.apcata.2015.03.023. DOI

Cornell R.M., Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. 2nd ed. Wiley-VCH; Weinheim, Germany: 2003.

Apte S.K., Naik S.D., Sonawane R.S., Kale B.B. Synthesis of nanosize-necked structure α- and γ-Fe2O3 and its photocatalytic activity. J. Am. Ceram. Soc. 2007;90:412–414. doi: 10.1111/j.1551-2916.2006.01424.x. DOI

Maji S.K., Mukherjee N., Mondal A., Adhikary B. Synthesis, characterization and photocatalytic activity of α-Fe2O3 nanoparticles. Polyhedron. 2012;33:145–149. doi: 10.1016/j.poly.2011.11.017. DOI

Sundaramurthy J., Kumar P.S., Kalaivani M., Thavasi V., Mhaisalkar S.G., Ramakrishna S. Superior pohotocatalytic behavior of novel 1D nanobraid and nanoporous α-Fe2O3 structures. RSC Adv. 2012;2:8201–8208. doi: 10.1039/c2ra20608k. DOI

Fang X.L., Chen C.H., Jin M.S., Kuang Q., Xie Z.X., Xie S.Y., Huang R.B., Zheng L.S. Single-crystal-like hematite colloidal nanocrystal clusters: Synthesis and applications in gas sensors, photocatalysis and water treatment. J. Mater. Chem. 2009;19:6154–6160. doi: 10.1039/b905034e. DOI

Hosseini-Zori M., Taheri-Nassaj E., Mirhabibi A.R. Effective factors on synthesis of the hematite-silica red inclusion pigment. Ceram. Int. 2008;34:491–496. doi: 10.1016/j.ceramint.2006.11.012. DOI

Lassoued A., Dkhil B., Gardi A., Ammar S. Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results Phys. 2017;7:3007–3015. doi: 10.1016/j.rinp.2017.07.066. DOI

Kim I.H., Seo H.O., Park E.J., Han S.W., Kim Y.D. Low temperature CO oxidation over iron oxide nanoparticles decorating internal structures of a mesoporous alumina. Sci. Rep. 2017;7:40497. doi: 10.1038/srep40497. PubMed DOI PMC

Sugrañez R., Balbuena J., Cruz-Yusta M., Martín F., Morales J., Sánchez L. Efficient behaviour of hematite towards the photocatalytic degradation of NOx gases. Appl. Catal. B Environ. 2015;165:529–536. doi: 10.1016/j.apcatb.2014.10.025. DOI

Low J., Cheng B., Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Appl. Surf. Sci. 2017;392:658–686. doi: 10.1016/j.apsusc.2016.09.093. DOI

Habisreutinger S.N., Schmidt-Mende L., Stolarczyk J.K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 2013;52:7372–7408. doi: 10.1002/anie.201207199. PubMed DOI

Li K., An X., Park K.H., Khraisheh M., Tang J. A critical review of CO2 photoconversion: Catalysts and reactors. Catal. Today. 2014;224:3–12. doi: 10.1016/j.cattod.2013.12.006. DOI

Yuan L., Xu Y.-J. Photocatalytic conversion of CO2 into value-added and renewable fuels. Appl. Surf. Sci. 2015;342:154–167. doi: 10.1016/j.apsusc.2015.03.050. DOI

Ola O., Maroto-Valer M.M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C Photochem. Rev. 2015;24:16–42. doi: 10.1016/j.jphotochemrev.2015.06.001. DOI

Shirozu H., Bailey S.W. Crystal structure of a two-layer Mg-vermiculite. Am. Miner. 1966;51:1124–1143.

Valášková M., Tokarský J., Hundáková M., Smetana B. Role of vermiculite and zirconium–vermiculite on the formation of zircon–cordierite nanocomposites. Appl. Clay Sci. 2013;75–76:100–108. doi: 10.1016/j.clay.2013.02.015. DOI

Tokarský J., Čapková P., Rafaja D., Klemm V., Valášková M., Kukutschová J., Tomášek V. Adhesion of silver nanoparticles on the clay substrates; modeling and experiment. Appl. Surf. Sci. 2010;256:2841–2848. doi: 10.1016/j.apsusc.2009.11.037. DOI

Mamulová Kutláková K., Tokarský J., Kovář P., Vojtěšková S., Kovářová A., Smetana B., Kukutschová J., Čapková P., Matějka V. Preparation and characterization of photoactive composite kaolinite/TiO2. J. Hazard. Mater. 2011;188:212–220. doi: 10.1016/j.jhazmat.2011.01.106. PubMed DOI

Mamulová Kutláková K., Tokarský J., Peikertová P. Functional and eco-friendly nanocomposite kaolinite/ZnO with high photocatalytic activity. Appl. Catal. B Environ. 2015;162:392–400. doi: 10.1016/j.apcatb.2014.07.018. DOI

Rappé A.K., Goddard W.A., III Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 1991;95:3358–3363. doi: 10.1021/j100161a070. DOI

Rappé A.K., Casewit C.J., Colwell K.S., Goddard W.A., III, Skiff W.M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992;114:10024–10035. doi: 10.1021/ja00051a040. DOI

Valášková M., Simha Martynková G., Kupková J., Seidlerová J., Tomášek V., Kočí K., Ritz M., Klemm V., Rafaja D. Comparable study of vermiculites from four selected commercial deposits prepared with fixed ceria nanoparticles. Appl. Clay Sci. 2018;151:164–174. doi: 10.1016/j.clay.2017.10.006. DOI

Scherrer P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Gött. Nachr. 1918;2:98–100.

Klug H.P., Alexander L.E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. 2nd ed. Wiley & Sons; New York, NY, USA: 1974. pp. 618–708.

Brindley G.W. Order-disorder in clay mineral structures. In: Brindley G.W., Brown G., editors. Crystal Structures of Clay Minerals and Their X-ray Identification. Volume 2. Mineral Society; London, UK: 1980. pp. 125–195.

Tokarský J., Čapková P., Burda J. Structure and stability of kaolinite/TiO2 nanocomposite: DFT and MM computations. J. Mol. Model. 2012;18:2689–2698. doi: 10.1007/s00894-011-1278-y. PubMed DOI

Torrent J., Barrón V. Diffuse reflectance spectroscopy of iron oxides. Encycl. Surf. Colloid Sci. 2002;1:1438–1446.

Yamanoi Y., Nakashima S., Katsura M. Temperature dependence of reflectance spectra and color values of hematite by in situ, high-temperature visible micro-spectroscopy. Am. Miner. 2009;94:90–97. doi: 10.2138/am.2009.2779. DOI

Kubelka P., Munk F. Ein Beitrag zur Optik der Farbanstriche. Zeitschrift für Technische Physik. 1931;12:593–601.

Mathevula L.E., Noto L.L., Mothudi B.M., Chithambo M., Dhlamini M.S. Structural and optical properties of sol-gel derived α-Fe2O3 nanoparticles. J. Lumin. 2017;192:879–887. doi: 10.1016/j.jlumin.2017.07.055. DOI

Vayssieres L., Sathe C., Butorin S.M., Shuh D.K., Nordgren J., Guo J. One-dimensional quantum-confinement effect in α-Fe2O3 ultrafine nanorod arrays. Adv. Mater. 2005;17:2320–2323. doi: 10.1002/adma.200500992. DOI

Valášková M., Martynková G.S. Vermiculite: Structural properties and examples of the use. In: Valášková M., Martynková G.S., editors. Clay Minerals in Nature—Their Characterization, Modification and Application. InTech; Rijeka, Croatia: 2012. pp. 209–238.

Wheeler D.A., Wang G., Ling Y., Li Y., Zhang J.Z. Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 2012;5:6682–6702. doi: 10.1039/c2ee00001f. DOI

Mahadik M.A., Shinde S.S., Mohite V.S., Kumbhar S.S., Rajpure K.Y., Moholkar A.V., Bhosale C.H. Photoelectrocatalytic activity of ferric oxide nanocatalyst: A synergestic effect of thickness. Ceram. Int. 2014;40:9463–9471. doi: 10.1016/j.ceramint.2014.02.019. DOI

Zhu J., Zheng W., He B., Zhang J., Anpo M. Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J. Mol. Catal. A Chem. 2004;216:35–43. doi: 10.1016/j.molcata.2004.01.008. DOI

Ansari S.A., Khan M.M., Kalathil S., Nisar A., Lee J., Cho M.H. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale. 2013;5:9238–9246. doi: 10.1039/c3nr02678g. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...