Hematites Precipitated in Alkaline Precursors: Comparison of Structural and Textural Properties for Methane Oxidation

. 2022 Jul 25 ; 23 (15) : . [epub] 20220725

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35897740

Hematite (α-Fe2O3) catalysts prepared using the precipitation methods was found to be highly effective, and therefore, it was studied with methane (CH4), showing an excellent stable performance below 500 °C. This study investigates hematite nanoparticles (NPs) obtained by precipitation in water from the precursor of ferric chloride hexahydrate using precipitating agents NaOH or NH4OH at maintained pH 11 and calcined up to 500 °C for the catalytic oxidation of low concentrations of CH4 (5% by volume in air) at 500 °C to compare their structural state in a CH4 reducing environment. The conversion (%) of CH4 values decreasing with time was discussed according to the course of different transformation of goethite and hydrohematites NPs precursors to magnetite and the structural state of the calcined hydrohematites. The phase composition, the size and morphology of nanocrystallites, thermal transformation of precipitates and the specific surface area of the NPs were characterized in detail by X-ray powder diffraction, transmission electron microscopy, infrared spectroscopy, thermal TG/DTA analysis and nitrogen physisorption measurements. The results support the finding that after goethite dehydration, transformation to hydrohematite due to structurally incorporated water and vacancies is different from hydrohematite α-Fe2O3. The surface area SBET of Fe2O3_NH-70 precipitate composed of protohematite was larger by about 53 m2/g in comparison with Fe2O3_Na-70 precipitate composed of goethite. The oxidation of methane was positively influenced by the hydrohematites of the smaller particle size and the largest lattice volume containing structurally incorporated water and vacancies.

Zobrazit více v PubMed

Mishra M., Chun D.M. α- Fe2O3 as a photocatalytic material: A review. Appl. Catal. A Gen. 2015;498:126–141. doi: 10.1016/j.apcata.2015.03.023. DOI

Valášková M., Tokarský J., Pavlovský J., Prostějovský T., Kočí K. α-Fe2O3 nanoparticles/vermiculite clay material: Structural, optical and photocatalytic properties. Materials. 2019;12:1880. doi: 10.3390/ma12111880. PubMed DOI PMC

Wu C.Z., Yin P., Zhu X., OuYang C.Z., Xie Y. Synthesis of hematite (alpha-Fe2O3) nanorods: Diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J. Phys. Chem. B. 2006;110:17806–17812. doi: 10.1021/jp0633906. PubMed DOI

Fang X.L., Chen C., Jin M.S., Kuang Q., Xie Z.X., Xie S.Y., Huang R.B., Zeng L.S. Single-crystal-like hematite colloidal nanocrystal clusters: Synthesis and application in gas sensors, photocatalysis and water treatment. J. Mater. Chem. 2009;19:6154–6160. doi: 10.1039/b905034e. DOI

Reddy M.V., Subba R., Rao G.V., Chowdari B.V.R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013;113:5364–5457. doi: 10.1021/cr3001884. PubMed DOI

Yang Y., Foster M., Ling Y.C., Wang G.M., Zhai T., Tong Y.X., Cowan A.J., Li Y. Acid treatment enables suppression of electron-hole recombination in hematite for photoelectrochemical water splitting. Angew. Chem. Int. Edit. 2016;553:403–3407. PubMed

Choi Y., Jeon D., Choi Y., Kim D., Kim N., Gu M., Bae S., Lee T., Lee H.W., Kim B.S., et al. Interface engineering of hematite with nacre-like catalytic multilayers for solar water oxidation. ASC Nano. 2019;13:467–475. doi: 10.1021/acsnano.8b06848. PubMed DOI

Mayer M.T., Lin Y., Yuan G., Wang D. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: Case studies on hematite. Acc. Chem. Res. 2013;46:1558–1566. doi: 10.1021/ar300302z. PubMed DOI

Reli M., Ambrožová N., Valášková M., Edelmannová M., Čapek L., Schimpf C., Motylenko M., Rafaja D., Kočí K. Photocatalytic water splitting over CeO2/Fe2O3/Ver photocatalysts. Energy Convers. Manag. 2021;238:114156. doi: 10.1016/j.enconman.2021.114156. DOI

Brown A., Hargreaves J., Rijniersce B. A study of the structural and catalytic effects of sulfation on iron oxide catalysts prepared from goethite and ferrihydrite precursors for methane oxidation. Catal. Lett. 1998;53:7–13. doi: 10.1023/A:1019016830208. DOI

Barbosa A.L., Herguido J., Santamaria J. Methane combustion over unsupported iron oxide catalysts. Catal. Today. 2001;64:43–50. doi: 10.1016/S0920-5861(00)00507-1. DOI

He Y., Guo F., Yang K.R., Heinlein J.A., Bamonte S.M., Fee J.J., Hu S., Suib S.L., Haller G.L., Batista V.S., et al. In situ identification of reaction intermediates and mechanistic understandings of methane oxidation over hematite: A combined experimental and theoretical study. J. Am. Chem. Soc. 2020;142:17119–17130. doi: 10.1021/jacs.0c07179. PubMed DOI

Atkinson R.J., Posner A.M., Quirk J.P. Adsorption of potential determining ions at the ferric oxide-aqueous electrolyte interface. J. Phys. Chem. 1967;71:550–558. doi: 10.1021/j100862a014. DOI

Liu H., Wei Y., Sun Y. The Formation of hematite from ferrihydrite using Fe(II) as a catalyst. J. Mol. Catal. Chem. 2005;226:135–140. doi: 10.1016/j.molcata.2004.09.019. DOI

Han L., Liu H., Wei Y. In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method. Powder Technol. 2011;207:42–46. doi: 10.1016/j.powtec.2010.10.008. DOI

Zhang Y.C., Tang J.Y., Hu X.Y. Controllable synthesis and magnetic properties of pure hematite and maghemite nanocrystals from a molecular precursor. J. Alloys Compd. 2008;462:24–28. doi: 10.1016/j.jallcom.2007.07.115. DOI

Fiore A.M., Varvaro G., Agostinelli E., Mangone A., De Giglio E., Terzano R., Allegretta I., Dell’Anna M.M., Fiore S., Mastrorilli P. Synthesis and use in catalysis of hematite nanoparticles obtained from a polymer supported Fe(III) complex. Eur. J. Inorg. Chem. 2022;7:e202100943. doi: 10.1002/ejic.202100943. DOI

Su D., Kim H.S., Kim W.S., Wang G. Synthesis of tuneable porous hematites (α-Fe2O3) for gas sensing and lithium storage in lithium ion batteries. Micropor. Mesopor. Mat. 2012;149:36–45. doi: 10.1016/j.micromeso.2011.09.002. DOI

Supattarasakda K., Petcharoen K., Permpool T., Sirivat A., Lerdwijitjarud W. Control of hematite nanoparticle size and shape by the chemical precipitation method. Powder Technol. 2013;249:353–359. doi: 10.1016/j.powtec.2013.08.042. DOI

Matijevicć E., Scheiner P. Ferric hydrous oxide sols: III. Preparation of uniform particles by hydrolysis of Fe(III)-chloride-nitrate, and -perchlorate solutions. J. Colloid Interf. Sci. 1978;63:509–524. doi: 10.1016/S0021-9797(78)80011-3. DOI

Lassoued A., Dkhil B., Gardi A., Ammar S. Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results Phys. 2017;7:3007–3015. doi: 10.1016/j.rinp.2017.07.066. DOI

Schwertmann U., Murad E. Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner. 1983;31:277–284. doi: 10.1346/CCMN.1983.0310405. DOI

Peterson K.M., Heaney P.J., Post J.E., Eng P.J. A refined monoclinic structure for a variety of “hydrohematite”. Am. Mineral. 2015;100:570–579. doi: 10.2138/am-2015-4807. DOI

Ståhl K., Nielsen K., Jiang J., Lebech B., Hanson J.C., Norby P., van Lanschot J. On the akaganéite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts. Corros. Sci. 2003;45:2563–2575. doi: 10.1016/S0010-938X(03)00078-7. DOI

Wolska E. The structure of hydrohematite. Z. Krist. Cryst. Mater. 1981;154:69–75. doi: 10.1524/zkri.1981.154.14.69. DOI

Wolska E., Schwertmann U. Nonstoichiometric structures during dehydroxylation of goethite. Z. Krist. Cryst. Mater. 1989;189:223–237. doi: 10.1524/zkri.1989.189.3-4.223. DOI

Dang M.Z., Rancourt D.G., Dutrizac J.E., Lamarche G., Provencher R. Interplay of surface conditions, particle size, stoichiometry, cell parameters, and magnetism in synthetic hematite-like materials. Hyperfine Interact. 1998;117:271–319. doi: 10.1023/A:1012655729417. DOI

Monai M., Montini T., Gorte R.J., Fornasiero P. Catalytic oxidation of methane: Pd and beyond. Eur. J. Inorg. Chem. 2018;2018:2884–2893. doi: 10.1002/ejic.201800326. DOI

Song C., Liu F., Kang W., Zhao J., Yang L., Guo C. A novel concept for ultra-low concentration methane treatment based on chemical looping catalytic oxidation. Fuel Process. Technol. 2022;228:107159. doi: 10.1016/j.fuproc.2021.107159. DOI

Farrauto R.J. Low-temperature oxidation of methane. Science. 2012;337:659–660. doi: 10.1126/science.1226310. PubMed DOI

Monazam E.R., Breault R.W., Siriwardane R., Richards G., Carpenter S. Kinetics of the reduction of hematite (Fe2O3) by methane (CH4) during chemical looping combustion: A global mechanism. Chem. Eng. J. 2013;232:478–487. doi: 10.1016/j.cej.2013.07.091. DOI

Cudennec Y., Lecerf A. The transformation of ferrihydrite into goethite or hematite, revisited. J. Solid State Chem. 2006;179:716–722. doi: 10.1016/j.jssc.2005.11.030. DOI

Peterson K.M., Heaney P.J., Post J.E. Evolution in the structure of akaganeite and hematite during hydrothermal growth: An in situ synchrotron X-ray diffraction analysis. Powder Diffr. 2018;33:287–297. doi: 10.1017/S0885715618000623. DOI

Cudennec Y., Lecerf A. Topotactic transformations of goethite and lepidocrocite into hematite and maghemite. Solid State Sci. 2005;7:520–529. doi: 10.1016/j.solidstatesciences.2005.02.002. DOI

Zhang W.J., Huo C.F., Feng G., Li Y.W., Wang J., Jiao H. Dehydration of goethite to hematite from molecular dynamic simulation. J. Mol. Struct. TEOCHEM. 2010;950:20–26. doi: 10.1016/j.theochem.2010.03.013. DOI

Williamson G.K., Hall W.H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953;1:22–31. doi: 10.1016/0001-6160(53)90006-6. DOI

Neumann S., Menter C., Mahmoud A.S., Segets D., Rafaja D. Microstructure characteristics of non-monodisperse quantum dots: On the potential of transmission electron microscopy combined with X-ray diffraction. CrystEngComm. 2020;22:3644–3655. doi: 10.1039/D0CE00312C. DOI

Gialanella S., Girardi F., Ischia G., Lonardelli I., Mattarelli M., Montagna M. On the goethite to hematite phase transformation. J. Therm. Anal. Calorim. 2010;102:867–873. doi: 10.1007/s10973-010-0756-2. DOI

Ruan H.D., Frost R.L., Kloprogge J.T., Duong L. Infrared spectroscopy of goethite dehydroxylation. II. Effect of aluminium substitution on the behaviour of hydroxyl units. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2002;58:479–491. doi: 10.1016/S1386-1425(01)00556-X. PubMed DOI

Veneranda M., Aramendia J., Bellot-Gurlet L., Colomban P., Castro K., Madariaga J.M. FTIR spectroscopic semi-quantification of iron phases: A new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systems. Corros. Sci. 2018;133:68–77. doi: 10.1016/j.corsci.2018.01.016. DOI

Serna C.J., Rendon J.L., Iglesias J.E. Infrared surface modes in corundum-type microcrystalline oxides. Spectrochim. Acta A Mol. Spectrosc. 1982;38:797–802. doi: 10.1016/0584-8539(82)80070-6. DOI

Wolska E., Szajda W. Structural and spectroscopic characteristics of synthetic hydrohematite. J. Mater. Sci. 1985;20:4407–4412. doi: 10.1007/BF00559329. DOI

Burgina E.B., Kustova G.N., Tsybulya S.V., Kryukova G.N., Litvak G.S., Isupova L.A., Sadykov V.A. Structure of the metastable modification of iron (III) oxide. J. Struct. Chem. 2000;41:396–402. doi: 10.1007/BF02741997. DOI

Lee E.H. Iron oxide catalysts for dehydrogenation of ethylbenzene in the presence of steam. Catal. Rev. 1974;8:285–305. doi: 10.1080/01614947408071864. DOI

Walter D., Buxbaum G., Laqua W. The mechanism of the thermal transformation from goethite to hematite. J. Therm. Anal. Calorim. 2001;63:733–748. doi: 10.1023/A:1010187921227. DOI

Katoh M., Orihara M., Moriga T., Nakabayashi I., Sugiyama S., Tanaka S. In situ XRD and in situ IR spectroscopic analyses of structural change of goethite in methane oxidation. J. Solid State Chem. 2001;156:225–229. doi: 10.1006/jssc.2000.8992. DOI

Breault R.W., Monazam E.R. Analysis of fixed bed data for the extraction of a rate mechanism for the reaction of hematite with methane. J. Ind. Eng. Chem. 2015;29:87–96. doi: 10.1016/j.jiec.2015.03.020. DOI

Scherrer P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Gött. Nachr. 1918;2:98–100.

Choudhary V.R., Patil V.P., Jana P., Uphade B.S. Nano-gold supported on Fe2O3: A highly active catalyst for low temperature oxidative destruction of methane green house gas from exhaust/waste gase. Appl. Catal. A Gen. 2008;350:186–190. doi: 10.1016/j.apcata.2008.08.008. DOI

Jozwiak W.K., Kaczmarek E., Maniecki T.P., Ignaczak W., Maniukiewicz W. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Appl. Catal. A Gen. 2007;326:17–27. doi: 10.1016/j.apcata.2007.03.021. DOI

Till J.L., Nowaczyk N. Authigenic magnetite formation from goethite and hematite and chemical remanent magnetization acquisition. Geophys. J. Int. 2018;213:1818–1831. doi: 10.1093/gji/ggy083. DOI

Huang L., Tang M., Fan M., Cheng H. Density functional theory study on the reaction between hematite and methane during chemical looping process. Appl. Energy. 2015;159:132–144. doi: 10.1016/j.apenergy.2015.08.118. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...