Hematites Precipitated in Alkaline Precursors: Comparison of Structural and Textural Properties for Methane Oxidation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35897740
PubMed Central
PMC9332227
DOI
10.3390/ijms23158163
PII: ijms23158163
Knihovny.cz E-zdroje
- Klíčová slova
- alkaline precipitators, hematite nanoparticles, hydrohematites, methane oxidation, oxygen carrier,
- MeSH
- methan * MeSH
- oxidace-redukce MeSH
- velikost částic MeSH
- voda chemie MeSH
- železité sloučeniny * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ferric oxide MeSH Prohlížeč
- methan * MeSH
- voda MeSH
- železité sloučeniny * MeSH
Hematite (α-Fe2O3) catalysts prepared using the precipitation methods was found to be highly effective, and therefore, it was studied with methane (CH4), showing an excellent stable performance below 500 °C. This study investigates hematite nanoparticles (NPs) obtained by precipitation in water from the precursor of ferric chloride hexahydrate using precipitating agents NaOH or NH4OH at maintained pH 11 and calcined up to 500 °C for the catalytic oxidation of low concentrations of CH4 (5% by volume in air) at 500 °C to compare their structural state in a CH4 reducing environment. The conversion (%) of CH4 values decreasing with time was discussed according to the course of different transformation of goethite and hydrohematites NPs precursors to magnetite and the structural state of the calcined hydrohematites. The phase composition, the size and morphology of nanocrystallites, thermal transformation of precipitates and the specific surface area of the NPs were characterized in detail by X-ray powder diffraction, transmission electron microscopy, infrared spectroscopy, thermal TG/DTA analysis and nitrogen physisorption measurements. The results support the finding that after goethite dehydration, transformation to hydrohematite due to structurally incorporated water and vacancies is different from hydrohematite α-Fe2O3. The surface area SBET of Fe2O3_NH-70 precipitate composed of protohematite was larger by about 53 m2/g in comparison with Fe2O3_Na-70 precipitate composed of goethite. The oxidation of methane was positively influenced by the hydrohematites of the smaller particle size and the largest lattice volume containing structurally incorporated water and vacancies.
Zobrazit více v PubMed
Mishra M., Chun D.M. α- Fe2O3 as a photocatalytic material: A review. Appl. Catal. A Gen. 2015;498:126–141. doi: 10.1016/j.apcata.2015.03.023. DOI
Valášková M., Tokarský J., Pavlovský J., Prostějovský T., Kočí K. α-Fe2O3 nanoparticles/vermiculite clay material: Structural, optical and photocatalytic properties. Materials. 2019;12:1880. doi: 10.3390/ma12111880. PubMed DOI PMC
Wu C.Z., Yin P., Zhu X., OuYang C.Z., Xie Y. Synthesis of hematite (alpha-Fe2O3) nanorods: Diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J. Phys. Chem. B. 2006;110:17806–17812. doi: 10.1021/jp0633906. PubMed DOI
Fang X.L., Chen C., Jin M.S., Kuang Q., Xie Z.X., Xie S.Y., Huang R.B., Zeng L.S. Single-crystal-like hematite colloidal nanocrystal clusters: Synthesis and application in gas sensors, photocatalysis and water treatment. J. Mater. Chem. 2009;19:6154–6160. doi: 10.1039/b905034e. DOI
Reddy M.V., Subba R., Rao G.V., Chowdari B.V.R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013;113:5364–5457. doi: 10.1021/cr3001884. PubMed DOI
Yang Y., Foster M., Ling Y.C., Wang G.M., Zhai T., Tong Y.X., Cowan A.J., Li Y. Acid treatment enables suppression of electron-hole recombination in hematite for photoelectrochemical water splitting. Angew. Chem. Int. Edit. 2016;553:403–3407. PubMed
Choi Y., Jeon D., Choi Y., Kim D., Kim N., Gu M., Bae S., Lee T., Lee H.W., Kim B.S., et al. Interface engineering of hematite with nacre-like catalytic multilayers for solar water oxidation. ASC Nano. 2019;13:467–475. doi: 10.1021/acsnano.8b06848. PubMed DOI
Mayer M.T., Lin Y., Yuan G., Wang D. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: Case studies on hematite. Acc. Chem. Res. 2013;46:1558–1566. doi: 10.1021/ar300302z. PubMed DOI
Reli M., Ambrožová N., Valášková M., Edelmannová M., Čapek L., Schimpf C., Motylenko M., Rafaja D., Kočí K. Photocatalytic water splitting over CeO2/Fe2O3/Ver photocatalysts. Energy Convers. Manag. 2021;238:114156. doi: 10.1016/j.enconman.2021.114156. DOI
Brown A., Hargreaves J., Rijniersce B. A study of the structural and catalytic effects of sulfation on iron oxide catalysts prepared from goethite and ferrihydrite precursors for methane oxidation. Catal. Lett. 1998;53:7–13. doi: 10.1023/A:1019016830208. DOI
Barbosa A.L., Herguido J., Santamaria J. Methane combustion over unsupported iron oxide catalysts. Catal. Today. 2001;64:43–50. doi: 10.1016/S0920-5861(00)00507-1. DOI
He Y., Guo F., Yang K.R., Heinlein J.A., Bamonte S.M., Fee J.J., Hu S., Suib S.L., Haller G.L., Batista V.S., et al. In situ identification of reaction intermediates and mechanistic understandings of methane oxidation over hematite: A combined experimental and theoretical study. J. Am. Chem. Soc. 2020;142:17119–17130. doi: 10.1021/jacs.0c07179. PubMed DOI
Atkinson R.J., Posner A.M., Quirk J.P. Adsorption of potential determining ions at the ferric oxide-aqueous electrolyte interface. J. Phys. Chem. 1967;71:550–558. doi: 10.1021/j100862a014. DOI
Liu H., Wei Y., Sun Y. The Formation of hematite from ferrihydrite using Fe(II) as a catalyst. J. Mol. Catal. Chem. 2005;226:135–140. doi: 10.1016/j.molcata.2004.09.019. DOI
Han L., Liu H., Wei Y. In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method. Powder Technol. 2011;207:42–46. doi: 10.1016/j.powtec.2010.10.008. DOI
Zhang Y.C., Tang J.Y., Hu X.Y. Controllable synthesis and magnetic properties of pure hematite and maghemite nanocrystals from a molecular precursor. J. Alloys Compd. 2008;462:24–28. doi: 10.1016/j.jallcom.2007.07.115. DOI
Fiore A.M., Varvaro G., Agostinelli E., Mangone A., De Giglio E., Terzano R., Allegretta I., Dell’Anna M.M., Fiore S., Mastrorilli P. Synthesis and use in catalysis of hematite nanoparticles obtained from a polymer supported Fe(III) complex. Eur. J. Inorg. Chem. 2022;7:e202100943. doi: 10.1002/ejic.202100943. DOI
Su D., Kim H.S., Kim W.S., Wang G. Synthesis of tuneable porous hematites (α-Fe2O3) for gas sensing and lithium storage in lithium ion batteries. Micropor. Mesopor. Mat. 2012;149:36–45. doi: 10.1016/j.micromeso.2011.09.002. DOI
Supattarasakda K., Petcharoen K., Permpool T., Sirivat A., Lerdwijitjarud W. Control of hematite nanoparticle size and shape by the chemical precipitation method. Powder Technol. 2013;249:353–359. doi: 10.1016/j.powtec.2013.08.042. DOI
Matijevicć E., Scheiner P. Ferric hydrous oxide sols: III. Preparation of uniform particles by hydrolysis of Fe(III)-chloride-nitrate, and -perchlorate solutions. J. Colloid Interf. Sci. 1978;63:509–524. doi: 10.1016/S0021-9797(78)80011-3. DOI
Lassoued A., Dkhil B., Gardi A., Ammar S. Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results Phys. 2017;7:3007–3015. doi: 10.1016/j.rinp.2017.07.066. DOI
Schwertmann U., Murad E. Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner. 1983;31:277–284. doi: 10.1346/CCMN.1983.0310405. DOI
Peterson K.M., Heaney P.J., Post J.E., Eng P.J. A refined monoclinic structure for a variety of “hydrohematite”. Am. Mineral. 2015;100:570–579. doi: 10.2138/am-2015-4807. DOI
Ståhl K., Nielsen K., Jiang J., Lebech B., Hanson J.C., Norby P., van Lanschot J. On the akaganéite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts. Corros. Sci. 2003;45:2563–2575. doi: 10.1016/S0010-938X(03)00078-7. DOI
Wolska E. The structure of hydrohematite. Z. Krist. Cryst. Mater. 1981;154:69–75. doi: 10.1524/zkri.1981.154.14.69. DOI
Wolska E., Schwertmann U. Nonstoichiometric structures during dehydroxylation of goethite. Z. Krist. Cryst. Mater. 1989;189:223–237. doi: 10.1524/zkri.1989.189.3-4.223. DOI
Dang M.Z., Rancourt D.G., Dutrizac J.E., Lamarche G., Provencher R. Interplay of surface conditions, particle size, stoichiometry, cell parameters, and magnetism in synthetic hematite-like materials. Hyperfine Interact. 1998;117:271–319. doi: 10.1023/A:1012655729417. DOI
Monai M., Montini T., Gorte R.J., Fornasiero P. Catalytic oxidation of methane: Pd and beyond. Eur. J. Inorg. Chem. 2018;2018:2884–2893. doi: 10.1002/ejic.201800326. DOI
Song C., Liu F., Kang W., Zhao J., Yang L., Guo C. A novel concept for ultra-low concentration methane treatment based on chemical looping catalytic oxidation. Fuel Process. Technol. 2022;228:107159. doi: 10.1016/j.fuproc.2021.107159. DOI
Farrauto R.J. Low-temperature oxidation of methane. Science. 2012;337:659–660. doi: 10.1126/science.1226310. PubMed DOI
Monazam E.R., Breault R.W., Siriwardane R., Richards G., Carpenter S. Kinetics of the reduction of hematite (Fe2O3) by methane (CH4) during chemical looping combustion: A global mechanism. Chem. Eng. J. 2013;232:478–487. doi: 10.1016/j.cej.2013.07.091. DOI
Cudennec Y., Lecerf A. The transformation of ferrihydrite into goethite or hematite, revisited. J. Solid State Chem. 2006;179:716–722. doi: 10.1016/j.jssc.2005.11.030. DOI
Peterson K.M., Heaney P.J., Post J.E. Evolution in the structure of akaganeite and hematite during hydrothermal growth: An in situ synchrotron X-ray diffraction analysis. Powder Diffr. 2018;33:287–297. doi: 10.1017/S0885715618000623. DOI
Cudennec Y., Lecerf A. Topotactic transformations of goethite and lepidocrocite into hematite and maghemite. Solid State Sci. 2005;7:520–529. doi: 10.1016/j.solidstatesciences.2005.02.002. DOI
Zhang W.J., Huo C.F., Feng G., Li Y.W., Wang J., Jiao H. Dehydration of goethite to hematite from molecular dynamic simulation. J. Mol. Struct. TEOCHEM. 2010;950:20–26. doi: 10.1016/j.theochem.2010.03.013. DOI
Williamson G.K., Hall W.H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953;1:22–31. doi: 10.1016/0001-6160(53)90006-6. DOI
Neumann S., Menter C., Mahmoud A.S., Segets D., Rafaja D. Microstructure characteristics of non-monodisperse quantum dots: On the potential of transmission electron microscopy combined with X-ray diffraction. CrystEngComm. 2020;22:3644–3655. doi: 10.1039/D0CE00312C. DOI
Gialanella S., Girardi F., Ischia G., Lonardelli I., Mattarelli M., Montagna M. On the goethite to hematite phase transformation. J. Therm. Anal. Calorim. 2010;102:867–873. doi: 10.1007/s10973-010-0756-2. DOI
Ruan H.D., Frost R.L., Kloprogge J.T., Duong L. Infrared spectroscopy of goethite dehydroxylation. II. Effect of aluminium substitution on the behaviour of hydroxyl units. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2002;58:479–491. doi: 10.1016/S1386-1425(01)00556-X. PubMed DOI
Veneranda M., Aramendia J., Bellot-Gurlet L., Colomban P., Castro K., Madariaga J.M. FTIR spectroscopic semi-quantification of iron phases: A new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systems. Corros. Sci. 2018;133:68–77. doi: 10.1016/j.corsci.2018.01.016. DOI
Serna C.J., Rendon J.L., Iglesias J.E. Infrared surface modes in corundum-type microcrystalline oxides. Spectrochim. Acta A Mol. Spectrosc. 1982;38:797–802. doi: 10.1016/0584-8539(82)80070-6. DOI
Wolska E., Szajda W. Structural and spectroscopic characteristics of synthetic hydrohematite. J. Mater. Sci. 1985;20:4407–4412. doi: 10.1007/BF00559329. DOI
Burgina E.B., Kustova G.N., Tsybulya S.V., Kryukova G.N., Litvak G.S., Isupova L.A., Sadykov V.A. Structure of the metastable modification of iron (III) oxide. J. Struct. Chem. 2000;41:396–402. doi: 10.1007/BF02741997. DOI
Lee E.H. Iron oxide catalysts for dehydrogenation of ethylbenzene in the presence of steam. Catal. Rev. 1974;8:285–305. doi: 10.1080/01614947408071864. DOI
Walter D., Buxbaum G., Laqua W. The mechanism of the thermal transformation from goethite to hematite. J. Therm. Anal. Calorim. 2001;63:733–748. doi: 10.1023/A:1010187921227. DOI
Katoh M., Orihara M., Moriga T., Nakabayashi I., Sugiyama S., Tanaka S. In situ XRD and in situ IR spectroscopic analyses of structural change of goethite in methane oxidation. J. Solid State Chem. 2001;156:225–229. doi: 10.1006/jssc.2000.8992. DOI
Breault R.W., Monazam E.R. Analysis of fixed bed data for the extraction of a rate mechanism for the reaction of hematite with methane. J. Ind. Eng. Chem. 2015;29:87–96. doi: 10.1016/j.jiec.2015.03.020. DOI
Scherrer P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Gött. Nachr. 1918;2:98–100.
Choudhary V.R., Patil V.P., Jana P., Uphade B.S. Nano-gold supported on Fe2O3: A highly active catalyst for low temperature oxidative destruction of methane green house gas from exhaust/waste gase. Appl. Catal. A Gen. 2008;350:186–190. doi: 10.1016/j.apcata.2008.08.008. DOI
Jozwiak W.K., Kaczmarek E., Maniecki T.P., Ignaczak W., Maniukiewicz W. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Appl. Catal. A Gen. 2007;326:17–27. doi: 10.1016/j.apcata.2007.03.021. DOI
Till J.L., Nowaczyk N. Authigenic magnetite formation from goethite and hematite and chemical remanent magnetization acquisition. Geophys. J. Int. 2018;213:1818–1831. doi: 10.1093/gji/ggy083. DOI
Huang L., Tang M., Fan M., Cheng H. Density functional theory study on the reaction between hematite and methane during chemical looping process. Appl. Energy. 2015;159:132–144. doi: 10.1016/j.apenergy.2015.08.118. DOI