Enantioselective Synthesis of Spirocyclic Isoxazolones Using a Conia-Ene Type Reaction
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40042076
PubMed Central
PMC11915384
DOI
10.1021/acs.joc.4c02921
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Stereoselective synthesis of spirocyclic compounds containing heterocyclic motifs represents a formidable challenge in enantioselective synthesis. Here, we present a cascade reaction between α,β-unsaturated aldehydes and isoxazolones under synergistic catalysis of a chiral secondary amine and a palladium(0) catalyst. This strategy allows access to chiral spiroisoxazolone derivatives with a large substrate scope tolerance and high levels of diastereoselectivity (dr up to 20:1) and enantioselectivity (up to 99% ee). Furthermore, the utility of this methodology is showcased by the transformation of chiral spiroisoxazolones into structurally attractive and enantiomerically enriched cyclopentene carboxylic acids with two stereogenic centers.
See more in PubMed
Fuller A. A.; Chen B.; Minter A. R.; Mapp A. K. Succinct synthesis of β-amino acids via chiral isoxazolines. J. Am. Chem. Soc. 2005, 127, 5376–5383. 10.1021/ja0431713. PubMed DOI
Tsantali G. G.; Dimtsas J.; Tsoleridis C. A.; Takakis I. M. Preparation of Sixteen 3-Hydroxy-4- and 7-Hydroxy-1-hydrindanones and 3-Hydroxy-4- and 8-Hydroxy-1-hydroazulenones. Eur. J. Org. Chem. 2007, 2007, 258–265. 10.1002/ejoc.200600639. DOI
Mota F. V. B.; de Araújo Neta M. S.; de Souza Franco E.; Bastos I. V. G. A.; da Araújo L. C. C.; da Silva S. C.; de Oliveira T. B.; Souza E. K.; de Almeida V. M.; Ximenes R. M.; et al. Evaluation of anti-inflammatory activity and molecular docking study of new aza-bicyclic isoxazoline acylhydrazone derivatives. MedChemComm 2019, 10, 1916–1925. 10.1039/C9MD00276F. PubMed DOI PMC
Filali I.; Bouajila J.; Znati M.; Bousejra-El Garah F.; Ben Jannet H. Synthesis of new isoxazoline derivatives from harmine and evaluation of their anti-Alzheimer, anti-cancer and anti-inflammatory activities. J. Enzyme Inhib. Med. Chem. 2015, 30, 371–376. 10.3109/14756366.2014.940932. PubMed DOI
Picconi P.; Prabaharan P.; Auer J. L.; Sandiford S.; Cascio F.; Chowdhury M.; Hind C.; Wand M. E.; Sutton J. M.; Rahman K. M. Novel pyridyl nitrofuranyl isoxazolines show antibacterial activity against multiple drug resistant Staphylococcus species. Bioorg. Med. Chem. 2017, 25, 3971–3979. 10.1016/j.bmc.2017.05.037. PubMed DOI
Snyder L. B.; Meng Z.; Mate R.; D'Andrea S. V.; Marinier A.; Quesnelle C. A.; Gill P.; DenBleyker K. L.; Fung-Tomc J. C.; Frosco M. B.; Martel A.; Barrett J. F.; Bronson J. J. Discovery of isoxazolinone antibacterial agents. Nitrogen as a replacement for the stereogenic center found in oxazolidinone antibacterials. Bioorg. Med. Chem. Lett. 2004, 14, 4735–4739. 10.1016/j.bmcl.2004.06.076. PubMed DOI
Basappa; Sadashiva M.P.; Mantelingu K.; Swamy S.N.; Rangappa K.S. Solution-phase synthesis of novel Δ2-isoxazoline libraries via 1,3-dipolar cycloaddition and their antifungal properties. Bioorg. Med. Chem. Lett. 2003, 11, 4539–4544. 10.1016/j.bmc.2003.08.007. PubMed DOI
Grasso C. S.; Wu Y.-M.; Robinson D. R.; Cao X.; Dhanasekaran S. M.; Khan A. P.; Quist X.; Jing M. J.; Lonigro R. J.; Brenner J. C.; et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012, 487, 239–243. 10.1038/nature11125. PubMed DOI PMC
Kamal A.; Bharathi E. V.; Reddy J. S.; Ramaiah M. J.; Dastagiri D.; Reddy M. K.; Viswanath A.; Reddy T. L.; Shaik T. B.; Pushpavalli S. N. C. V. L.; Bhadra M. P. Synthesis and biological evaluation of 3,5-diaryl isoxazoline/isoxazole linked 2,3-dihydroquinazolinone hybrids as anticancer agents. Eur. J. Med. Chem. 2011, 46, 691–703. 10.1016/j.ejmech.2010.12.004. PubMed DOI
Laughlin S. K.; Clark M. P.; Djung J. F.; Golebiowski A.; Brugel T. A.; Sabat M.; Bookland R. G.; Laufersweiler M. J.; VanRens J. C.; Townes J. F.; De B.; Hsieh L. C.; Xu S. C.; Walter R. L.; Mekel M. L.; Janusz M. J. The development of new isoxazolone based inhibitors of tumor necrosis factor-alpha (TNF-α) production. Bioorg. Med. Chem. Lett. 2005, 15, 2399–2403. 10.1016/j.bmcl.2005.02.066. PubMed DOI
Umetsu N.; Shirai Y. Development of novel pesticides in the 21st century. J. Pestic. Sci. 2020, 45, 54–74. 10.1584/jpestics.D20-201. PubMed DOI PMC
Hiesinger K.; Dar'in D.; Proschak E.; Krasavin M. Spirocyclic Scaffolds in Medicinal Chemistry. J. Med. Chem. 2021, 64, 150–183. 10.1021/acs.jmedchem.0c01473. PubMed DOI
Benabdallah M.; Talhi O.; Nouali F.; Choukchou-Braham N.; Bachari K.; Silva A. M. S. Advances in Spirocyclic Hybrids: Chemistry and Medicinal Actions. Curr. Med. Chem. 2018, 25, 3748–3767. 10.2174/0929867325666180309124821. PubMed DOI
Pavlovska T. L.; Redkin R. G.; Lipson V. V.; Atamanuk D. V. Molecular diversity of spirooxindoles. Synthesis and biological activity. Mol. Diversity 2016, 20, 299–344. 10.1007/s11030-015-9629-8. PubMed DOI
Zheng Y.; Tice C. M.; Singh S. B. The use of spirocyclic scaffolds in drug discovery. Bioorg. Med. Chem. Lett. 2014, 24, 3673–3682. 10.1016/j.bmcl.2014.06.081. PubMed DOI
Wu G.; Wu J.-R.; Huang Y.; Yang Y.-W. Enantioselective Synthesis of Quaternary Carbon Stereocenters by Asymmetric Allylic Alkylation: A Review. Chem. - Asian J. 2021, 16, 1864–1877. 10.1002/asia.202100432. PubMed DOI
Wang J.; He F.; Yang X. Asymmetric construction of acyclic quaternary stereocenters via direct enantioselective additions of α-alkynyl ketones to allenamides. Nat. Commun. 2021, 12, 6700.10.1038/s41467-021-27028-7. PubMed DOI PMC
Li C.; Ragab S. S.; Liu G.; Tang W. Enantioselective formation of quaternary carbon stereocenters in natural product synthesis: a recent update. Nat. Prod. Rep. 2020, 37, 276–292. 10.1039/C9NP00039A. PubMed DOI
Zhu Y.; Han J.; Wang J.; Shibata N.; Sodeoka M.; Soloshonok V. A.; Coelho J. A. S.; Toste F. D. Modern Approaches for Asymmetric Construction of Carbon–Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs. Chem. Rev. 2018, 118, 3887–3964. 10.1021/acs.chemrev.7b00778. PubMed DOI PMC
Xiao W.; Zhou Z.; Yang Q.-Q.; Du W.; Chen Y.-C. Organocatalytic Asymmetric Four-Component [5 + 1+1 + 1] Cycloadditions via a Quintuple Cascade Process. Adv. Synth. Catal. 2018, 360, 3526–3533. 10.1002/adsc.201800636. DOI
Tian L.; Luo Y.-C.; Hu X.-Q.; Xu P.-F. Recent Developments in the Synthesis of Chiral Compounds with Quaternary Centers by Organocatalytic Cascade Reactions. Asian J. Org.Chem. 2016, 5, 580–607. 10.1002/ajoc.201500486. DOI
Takao K.-I.; Sakamoto S.; Touati M. A.; Kusakawa Y.; Tadano K.-I. Asymmetric Construction of All-Carbon Quaternary Stereocenters by Chiral-Auxiliary-Mediated Claisen Rearrangement and Total Synthesis of (+)-Bakuchiol. Molecules 2012, 17, 13330–13344. 10.3390/molecules171113330. PubMed DOI PMC
Kita Y.; Fujioka H. Enantioselective constructions of quaternary carbons and their application to the asymmetric total syntheses of fredericamycin A and discorhabdin A. Pure Appl. Chem. 2007, 79, 701–713. 10.1351/pac200779040701. DOI
Douglas C. J.; Overman L. E. Catalytic asymmetric synthesis of all-carbon quaternary stereocenters. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5363–5367. 10.1073/pnas.0307113101. PubMed DOI PMC
Kamlar M.; Urban M.; Veselý J. Enantioselective Synthesis of Spiro Heterocyclic Compounds Using a Combination of Organocatalysis and Transition-Metal Catalysis. Chem. Rec. 2023, 23, e20220028410.1002/tcr.202200284. PubMed DOI
Nielsen C. D.-T.; Linfoot J. D.; Williams A. F.; Spivey A. C. Recent progress in asymmetric synergistic catalysis – the judicious combination of selected chiral aminocatalysts with achiral metal catalysts. Org. Biomol. Chem. 2022, 20, 2764–2778. 10.1039/D2OB00025C. PubMed DOI PMC
Urban M.; Veselý J.. Enantioselective Synthesis of Spiro Heterocycles. In Spiro Compounds: Synthesis and Applications; Rios R., Ed.; Wiley, VCH: 2022; pp 205–282.
Del Vecchio A.; Sinibaldi A.; Nori V.; Giorgianni G.; Di Carmine G.; Pesciaioli F. Synergistic Strategies in Aminocatalysis. Chem. - Eur. J. 2022, 28, e20220081810.1002/chem.202200818. PubMed DOI PMC
Xu P.-W.; Yu J.-S.; Chen C.; Cao Z.-Y.; Zhou F.; Zhou J. Catalytic Enantioselective Construction of Spiro Quaternary Carbon Stereocenters. ACS Catal. 2019, 9, 1820–1882. 10.1021/acscatal.8b03694. DOI
Allen A. E.; MacMillan D. W. C. Synergistic catalysis: A powerful synthetic strategy for new reaction development. Chem. Sci. 2012, 3, 633–658. 10.1039/c2sc00907b. PubMed DOI PMC
Franc M.; Císařová I.; Veselý J. Enantioselective synthesis of spiroimidazolones by synergistic catalysis. Catal. Today 2024, 428, 11444310.1016/j.cattod.2023.114443. DOI
Xiao J.-A.; Li J.-L.; Cheng X.-L.; Chen K.; Peng H.; Chen W.-Q.; Su W.; Huang Y.-M.; Yang H. Enantioselective formal [3 + 2]-cycloadditions to access spirooxindoles bearing four contiguous stereocenters through synergistic catalysis. Chem. Commun. 2021, 57, 4456–4459. 10.1039/D0CC07957J. PubMed DOI
Kamlar M.; Franc M.; Císařová I.; Gyepes R.; Veselý J. Formal [3 + 2] cycloaddition of vinylcyclopropane azlactones to enals using synergistic catalysis. Chem. Commun. 2019, 55, 3829–3832. 10.1039/C8CC06500D. PubMed DOI
Laugeois M.; Ponra S.; Ratovelomanana-Vidal V.; Michelet V.; Vitale M. R. Asymmetric preparation of polysubstituted cyclopentanes by synergistic Pd(0)/amine catalyzed formal [3 + 2] cycloadditions of vinyl cyclopropanes with enals. Chem. Commun. 2016, 52, 5332–5335. 10.1039/C6CC01775D. PubMed DOI
Meazza M.; Rios R. Synergistic Catalysis: Enantioselective Ring Expansion of Vinyl Cyclopropanes Combining Four Catalytic Cycles for the Synthesis of Highly Substituted Spirocyclopentanes Bearing up to Four Stereocenters. Chem. - Eur. J. 2016, 22, 9923–9928. 10.1002/chem.201601893. PubMed DOI
Franc M.; Císařová I.; Veselý J. Enantioselective Synthesis of Spirothiazolones via Cooperative Catalysis. Adv. Synth. Catal. 2021, 363, 4349–4353. 10.1002/adsc.202100571. DOI
Meazza M.; Kamlar M.; Jašíková L.; Formánek B.; Mazzanti A.; Roithová J.; Veselý J.; Rios R. Synergistic formal ring contraction for the enantioselective synthesis of spiropyrazolones. Chem. Sci. 2018, 9, 6368–6373. 10.1039/C8SC00913A. PubMed DOI PMC
Wang Z.; Song Z.; Huang J.; Yang Z. Total Synthesis of Penicibilaenes Enabled by a Tandem Double Conia-ene Type Reaction. J. Am. Chem. Soc. 2024, 146, 4363–4368. 10.1021/jacs.3c14614. PubMed DOI
Chen X.; Yao W.; Zheng H.; Wang H.; Zhou P.-P.; Zhu D.-Y.; Wang S.-H. Enantiocontrolled Total Synthesis of (−)-Retigeranic Acid A. J. Am. Chem. Soc. 2023, 145, 13549–13555. 10.1021/jacs.3c04850. PubMed DOI
Wang Y.; Zhao R.; Yang M. Total Synthesis of Mollanol A. J. Am. Chem. Soc. 2022, 144, 15033–15037. 10.1021/jacs.2c06981. PubMed DOI
Horibe T.; Sakakibara M.; Hiramatsu R.; Takeda K.; Ishihara K. One-Pot Tandem Michael Addition/Enantioselective Conia-Ene Cyclization Mediated by Chiral Iron(III)/Silver(I) Cooperative Catalysis. Angew. Chem., Int. Ed. 2020, 59, 16470–16474. 10.1002/anie.202007180. PubMed DOI
Qu P.; Snyder S. A. Concise and Stereoselective Total Syntheses of Annotinolides C, D, and E. J. Am. Chem. Soc. 2021, 143, 11951–11956. 10.1021/jacs.1c05942. PubMed DOI PMC
Bhat A. H.; Alavi S.; Grover H. K. Tandem Carbenoid C–H Functionalization/Conia-ene Cyclization of N-Propargyl Indoles Generates Pyrroloindoles under Cooperative Rh(II)/Zn(II) Catalysis. Org. Lett. 2020, 22, 224–229. 10.1021/acs.orglett.9b04210. PubMed DOI
Hunter A. C.; Almutwalli B.; Bain A. I.; Sharma I. Trapping rhodium carbenoids with aminoalkynes for the synthesis of diverse N-heterocycles. Tetrahedron 2018, 74, 5451–5457. 10.1016/j.tet.2018.06.042. DOI
Marat X.; Monteiro N.; Balme G. Sequential Michael Addition-Carbocyclization Reactions: A Palladium Mediated Approach to Highly Functionalized 3-Methylenetetrahydrofurans. Synlett 1997, 1997, 845–847. 10.1055/s-1997-5755. DOI
Monteiro N.; Gore J.; Balme G. Formation de derives cyclopentaniques assistee par une espece hydrure de palladium: Aspects synthetiques et mecanisme. Tetrahedron 1992, 48, 10103–10114. 10.1016/S0040-4020(01)89040-2. DOI
Monteiro N.; Balme G.; Gore J. Cyclisation of ω-unsaturated b-dicarbonyl compounds catalysed by a palladium hydride species. Tetrahedron Lett. 1991, 32, 1645–1648. 10.1016/S0040-4039(00)74294-8. DOI
Li D.-A.; He X.-H.; Tang X.; Wu Y.; Zhao H.; He G.; Peng C.; Han B.; Zhan G. Organo/Silver Dual Catalytic (3 + 2)/Conia-Ene Type Cyclization: Asymmetric Synthesis of Indane-Fused Spirocyclopenteneoxindoles. Org. Lett. 2022, 24, 6197–6201. 10.1021/acs.orglett.2c02472. PubMed DOI
Putatunda S.; Alegre-Requena J. V.; Meazza M.; Franc M.; Rohal’ová D.; Vemuri P.; Císařová I.; Herrera R. P.; Rios R.; Veselý J. Proline bulky substituents consecutively act as steric hindrances and directing groups in a Michael/Conia-ene cascade reaction under synergistic catalysis. Chem. Sci. 2019, 10, 4107–4115. 10.1039/C8SC05258A. PubMed DOI PMC
Hack D.; Dürr A. B.; Deckers K.; Chauhan P.; Seling N.; Rübenach L.; Mertens L.; Raabe G.; Schoenebeck F.; Enders D. Asymmetric Synthesis of Spiropyrazolones by Sequential Organo- and Silver Catalysis. Angew. Chem., Int. Ed. 2016, 55, 1797–1800. 10.1002/anie.201510602. PubMed DOI PMC
Deiana L.; Jiang Y.; Palo-Nieto C.; Afewerki S.; Incerti-Pradillos C. A.; Verho O.; Tai C.-W.; Johnston E. V.; Córdova A. Combined Heterogeneous Metal/Chiral Amine: Multiple Relay Catalysis for Versatile Eco-Friendly Synthesis. Angew. Chem., Int. Ed. 2014, 53, 3447–3451. 10.1002/anie.201310216. PubMed DOI
Sun W.; Zhu G.; Wu C.; Hong L.; Wang R. "Organo–Metal” Synergistic Catalysis: The 1 + 1 > 2 Effect for the Construction of Spirocyclopentene Oxindoles. Chem. - Eur. J. 2012, 18, 13959–13963. 10.1002/chem.201201976. PubMed DOI
Das S. Recent Progress in Gold-Catalyzed Reactions of Alkynes for the Construction of Indole Frameworks. Asian J. Org. Chem. 2023, 12, e20230026710.1002/ajoc.202300267. DOI
Stylianakis I.; Kolocouris A. Comprehensive Overview of Homogeneous Gold-Catalyzed Transformations of π-Systems for Application Scientists. Catalysts 2023, 13, 921.10.3390/catal13060921. DOI
Ghosh T.; Chatterjee J.; Bhakta S. Gold-catalyzed hydroarylation reactions: a comprehensive overview. Org. Biomol. Chem. 2022, 20, 7151–7187. 10.1039/D2OB00960A. PubMed DOI
Li D.; Zang W.; Bird M. J.; Hyland C. J. T.; Shi M. Chem. Rev. 2021, 121, 8685–8755. 10.1021/acs.chemrev.0c00624. PubMed DOI
Leung C. H.; Baron M.; Biffis A. Gold-Catalyzed Intermolecular Alkyne Hydrofunctionalizations—Mechanistic Insights. Catalysts 2020, 10, 1210.10.3390/catal10101210. DOI
Halliday C. J. V.; Lynam J. M. Gold–alkynyls in catalysis: alkyne activation, gold cumulenes and nuclearity. Dalton Trans. 2016, 45, 12611–12626. 10.1039/C6DT01641C. PubMed DOI
Dorel R.; Echavarren A. M. Gold(I)-Catalyzed Activation of Alkynes for the Construction of Molecular Complexity. Chem. Rev. 2015, 115, 9028–9072. 10.1021/cr500691k. PubMed DOI PMC
Chang M.-Y.; Cheng Y.-C.; Lu Y.-J. Bi(OTf)3-Mediated Cycloisomerization of γ-Alkynyl Arylketones: Application to the Synthesis of Substituted Furans. Org. Lett. 2015, 17, 1264–1267. 10.1021/acs.orglett.5b00246. PubMed DOI
Galenko E. E.; Novikov M. S.; Shakirova F. M.; Shakirova J. R.; Kornyakov I. V.; Bodunov V. A.; Khlebnikov A. F. Isoxazole Strategy for the Synthesis of 2,2′-Bipyridine Ligands: Symmetrical and Unsymmetrical 6,6′-Binicotinates, 2,2′-Bipyridine-5-carboxylates, and Their Metal Complexes. J. Org. Chem. 2019, 84, 3524–3536. 10.1021/acs.joc.9b00115. PubMed DOI
Krogsgaard-Larsen P.; Christensen S. B.; Hjeds H.; Songstad J.; Norbury A. H.; Swahn C.-G. Organic hydroxylamine derivatives. VII. Isoxazolin 5 ones. An investigation of a reaction sequence previously stated to give 3 hydroxyisoxazoles. Acta Chem. Scand. 1973, 27, 2802–2812. 10.3891/acta.chem.scand.27-2802. PubMed DOI
Hirayama F.; Koshio H.; Katayama N.; Kurihara H.; Taniuchi Y.; Sato K.; Hisamichi N.; Sakai-Moritani Y.; Kawasaki T.; Matsumoto Y.; Yanagisawa I. The Discovery of YM-60828: A Potent, Selective and Orally-Bioavailable Factor Xa Inhibitor. Bioorg. Med. Chem. 2002, 10, 1509–1523. 10.1016/S0968-0896(01)00418-7. PubMed DOI