• This record comes from PubMed

Enantioselective Synthesis of Spirocyclic Isoxazolones Using a Conia-Ene Type Reaction

. 2025 Mar 14 ; 90 (10) : 3615-3627. [epub] 20250305

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Stereoselective synthesis of spirocyclic compounds containing heterocyclic motifs represents a formidable challenge in enantioselective synthesis. Here, we present a cascade reaction between α,β-unsaturated aldehydes and isoxazolones under synergistic catalysis of a chiral secondary amine and a palladium(0) catalyst. This strategy allows access to chiral spiroisoxazolone derivatives with a large substrate scope tolerance and high levels of diastereoselectivity (dr up to 20:1) and enantioselectivity (up to 99% ee). Furthermore, the utility of this methodology is showcased by the transformation of chiral spiroisoxazolones into structurally attractive and enantiomerically enriched cyclopentene carboxylic acids with two stereogenic centers.

See more in PubMed

Fuller A. A.; Chen B.; Minter A. R.; Mapp A. K. Succinct synthesis of β-amino acids via chiral isoxazolines. J. Am. Chem. Soc. 2005, 127, 5376–5383. 10.1021/ja0431713. PubMed DOI

Tsantali G. G.; Dimtsas J.; Tsoleridis C. A.; Takakis I. M. Preparation of Sixteen 3-Hydroxy-4- and 7-Hydroxy-1-hydrindanones and 3-Hydroxy-4- and 8-Hydroxy-1-hydroazulenones. Eur. J. Org. Chem. 2007, 2007, 258–265. 10.1002/ejoc.200600639. DOI

Mota F. V. B.; de Araújo Neta M. S.; de Souza Franco E.; Bastos I. V. G. A.; da Araújo L. C. C.; da Silva S. C.; de Oliveira T. B.; Souza E. K.; de Almeida V. M.; Ximenes R. M.; et al. Evaluation of anti-inflammatory activity and molecular docking study of new aza-bicyclic isoxazoline acylhydrazone derivatives. MedChemComm 2019, 10, 1916–1925. 10.1039/C9MD00276F. PubMed DOI PMC

Filali I.; Bouajila J.; Znati M.; Bousejra-El Garah F.; Ben Jannet H. Synthesis of new isoxazoline derivatives from harmine and evaluation of their anti-Alzheimer, anti-cancer and anti-inflammatory activities. J. Enzyme Inhib. Med. Chem. 2015, 30, 371–376. 10.3109/14756366.2014.940932. PubMed DOI

Picconi P.; Prabaharan P.; Auer J. L.; Sandiford S.; Cascio F.; Chowdhury M.; Hind C.; Wand M. E.; Sutton J. M.; Rahman K. M. Novel pyridyl nitrofuranyl isoxazolines show antibacterial activity against multiple drug resistant Staphylococcus species. Bioorg. Med. Chem. 2017, 25, 3971–3979. 10.1016/j.bmc.2017.05.037. PubMed DOI

Snyder L. B.; Meng Z.; Mate R.; D'Andrea S. V.; Marinier A.; Quesnelle C. A.; Gill P.; DenBleyker K. L.; Fung-Tomc J. C.; Frosco M. B.; Martel A.; Barrett J. F.; Bronson J. J. Discovery of isoxazolinone antibacterial agents. Nitrogen as a replacement for the stereogenic center found in oxazolidinone antibacterials. Bioorg. Med. Chem. Lett. 2004, 14, 4735–4739. 10.1016/j.bmcl.2004.06.076. PubMed DOI

Basappa; Sadashiva M.P.; Mantelingu K.; Swamy S.N.; Rangappa K.S. Solution-phase synthesis of novel Δ2-isoxazoline libraries via 1,3-dipolar cycloaddition and their antifungal properties. Bioorg. Med. Chem. Lett. 2003, 11, 4539–4544. 10.1016/j.bmc.2003.08.007. PubMed DOI

Grasso C. S.; Wu Y.-M.; Robinson D. R.; Cao X.; Dhanasekaran S. M.; Khan A. P.; Quist X.; Jing M. J.; Lonigro R. J.; Brenner J. C.; et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012, 487, 239–243. 10.1038/nature11125. PubMed DOI PMC

Kamal A.; Bharathi E. V.; Reddy J. S.; Ramaiah M. J.; Dastagiri D.; Reddy M. K.; Viswanath A.; Reddy T. L.; Shaik T. B.; Pushpavalli S. N. C. V. L.; Bhadra M. P. Synthesis and biological evaluation of 3,5-diaryl isoxazoline/isoxazole linked 2,3-dihydroquinazolinone hybrids as anticancer agents. Eur. J. Med. Chem. 2011, 46, 691–703. 10.1016/j.ejmech.2010.12.004. PubMed DOI

Laughlin S. K.; Clark M. P.; Djung J. F.; Golebiowski A.; Brugel T. A.; Sabat M.; Bookland R. G.; Laufersweiler M. J.; VanRens J. C.; Townes J. F.; De B.; Hsieh L. C.; Xu S. C.; Walter R. L.; Mekel M. L.; Janusz M. J. The development of new isoxazolone based inhibitors of tumor necrosis factor-alpha (TNF-α) production. Bioorg. Med. Chem. Lett. 2005, 15, 2399–2403. 10.1016/j.bmcl.2005.02.066. PubMed DOI

Umetsu N.; Shirai Y. Development of novel pesticides in the 21st century. J. Pestic. Sci. 2020, 45, 54–74. 10.1584/jpestics.D20-201. PubMed DOI PMC

Hiesinger K.; Dar'in D.; Proschak E.; Krasavin M. Spirocyclic Scaffolds in Medicinal Chemistry. J. Med. Chem. 2021, 64, 150–183. 10.1021/acs.jmedchem.0c01473. PubMed DOI

Benabdallah M.; Talhi O.; Nouali F.; Choukchou-Braham N.; Bachari K.; Silva A. M. S. Advances in Spirocyclic Hybrids: Chemistry and Medicinal Actions. Curr. Med. Chem. 2018, 25, 3748–3767. 10.2174/0929867325666180309124821. PubMed DOI

Pavlovska T. L.; Redkin R. G.; Lipson V. V.; Atamanuk D. V. Molecular diversity of spirooxindoles. Synthesis and biological activity. Mol. Diversity 2016, 20, 299–344. 10.1007/s11030-015-9629-8. PubMed DOI

Zheng Y.; Tice C. M.; Singh S. B. The use of spirocyclic scaffolds in drug discovery. Bioorg. Med. Chem. Lett. 2014, 24, 3673–3682. 10.1016/j.bmcl.2014.06.081. PubMed DOI

Wu G.; Wu J.-R.; Huang Y.; Yang Y.-W. Enantioselective Synthesis of Quaternary Carbon Stereocenters by Asymmetric Allylic Alkylation: A Review. Chem. - Asian J. 2021, 16, 1864–1877. 10.1002/asia.202100432. PubMed DOI

Wang J.; He F.; Yang X. Asymmetric construction of acyclic quaternary stereocenters via direct enantioselective additions of α-alkynyl ketones to allenamides. Nat. Commun. 2021, 12, 6700.10.1038/s41467-021-27028-7. PubMed DOI PMC

Li C.; Ragab S. S.; Liu G.; Tang W. Enantioselective formation of quaternary carbon stereocenters in natural product synthesis: a recent update. Nat. Prod. Rep. 2020, 37, 276–292. 10.1039/C9NP00039A. PubMed DOI

Zhu Y.; Han J.; Wang J.; Shibata N.; Sodeoka M.; Soloshonok V. A.; Coelho J. A. S.; Toste F. D. Modern Approaches for Asymmetric Construction of Carbon–Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs. Chem. Rev. 2018, 118, 3887–3964. 10.1021/acs.chemrev.7b00778. PubMed DOI PMC

Xiao W.; Zhou Z.; Yang Q.-Q.; Du W.; Chen Y.-C. Organocatalytic Asymmetric Four-Component [5 + 1+1 + 1] Cycloadditions via a Quintuple Cascade Process. Adv. Synth. Catal. 2018, 360, 3526–3533. 10.1002/adsc.201800636. DOI

Tian L.; Luo Y.-C.; Hu X.-Q.; Xu P.-F. Recent Developments in the Synthesis of Chiral Compounds with Quaternary Centers by Organocatalytic Cascade Reactions. Asian J. Org.Chem. 2016, 5, 580–607. 10.1002/ajoc.201500486. DOI

Takao K.-I.; Sakamoto S.; Touati M. A.; Kusakawa Y.; Tadano K.-I. Asymmetric Construction of All-Carbon Quaternary Stereocenters by Chiral-Auxiliary-Mediated Claisen Rearrangement and Total Synthesis of (+)-Bakuchiol. Molecules 2012, 17, 13330–13344. 10.3390/molecules171113330. PubMed DOI PMC

Kita Y.; Fujioka H. Enantioselective constructions of quaternary carbons and their application to the asymmetric total syntheses of fredericamycin A and discorhabdin A. Pure Appl. Chem. 2007, 79, 701–713. 10.1351/pac200779040701. DOI

Douglas C. J.; Overman L. E. Catalytic asymmetric synthesis of all-carbon quaternary stereocenters. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5363–5367. 10.1073/pnas.0307113101. PubMed DOI PMC

Kamlar M.; Urban M.; Veselý J. Enantioselective Synthesis of Spiro Heterocyclic Compounds Using a Combination of Organocatalysis and Transition-Metal Catalysis. Chem. Rec. 2023, 23, e20220028410.1002/tcr.202200284. PubMed DOI

Nielsen C. D.-T.; Linfoot J. D.; Williams A. F.; Spivey A. C. Recent progress in asymmetric synergistic catalysis – the judicious combination of selected chiral aminocatalysts with achiral metal catalysts. Org. Biomol. Chem. 2022, 20, 2764–2778. 10.1039/D2OB00025C. PubMed DOI PMC

Urban M.; Veselý J.. Enantioselective Synthesis of Spiro Heterocycles. In Spiro Compounds: Synthesis and Applications; Rios R., Ed.; Wiley, VCH: 2022; pp 205–282.

Del Vecchio A.; Sinibaldi A.; Nori V.; Giorgianni G.; Di Carmine G.; Pesciaioli F. Synergistic Strategies in Aminocatalysis. Chem. - Eur. J. 2022, 28, e20220081810.1002/chem.202200818. PubMed DOI PMC

Xu P.-W.; Yu J.-S.; Chen C.; Cao Z.-Y.; Zhou F.; Zhou J. Catalytic Enantioselective Construction of Spiro Quaternary Carbon Stereocenters. ACS Catal. 2019, 9, 1820–1882. 10.1021/acscatal.8b03694. DOI

Allen A. E.; MacMillan D. W. C. Synergistic catalysis: A powerful synthetic strategy for new reaction development. Chem. Sci. 2012, 3, 633–658. 10.1039/c2sc00907b. PubMed DOI PMC

Franc M.; Císařová I.; Veselý J. Enantioselective synthesis of spiroimidazolones by synergistic catalysis. Catal. Today 2024, 428, 11444310.1016/j.cattod.2023.114443. DOI

Xiao J.-A.; Li J.-L.; Cheng X.-L.; Chen K.; Peng H.; Chen W.-Q.; Su W.; Huang Y.-M.; Yang H. Enantioselective formal [3 + 2]-cycloadditions to access spirooxindoles bearing four contiguous stereocenters through synergistic catalysis. Chem. Commun. 2021, 57, 4456–4459. 10.1039/D0CC07957J. PubMed DOI

Kamlar M.; Franc M.; Císařová I.; Gyepes R.; Veselý J. Formal [3 + 2] cycloaddition of vinylcyclopropane azlactones to enals using synergistic catalysis. Chem. Commun. 2019, 55, 3829–3832. 10.1039/C8CC06500D. PubMed DOI

Laugeois M.; Ponra S.; Ratovelomanana-Vidal V.; Michelet V.; Vitale M. R. Asymmetric preparation of polysubstituted cyclopentanes by synergistic Pd(0)/amine catalyzed formal [3 + 2] cycloadditions of vinyl cyclopropanes with enals. Chem. Commun. 2016, 52, 5332–5335. 10.1039/C6CC01775D. PubMed DOI

Meazza M.; Rios R. Synergistic Catalysis: Enantioselective Ring Expansion of Vinyl Cyclopropanes Combining Four Catalytic Cycles for the Synthesis of Highly Substituted Spirocyclopentanes Bearing up to Four Stereocenters. Chem. - Eur. J. 2016, 22, 9923–9928. 10.1002/chem.201601893. PubMed DOI

Franc M.; Císařová I.; Veselý J. Enantioselective Synthesis of Spirothiazolones via Cooperative Catalysis. Adv. Synth. Catal. 2021, 363, 4349–4353. 10.1002/adsc.202100571. DOI

Meazza M.; Kamlar M.; Jašíková L.; Formánek B.; Mazzanti A.; Roithová J.; Veselý J.; Rios R. Synergistic formal ring contraction for the enantioselective synthesis of spiropyrazolones. Chem. Sci. 2018, 9, 6368–6373. 10.1039/C8SC00913A. PubMed DOI PMC

Wang Z.; Song Z.; Huang J.; Yang Z. Total Synthesis of Penicibilaenes Enabled by a Tandem Double Conia-ene Type Reaction. J. Am. Chem. Soc. 2024, 146, 4363–4368. 10.1021/jacs.3c14614. PubMed DOI

Chen X.; Yao W.; Zheng H.; Wang H.; Zhou P.-P.; Zhu D.-Y.; Wang S.-H. Enantiocontrolled Total Synthesis of (−)-Retigeranic Acid A. J. Am. Chem. Soc. 2023, 145, 13549–13555. 10.1021/jacs.3c04850. PubMed DOI

Wang Y.; Zhao R.; Yang M. Total Synthesis of Mollanol A. J. Am. Chem. Soc. 2022, 144, 15033–15037. 10.1021/jacs.2c06981. PubMed DOI

Horibe T.; Sakakibara M.; Hiramatsu R.; Takeda K.; Ishihara K. One-Pot Tandem Michael Addition/Enantioselective Conia-Ene Cyclization Mediated by Chiral Iron(III)/Silver(I) Cooperative Catalysis. Angew. Chem., Int. Ed. 2020, 59, 16470–16474. 10.1002/anie.202007180. PubMed DOI

Qu P.; Snyder S. A. Concise and Stereoselective Total Syntheses of Annotinolides C, D, and E. J. Am. Chem. Soc. 2021, 143, 11951–11956. 10.1021/jacs.1c05942. PubMed DOI PMC

Bhat A. H.; Alavi S.; Grover H. K. Tandem Carbenoid C–H Functionalization/Conia-ene Cyclization of N-Propargyl Indoles Generates Pyrroloindoles under Cooperative Rh(II)/Zn(II) Catalysis. Org. Lett. 2020, 22, 224–229. 10.1021/acs.orglett.9b04210. PubMed DOI

Hunter A. C.; Almutwalli B.; Bain A. I.; Sharma I. Trapping rhodium carbenoids with aminoalkynes for the synthesis of diverse N-heterocycles. Tetrahedron 2018, 74, 5451–5457. 10.1016/j.tet.2018.06.042. DOI

Marat X.; Monteiro N.; Balme G. Sequential Michael Addition-Carbocyclization Reactions: A Palladium Mediated Approach to Highly Functionalized 3-Methylenetetrahydrofurans. Synlett 1997, 1997, 845–847. 10.1055/s-1997-5755. DOI

Monteiro N.; Gore J.; Balme G. Formation de derives cyclopentaniques assistee par une espece hydrure de palladium: Aspects synthetiques et mecanisme. Tetrahedron 1992, 48, 10103–10114. 10.1016/S0040-4020(01)89040-2. DOI

Monteiro N.; Balme G.; Gore J. Cyclisation of ω-unsaturated b-dicarbonyl compounds catalysed by a palladium hydride species. Tetrahedron Lett. 1991, 32, 1645–1648. 10.1016/S0040-4039(00)74294-8. DOI

Li D.-A.; He X.-H.; Tang X.; Wu Y.; Zhao H.; He G.; Peng C.; Han B.; Zhan G. Organo/Silver Dual Catalytic (3 + 2)/Conia-Ene Type Cyclization: Asymmetric Synthesis of Indane-Fused Spirocyclopenteneoxindoles. Org. Lett. 2022, 24, 6197–6201. 10.1021/acs.orglett.2c02472. PubMed DOI

Putatunda S.; Alegre-Requena J. V.; Meazza M.; Franc M.; Rohal’ová D.; Vemuri P.; Císařová I.; Herrera R. P.; Rios R.; Veselý J. Proline bulky substituents consecutively act as steric hindrances and directing groups in a Michael/Conia-ene cascade reaction under synergistic catalysis. Chem. Sci. 2019, 10, 4107–4115. 10.1039/C8SC05258A. PubMed DOI PMC

Hack D.; Dürr A. B.; Deckers K.; Chauhan P.; Seling N.; Rübenach L.; Mertens L.; Raabe G.; Schoenebeck F.; Enders D. Asymmetric Synthesis of Spiropyrazolones by Sequential Organo- and Silver Catalysis. Angew. Chem., Int. Ed. 2016, 55, 1797–1800. 10.1002/anie.201510602. PubMed DOI PMC

Deiana L.; Jiang Y.; Palo-Nieto C.; Afewerki S.; Incerti-Pradillos C. A.; Verho O.; Tai C.-W.; Johnston E. V.; Córdova A. Combined Heterogeneous Metal/Chiral Amine: Multiple Relay Catalysis for Versatile Eco-Friendly Synthesis. Angew. Chem., Int. Ed. 2014, 53, 3447–3451. 10.1002/anie.201310216. PubMed DOI

Sun W.; Zhu G.; Wu C.; Hong L.; Wang R. "Organo–Metal” Synergistic Catalysis: The 1 + 1 > 2 Effect for the Construction of Spirocyclopentene Oxindoles. Chem. - Eur. J. 2012, 18, 13959–13963. 10.1002/chem.201201976. PubMed DOI

Das S. Recent Progress in Gold-Catalyzed Reactions of Alkynes for the Construction of Indole Frameworks. Asian J. Org. Chem. 2023, 12, e20230026710.1002/ajoc.202300267. DOI

Stylianakis I.; Kolocouris A. Comprehensive Overview of Homogeneous Gold-Catalyzed Transformations of π-Systems for Application Scientists. Catalysts 2023, 13, 921.10.3390/catal13060921. DOI

Ghosh T.; Chatterjee J.; Bhakta S. Gold-catalyzed hydroarylation reactions: a comprehensive overview. Org. Biomol. Chem. 2022, 20, 7151–7187. 10.1039/D2OB00960A. PubMed DOI

Li D.; Zang W.; Bird M. J.; Hyland C. J. T.; Shi M. Chem. Rev. 2021, 121, 8685–8755. 10.1021/acs.chemrev.0c00624. PubMed DOI

Leung C. H.; Baron M.; Biffis A. Gold-Catalyzed Intermolecular Alkyne Hydrofunctionalizations—Mechanistic Insights. Catalysts 2020, 10, 1210.10.3390/catal10101210. DOI

Halliday C. J. V.; Lynam J. M. Gold–alkynyls in catalysis: alkyne activation, gold cumulenes and nuclearity. Dalton Trans. 2016, 45, 12611–12626. 10.1039/C6DT01641C. PubMed DOI

Dorel R.; Echavarren A. M. Gold(I)-Catalyzed Activation of Alkynes for the Construction of Molecular Complexity. Chem. Rev. 2015, 115, 9028–9072. 10.1021/cr500691k. PubMed DOI PMC

Chang M.-Y.; Cheng Y.-C.; Lu Y.-J. Bi(OTf)3-Mediated Cycloisomerization of γ-Alkynyl Arylketones: Application to the Synthesis of Substituted Furans. Org. Lett. 2015, 17, 1264–1267. 10.1021/acs.orglett.5b00246. PubMed DOI

Galenko E. E.; Novikov M. S.; Shakirova F. M.; Shakirova J. R.; Kornyakov I. V.; Bodunov V. A.; Khlebnikov A. F. Isoxazole Strategy for the Synthesis of 2,2′-Bipyridine Ligands: Symmetrical and Unsymmetrical 6,6′-Binicotinates, 2,2′-Bipyridine-5-carboxylates, and Their Metal Complexes. J. Org. Chem. 2019, 84, 3524–3536. 10.1021/acs.joc.9b00115. PubMed DOI

Krogsgaard-Larsen P.; Christensen S. B.; Hjeds H.; Songstad J.; Norbury A. H.; Swahn C.-G. Organic hydroxylamine derivatives. VII. Isoxazolin 5 ones. An investigation of a reaction sequence previously stated to give 3 hydroxyisoxazoles. Acta Chem. Scand. 1973, 27, 2802–2812. 10.3891/acta.chem.scand.27-2802. PubMed DOI

Hirayama F.; Koshio H.; Katayama N.; Kurihara H.; Taniuchi Y.; Sato K.; Hisamichi N.; Sakai-Moritani Y.; Kawasaki T.; Matsumoto Y.; Yanagisawa I. The Discovery of YM-60828: A Potent, Selective and Orally-Bioavailable Factor Xa Inhibitor. Bioorg. Med. Chem. 2002, 10, 1509–1523. 10.1016/S0968-0896(01)00418-7. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...