Enantioselective Synthesis of Spirocyclic Isoxazolones Using a Conia-Ene Type Reaction

. 2025 Mar 14 ; 90 (10) : 3615-3627. [epub] 20250305

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40042076

Stereoselective synthesis of spirocyclic compounds containing heterocyclic motifs represents a formidable challenge in enantioselective synthesis. Here, we present a cascade reaction between α,β-unsaturated aldehydes and isoxazolones under synergistic catalysis of a chiral secondary amine and a palladium(0) catalyst. This strategy allows access to chiral spiroisoxazolone derivatives with a large substrate scope tolerance and high levels of diastereoselectivity (dr up to 20:1) and enantioselectivity (up to 99% ee). Furthermore, the utility of this methodology is showcased by the transformation of chiral spiroisoxazolones into structurally attractive and enantiomerically enriched cyclopentene carboxylic acids with two stereogenic centers.

Zobrazit více v PubMed

Fuller A. A.; Chen B.; Minter A. R.; Mapp A. K. Succinct synthesis of β-amino acids via chiral isoxazolines. J. Am. Chem. Soc. 2005, 127, 5376–5383. 10.1021/ja0431713. PubMed DOI

Tsantali G. G.; Dimtsas J.; Tsoleridis C. A.; Takakis I. M. Preparation of Sixteen 3-Hydroxy-4- and 7-Hydroxy-1-hydrindanones and 3-Hydroxy-4- and 8-Hydroxy-1-hydroazulenones. Eur. J. Org. Chem. 2007, 2007, 258–265. 10.1002/ejoc.200600639. DOI

Mota F. V. B.; de Araújo Neta M. S.; de Souza Franco E.; Bastos I. V. G. A.; da Araújo L. C. C.; da Silva S. C.; de Oliveira T. B.; Souza E. K.; de Almeida V. M.; Ximenes R. M.; et al. Evaluation of anti-inflammatory activity and molecular docking study of new aza-bicyclic isoxazoline acylhydrazone derivatives. MedChemComm 2019, 10, 1916–1925. 10.1039/C9MD00276F. PubMed DOI PMC

Filali I.; Bouajila J.; Znati M.; Bousejra-El Garah F.; Ben Jannet H. Synthesis of new isoxazoline derivatives from harmine and evaluation of their anti-Alzheimer, anti-cancer and anti-inflammatory activities. J. Enzyme Inhib. Med. Chem. 2015, 30, 371–376. 10.3109/14756366.2014.940932. PubMed DOI

Picconi P.; Prabaharan P.; Auer J. L.; Sandiford S.; Cascio F.; Chowdhury M.; Hind C.; Wand M. E.; Sutton J. M.; Rahman K. M. Novel pyridyl nitrofuranyl isoxazolines show antibacterial activity against multiple drug resistant Staphylococcus species. Bioorg. Med. Chem. 2017, 25, 3971–3979. 10.1016/j.bmc.2017.05.037. PubMed DOI

Snyder L. B.; Meng Z.; Mate R.; D'Andrea S. V.; Marinier A.; Quesnelle C. A.; Gill P.; DenBleyker K. L.; Fung-Tomc J. C.; Frosco M. B.; Martel A.; Barrett J. F.; Bronson J. J. Discovery of isoxazolinone antibacterial agents. Nitrogen as a replacement for the stereogenic center found in oxazolidinone antibacterials. Bioorg. Med. Chem. Lett. 2004, 14, 4735–4739. 10.1016/j.bmcl.2004.06.076. PubMed DOI

Basappa; Sadashiva M.P.; Mantelingu K.; Swamy S.N.; Rangappa K.S. Solution-phase synthesis of novel Δ2-isoxazoline libraries via 1,3-dipolar cycloaddition and their antifungal properties. Bioorg. Med. Chem. Lett. 2003, 11, 4539–4544. 10.1016/j.bmc.2003.08.007. PubMed DOI

Grasso C. S.; Wu Y.-M.; Robinson D. R.; Cao X.; Dhanasekaran S. M.; Khan A. P.; Quist X.; Jing M. J.; Lonigro R. J.; Brenner J. C.; et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012, 487, 239–243. 10.1038/nature11125. PubMed DOI PMC

Kamal A.; Bharathi E. V.; Reddy J. S.; Ramaiah M. J.; Dastagiri D.; Reddy M. K.; Viswanath A.; Reddy T. L.; Shaik T. B.; Pushpavalli S. N. C. V. L.; Bhadra M. P. Synthesis and biological evaluation of 3,5-diaryl isoxazoline/isoxazole linked 2,3-dihydroquinazolinone hybrids as anticancer agents. Eur. J. Med. Chem. 2011, 46, 691–703. 10.1016/j.ejmech.2010.12.004. PubMed DOI

Laughlin S. K.; Clark M. P.; Djung J. F.; Golebiowski A.; Brugel T. A.; Sabat M.; Bookland R. G.; Laufersweiler M. J.; VanRens J. C.; Townes J. F.; De B.; Hsieh L. C.; Xu S. C.; Walter R. L.; Mekel M. L.; Janusz M. J. The development of new isoxazolone based inhibitors of tumor necrosis factor-alpha (TNF-α) production. Bioorg. Med. Chem. Lett. 2005, 15, 2399–2403. 10.1016/j.bmcl.2005.02.066. PubMed DOI

Umetsu N.; Shirai Y. Development of novel pesticides in the 21st century. J. Pestic. Sci. 2020, 45, 54–74. 10.1584/jpestics.D20-201. PubMed DOI PMC

Hiesinger K.; Dar'in D.; Proschak E.; Krasavin M. Spirocyclic Scaffolds in Medicinal Chemistry. J. Med. Chem. 2021, 64, 150–183. 10.1021/acs.jmedchem.0c01473. PubMed DOI

Benabdallah M.; Talhi O.; Nouali F.; Choukchou-Braham N.; Bachari K.; Silva A. M. S. Advances in Spirocyclic Hybrids: Chemistry and Medicinal Actions. Curr. Med. Chem. 2018, 25, 3748–3767. 10.2174/0929867325666180309124821. PubMed DOI

Pavlovska T. L.; Redkin R. G.; Lipson V. V.; Atamanuk D. V. Molecular diversity of spirooxindoles. Synthesis and biological activity. Mol. Diversity 2016, 20, 299–344. 10.1007/s11030-015-9629-8. PubMed DOI

Zheng Y.; Tice C. M.; Singh S. B. The use of spirocyclic scaffolds in drug discovery. Bioorg. Med. Chem. Lett. 2014, 24, 3673–3682. 10.1016/j.bmcl.2014.06.081. PubMed DOI

Wu G.; Wu J.-R.; Huang Y.; Yang Y.-W. Enantioselective Synthesis of Quaternary Carbon Stereocenters by Asymmetric Allylic Alkylation: A Review. Chem. - Asian J. 2021, 16, 1864–1877. 10.1002/asia.202100432. PubMed DOI

Wang J.; He F.; Yang X. Asymmetric construction of acyclic quaternary stereocenters via direct enantioselective additions of α-alkynyl ketones to allenamides. Nat. Commun. 2021, 12, 6700.10.1038/s41467-021-27028-7. PubMed DOI PMC

Li C.; Ragab S. S.; Liu G.; Tang W. Enantioselective formation of quaternary carbon stereocenters in natural product synthesis: a recent update. Nat. Prod. Rep. 2020, 37, 276–292. 10.1039/C9NP00039A. PubMed DOI

Zhu Y.; Han J.; Wang J.; Shibata N.; Sodeoka M.; Soloshonok V. A.; Coelho J. A. S.; Toste F. D. Modern Approaches for Asymmetric Construction of Carbon–Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs. Chem. Rev. 2018, 118, 3887–3964. 10.1021/acs.chemrev.7b00778. PubMed DOI PMC

Xiao W.; Zhou Z.; Yang Q.-Q.; Du W.; Chen Y.-C. Organocatalytic Asymmetric Four-Component [5 + 1+1 + 1] Cycloadditions via a Quintuple Cascade Process. Adv. Synth. Catal. 2018, 360, 3526–3533. 10.1002/adsc.201800636. DOI

Tian L.; Luo Y.-C.; Hu X.-Q.; Xu P.-F. Recent Developments in the Synthesis of Chiral Compounds with Quaternary Centers by Organocatalytic Cascade Reactions. Asian J. Org.Chem. 2016, 5, 580–607. 10.1002/ajoc.201500486. DOI

Takao K.-I.; Sakamoto S.; Touati M. A.; Kusakawa Y.; Tadano K.-I. Asymmetric Construction of All-Carbon Quaternary Stereocenters by Chiral-Auxiliary-Mediated Claisen Rearrangement and Total Synthesis of (+)-Bakuchiol. Molecules 2012, 17, 13330–13344. 10.3390/molecules171113330. PubMed DOI PMC

Kita Y.; Fujioka H. Enantioselective constructions of quaternary carbons and their application to the asymmetric total syntheses of fredericamycin A and discorhabdin A. Pure Appl. Chem. 2007, 79, 701–713. 10.1351/pac200779040701. DOI

Douglas C. J.; Overman L. E. Catalytic asymmetric synthesis of all-carbon quaternary stereocenters. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5363–5367. 10.1073/pnas.0307113101. PubMed DOI PMC

Kamlar M.; Urban M.; Veselý J. Enantioselective Synthesis of Spiro Heterocyclic Compounds Using a Combination of Organocatalysis and Transition-Metal Catalysis. Chem. Rec. 2023, 23, e20220028410.1002/tcr.202200284. PubMed DOI

Nielsen C. D.-T.; Linfoot J. D.; Williams A. F.; Spivey A. C. Recent progress in asymmetric synergistic catalysis – the judicious combination of selected chiral aminocatalysts with achiral metal catalysts. Org. Biomol. Chem. 2022, 20, 2764–2778. 10.1039/D2OB00025C. PubMed DOI PMC

Urban M.; Veselý J.. Enantioselective Synthesis of Spiro Heterocycles. In Spiro Compounds: Synthesis and Applications; Rios R., Ed.; Wiley, VCH: 2022; pp 205–282.

Del Vecchio A.; Sinibaldi A.; Nori V.; Giorgianni G.; Di Carmine G.; Pesciaioli F. Synergistic Strategies in Aminocatalysis. Chem. - Eur. J. 2022, 28, e20220081810.1002/chem.202200818. PubMed DOI PMC

Xu P.-W.; Yu J.-S.; Chen C.; Cao Z.-Y.; Zhou F.; Zhou J. Catalytic Enantioselective Construction of Spiro Quaternary Carbon Stereocenters. ACS Catal. 2019, 9, 1820–1882. 10.1021/acscatal.8b03694. DOI

Allen A. E.; MacMillan D. W. C. Synergistic catalysis: A powerful synthetic strategy for new reaction development. Chem. Sci. 2012, 3, 633–658. 10.1039/c2sc00907b. PubMed DOI PMC

Franc M.; Císařová I.; Veselý J. Enantioselective synthesis of spiroimidazolones by synergistic catalysis. Catal. Today 2024, 428, 11444310.1016/j.cattod.2023.114443. DOI

Xiao J.-A.; Li J.-L.; Cheng X.-L.; Chen K.; Peng H.; Chen W.-Q.; Su W.; Huang Y.-M.; Yang H. Enantioselective formal [3 + 2]-cycloadditions to access spirooxindoles bearing four contiguous stereocenters through synergistic catalysis. Chem. Commun. 2021, 57, 4456–4459. 10.1039/D0CC07957J. PubMed DOI

Kamlar M.; Franc M.; Císařová I.; Gyepes R.; Veselý J. Formal [3 + 2] cycloaddition of vinylcyclopropane azlactones to enals using synergistic catalysis. Chem. Commun. 2019, 55, 3829–3832. 10.1039/C8CC06500D. PubMed DOI

Laugeois M.; Ponra S.; Ratovelomanana-Vidal V.; Michelet V.; Vitale M. R. Asymmetric preparation of polysubstituted cyclopentanes by synergistic Pd(0)/amine catalyzed formal [3 + 2] cycloadditions of vinyl cyclopropanes with enals. Chem. Commun. 2016, 52, 5332–5335. 10.1039/C6CC01775D. PubMed DOI

Meazza M.; Rios R. Synergistic Catalysis: Enantioselective Ring Expansion of Vinyl Cyclopropanes Combining Four Catalytic Cycles for the Synthesis of Highly Substituted Spirocyclopentanes Bearing up to Four Stereocenters. Chem. - Eur. J. 2016, 22, 9923–9928. 10.1002/chem.201601893. PubMed DOI

Franc M.; Císařová I.; Veselý J. Enantioselective Synthesis of Spirothiazolones via Cooperative Catalysis. Adv. Synth. Catal. 2021, 363, 4349–4353. 10.1002/adsc.202100571. DOI

Meazza M.; Kamlar M.; Jašíková L.; Formánek B.; Mazzanti A.; Roithová J.; Veselý J.; Rios R. Synergistic formal ring contraction for the enantioselective synthesis of spiropyrazolones. Chem. Sci. 2018, 9, 6368–6373. 10.1039/C8SC00913A. PubMed DOI PMC

Wang Z.; Song Z.; Huang J.; Yang Z. Total Synthesis of Penicibilaenes Enabled by a Tandem Double Conia-ene Type Reaction. J. Am. Chem. Soc. 2024, 146, 4363–4368. 10.1021/jacs.3c14614. PubMed DOI

Chen X.; Yao W.; Zheng H.; Wang H.; Zhou P.-P.; Zhu D.-Y.; Wang S.-H. Enantiocontrolled Total Synthesis of (−)-Retigeranic Acid A. J. Am. Chem. Soc. 2023, 145, 13549–13555. 10.1021/jacs.3c04850. PubMed DOI

Wang Y.; Zhao R.; Yang M. Total Synthesis of Mollanol A. J. Am. Chem. Soc. 2022, 144, 15033–15037. 10.1021/jacs.2c06981. PubMed DOI

Horibe T.; Sakakibara M.; Hiramatsu R.; Takeda K.; Ishihara K. One-Pot Tandem Michael Addition/Enantioselective Conia-Ene Cyclization Mediated by Chiral Iron(III)/Silver(I) Cooperative Catalysis. Angew. Chem., Int. Ed. 2020, 59, 16470–16474. 10.1002/anie.202007180. PubMed DOI

Qu P.; Snyder S. A. Concise and Stereoselective Total Syntheses of Annotinolides C, D, and E. J. Am. Chem. Soc. 2021, 143, 11951–11956. 10.1021/jacs.1c05942. PubMed DOI PMC

Bhat A. H.; Alavi S.; Grover H. K. Tandem Carbenoid C–H Functionalization/Conia-ene Cyclization of N-Propargyl Indoles Generates Pyrroloindoles under Cooperative Rh(II)/Zn(II) Catalysis. Org. Lett. 2020, 22, 224–229. 10.1021/acs.orglett.9b04210. PubMed DOI

Hunter A. C.; Almutwalli B.; Bain A. I.; Sharma I. Trapping rhodium carbenoids with aminoalkynes for the synthesis of diverse N-heterocycles. Tetrahedron 2018, 74, 5451–5457. 10.1016/j.tet.2018.06.042. DOI

Marat X.; Monteiro N.; Balme G. Sequential Michael Addition-Carbocyclization Reactions: A Palladium Mediated Approach to Highly Functionalized 3-Methylenetetrahydrofurans. Synlett 1997, 1997, 845–847. 10.1055/s-1997-5755. DOI

Monteiro N.; Gore J.; Balme G. Formation de derives cyclopentaniques assistee par une espece hydrure de palladium: Aspects synthetiques et mecanisme. Tetrahedron 1992, 48, 10103–10114. 10.1016/S0040-4020(01)89040-2. DOI

Monteiro N.; Balme G.; Gore J. Cyclisation of ω-unsaturated b-dicarbonyl compounds catalysed by a palladium hydride species. Tetrahedron Lett. 1991, 32, 1645–1648. 10.1016/S0040-4039(00)74294-8. DOI

Li D.-A.; He X.-H.; Tang X.; Wu Y.; Zhao H.; He G.; Peng C.; Han B.; Zhan G. Organo/Silver Dual Catalytic (3 + 2)/Conia-Ene Type Cyclization: Asymmetric Synthesis of Indane-Fused Spirocyclopenteneoxindoles. Org. Lett. 2022, 24, 6197–6201. 10.1021/acs.orglett.2c02472. PubMed DOI

Putatunda S.; Alegre-Requena J. V.; Meazza M.; Franc M.; Rohal’ová D.; Vemuri P.; Císařová I.; Herrera R. P.; Rios R.; Veselý J. Proline bulky substituents consecutively act as steric hindrances and directing groups in a Michael/Conia-ene cascade reaction under synergistic catalysis. Chem. Sci. 2019, 10, 4107–4115. 10.1039/C8SC05258A. PubMed DOI PMC

Hack D.; Dürr A. B.; Deckers K.; Chauhan P.; Seling N.; Rübenach L.; Mertens L.; Raabe G.; Schoenebeck F.; Enders D. Asymmetric Synthesis of Spiropyrazolones by Sequential Organo- and Silver Catalysis. Angew. Chem., Int. Ed. 2016, 55, 1797–1800. 10.1002/anie.201510602. PubMed DOI PMC

Deiana L.; Jiang Y.; Palo-Nieto C.; Afewerki S.; Incerti-Pradillos C. A.; Verho O.; Tai C.-W.; Johnston E. V.; Córdova A. Combined Heterogeneous Metal/Chiral Amine: Multiple Relay Catalysis for Versatile Eco-Friendly Synthesis. Angew. Chem., Int. Ed. 2014, 53, 3447–3451. 10.1002/anie.201310216. PubMed DOI

Sun W.; Zhu G.; Wu C.; Hong L.; Wang R. "Organo–Metal” Synergistic Catalysis: The 1 + 1 > 2 Effect for the Construction of Spirocyclopentene Oxindoles. Chem. - Eur. J. 2012, 18, 13959–13963. 10.1002/chem.201201976. PubMed DOI

Das S. Recent Progress in Gold-Catalyzed Reactions of Alkynes for the Construction of Indole Frameworks. Asian J. Org. Chem. 2023, 12, e20230026710.1002/ajoc.202300267. DOI

Stylianakis I.; Kolocouris A. Comprehensive Overview of Homogeneous Gold-Catalyzed Transformations of π-Systems for Application Scientists. Catalysts 2023, 13, 921.10.3390/catal13060921. DOI

Ghosh T.; Chatterjee J.; Bhakta S. Gold-catalyzed hydroarylation reactions: a comprehensive overview. Org. Biomol. Chem. 2022, 20, 7151–7187. 10.1039/D2OB00960A. PubMed DOI

Li D.; Zang W.; Bird M. J.; Hyland C. J. T.; Shi M. Chem. Rev. 2021, 121, 8685–8755. 10.1021/acs.chemrev.0c00624. PubMed DOI

Leung C. H.; Baron M.; Biffis A. Gold-Catalyzed Intermolecular Alkyne Hydrofunctionalizations—Mechanistic Insights. Catalysts 2020, 10, 1210.10.3390/catal10101210. DOI

Halliday C. J. V.; Lynam J. M. Gold–alkynyls in catalysis: alkyne activation, gold cumulenes and nuclearity. Dalton Trans. 2016, 45, 12611–12626. 10.1039/C6DT01641C. PubMed DOI

Dorel R.; Echavarren A. M. Gold(I)-Catalyzed Activation of Alkynes for the Construction of Molecular Complexity. Chem. Rev. 2015, 115, 9028–9072. 10.1021/cr500691k. PubMed DOI PMC

Chang M.-Y.; Cheng Y.-C.; Lu Y.-J. Bi(OTf)3-Mediated Cycloisomerization of γ-Alkynyl Arylketones: Application to the Synthesis of Substituted Furans. Org. Lett. 2015, 17, 1264–1267. 10.1021/acs.orglett.5b00246. PubMed DOI

Galenko E. E.; Novikov M. S.; Shakirova F. M.; Shakirova J. R.; Kornyakov I. V.; Bodunov V. A.; Khlebnikov A. F. Isoxazole Strategy for the Synthesis of 2,2′-Bipyridine Ligands: Symmetrical and Unsymmetrical 6,6′-Binicotinates, 2,2′-Bipyridine-5-carboxylates, and Their Metal Complexes. J. Org. Chem. 2019, 84, 3524–3536. 10.1021/acs.joc.9b00115. PubMed DOI

Krogsgaard-Larsen P.; Christensen S. B.; Hjeds H.; Songstad J.; Norbury A. H.; Swahn C.-G. Organic hydroxylamine derivatives. VII. Isoxazolin 5 ones. An investigation of a reaction sequence previously stated to give 3 hydroxyisoxazoles. Acta Chem. Scand. 1973, 27, 2802–2812. 10.3891/acta.chem.scand.27-2802. PubMed DOI

Hirayama F.; Koshio H.; Katayama N.; Kurihara H.; Taniuchi Y.; Sato K.; Hisamichi N.; Sakai-Moritani Y.; Kawasaki T.; Matsumoto Y.; Yanagisawa I. The Discovery of YM-60828: A Potent, Selective and Orally-Bioavailable Factor Xa Inhibitor. Bioorg. Med. Chem. 2002, 10, 1509–1523. 10.1016/S0968-0896(01)00418-7. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...