Quantitative magnetic resonance imaging parameters of lumbar paraspinal muscle impairment in myotonic dystrophy type 2 and their evolution with aging
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40046670
PubMed Central
PMC11879826
DOI
10.3389/fneur.2025.1525952
Knihovny.cz E-zdroje
- Klíčová slova
- endurance, magnetic resonace imaging, muscle strengh, myotonic dystrophy type 2, paraspinal muscles,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Muscle magnetic resonance imaging (MRI) is an emerging method in the diagnosis and monitoring of muscular dystrophies. This cross-sectional, comparative study aimed to evaluate quantitative MRI (qMRI) parameters of the lumbar paraspinal muscles (LPM) in myotonic dystrophy type 2 (DM2), to assess their relationship with functional examination, and to evaluate their evolution with aging. METHODS: The study enrolled 37 DM2 patients and 90 healthy volunteers (HV) who were matched based on physiological parameters to create 35 pairs. Utilizing a 6-point Dixon gradient echo sequence MRI, fat fraction (FF), total muscle volume, and functional muscle volume (FMV) of the LPM and psoas muscle (PS) were obtained. Using correlation coefficients and regression models, the relationship between MRI and the maximal isometric lumbar extensor muscle strength (MILEMS) and lumbar extensor muscle endurance (LEME), and their evolution with age, were assessed. RESULTS: LPM showed significantly higher FF in DM2 patients compared to HV (21.3% vs. 11.3%, p-value <0.001). FMV of LPM correlated significantly with MILEMS (ρ = 0.5, p- value = 0.001) and FF with LEME (ρ = -0.49, p- value = 0.002) in DM2. No significant differences in the rate of deterioration in functional and morphological parameters of the LPM with age were observed between the two groups. CONCLUSION: We demonstrated morphological correlates of lumbar extensor muscle dysfunction in DM2 patients. The qMRI parameters of LPM correlated with functional parameters but could not be used either as a reliable biomarker of lumbar extensor muscle impairment or as a biomarker of disease progression.
Department of Neurology Centre for Neuromuscular Diseases University Hospital Brno Brno Czechia
Department of Public Health Faculty of Medicine Masaryk University Brno Czechia
Department of Radiology and Nuclear Medicine University Hospital Brno Brno Czechia
Department of Rehabilitation University Hospital Brno Brno Czechia
Zobrazit více v PubMed
Meola G. Myotonic dystrophy type 2: the 2020 update. Acta Myol. (2020) 39:222–34. doi: 10.36185/2532-1900-026, PMID: PubMed DOI PMC
Mahyera AS, Schneider T, Halliger-Keller B, Schrooten K, Hörner E-M, Rost S, et al. . Distribution and structure of DM2 repeat tract alleles in the German population. Front Neurol. (2018) 9:463. doi: 10.3389/fneur.2018.00463, PMID: PubMed DOI PMC
Hamel JI. Myotonic dystrophy. Continuum (Minneap Minn). (2022) 28:1715–34. doi: 10.1212/CON.0000000000001184 PubMed DOI
Witting N, Andersen LK, Vissing J. Axial myopathy: an overlooked feature of muscle diseases. Brain. (2016) 139:13–22. doi: 10.1093/brain/awv332, PMID: PubMed DOI
Hicks GE, Simonsick EM, Harris TB, Newman AB, Weiner DK, Nevitt MA, et al. . Cross-sectional associations between trunk muscle composition, back pain, and physical function in the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. (2005) 60:882–7. doi: 10.1093/gerona/60.7.882, PMID: PubMed DOI
Schlaeger S, Inhuber S, Rohrmeier A, Dieckmeyer M, Freitag F, Klupp E, et al. . Association of paraspinal muscle water-fat MRI-based measurements with isometric strength measurements. Eur Radiol. (2019) 29:599–608. doi: 10.1007/s00330-018-5631-8, PMID: PubMed DOI
Vlazna D, Krkoska P, Sladeckova M, Parmova O, Barusova T, Hrabcova K, et al. . Trunk muscle dysfunction in patients with myotonic dystrophy type 2 and its contribution to chronic low back pain. Front Neurol. (2023) 14:1258342. doi: 10.3389/fneur.2023.1258342, PMID: PubMed DOI PMC
Ten Dam L, van der Kooi AJ, Verhamme C, Wattjes MP, de Visser M. Muscle imaging in inherited and acquired muscle diseases. Eur J Neurol. (2016) 23:688–703. doi: 10.1111/ene.12984, PMID: PubMed DOI
Kriss A, Jenkins T. Muscle MRI in motor neuron diseases: a systematic review. Amyotroph Lateral Scler Frontotemporal Degener. (2022) 23:161–75. doi: 10.1080/21678421.2021.1936062, PMID: PubMed DOI
Carlier PG, Marty B, Scheidegger O, Loureiro de Sousa P, Baudin P-Y, Snezhko E, et al. . Skeletal muscle quantitative nuclear magnetic resonance imaging and spectroscopy as an outcome measure for clinical trials. J Neuromuscul Dis. (2016) 3:1–28. doi: 10.3233/JND-160145, PMID: PubMed DOI PMC
Dahlqvist JR, Widholm P, Leinhard OD, Vissing J. MRI in neuromuscular diseases: an emerging diagnostic tool and biomarker for prognosis and efficacy. Ann Neurol. (2020) 88:669–81. doi: 10.1002/ana.25804, PMID: PubMed DOI
Madrid DA, Knapp RA, Lynch D, Clemens P, Weaver AA, Puwanant A. Associations between lower extremity muscle fat fraction and motor performance in myotonic dystrophy type 2: a pilot study. Muscle Nerve. (2023) 67:506–14. doi: 10.1002/mus.27821, PMID: PubMed DOI PMC
Peric S, Maksimovic R, Banko B, Durdic M, Bjelica B, Bozovic I, et al. . Magnetic resonance imaging of leg muscles in patients with myotonic dystrophies. J Neurol. (2017) 264:1899–908. doi: 10.1007/s00415-017-8574-0, PMID: PubMed DOI
Kornblum C, Lutterbey G, Bogdanow M, Kesper K, Schild H, Schröder R, et al. . Distinct neuromuscular phenotypes in myotonic dystrophy types 1 and 2: a whole body highfield MRI study. J Neurol. (2006) 253:753–61. doi: 10.1007/s00415-006-0111-5, PMID: PubMed DOI
Stramare R, Beltrame V, Dal Borgo R, Gallimberti L, Frigo AC, Pegoraro E, et al. . MRI in the assessment of muscular pathology: a comparison between limb-girdle muscular dystrophies, hyaline body myopathies and myotonic dystrophies. Radiol Med. (2010) 115:585–99. doi: 10.1007/s11547-010-0531-2, PMID: PubMed DOI
Crawford RJ, Filli L, Elliott JM, Nanz D, Fischer MA, Marcon M, et al. . Age-and level-dependence of fatty infiltration in lumbar paravertebral muscles of healthy volunteers. AJNR Am J Neuroradiol. (2016) 37:742–8. doi: 10.3174/ajnr.A4596, PMID: PubMed DOI PMC
Burian E, Inhuber S, Schlaeger S, Dieckmeyer M, Klupp E, Franz D, et al. . Association of thigh and paraspinal muscle composition in young adults using chemical shift encoding-based water–fat MRI. Quant Imaging Med Surg. (2020) 10:128–12136. doi: 10.21037/qims.2019.11.08, PMID: PubMed DOI PMC
Dahlqvist JR, Vissing CR, Hedermann G, Thomsen C, Vissing J. Fat replacement of Paraspinal muscles with aging in healthy adults. Med Sci Sports Exerc. (2017) 49:595–601. doi: 10.1249/MSS.0000000000001119, PMID: PubMed DOI
Huang R, Pan F, Kong C, Lu S. Age-and sex-dependent differences in the morphology and composition of paraspinal muscles between subjects with and without lumbar degenerative diseases. BMC Musculoskelet Disord. (2022) 23:734. doi: 10.1186/s12891-022-05692-0, PMID: PubMed DOI PMC
Sollmann N, Zoffl A, Franz D, Syväri J, Dieckmeyer M, Burian E, et al. . Regional variation in paraspinal muscle composition using chemical shift encoding-based water-fat MRI. Quant Imaging Med Surg. (2020) 10:496–49507. doi: 10.21037/qims.2020.01.10, PMID: PubMed DOI PMC
Krkoska P, Kokosova V, Dostal M, Vlazna D, Kerkovsky M, Straka M, et al. . Assessment of lumbar paraspinal muscle morphology using mDixon quant magnetic resonance imaging (MRI): a cross-sectional study in healthy subjects. Quant Imaging Med Surg. (2024) 14:6015–35. doi: 10.21037/qims-23-1796, PMID: PubMed DOI PMC
Vlažná D, Krkoška P, Kuhn M, Dosbaba F, Batalik L, Vlčková E, et al. . Assessment of lumbar extensor muscles in the context of trunk function, a pilot study in healthy individuals. Appl Sci. (2021) 11:9518. doi: 10.3390/app11209518 DOI
Perkins T, Duijndam A, Eggers H, Weerdt E, Rijckaert Y. The next generation fat-free imaging (2015). Available at: https://philipsproductcontent.blob.core.windows.net/assets/20170523/77840f58014b4ea8bc44a77c015697b7.pdf (Accessed November 8, 2024).
Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. . User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage. (2006) 31:1116–28. doi: 10.1016/j.neuroimage.2006.01.015, PMID: PubMed DOI
Crawford RJ, Cornwall J, Abbott R, Elliott JM. Manually defining regions of interest when quantifying paravertebral muscles fatty infiltration from axial magnetic resonance imaging: a proposed method for the lumbar spine with anatomical cross-reference. BMC Musculoskelet Disord. (2017) 18:25. doi: 10.1186/s12891-016-1378-z, PMID: PubMed DOI PMC
Weinreb JC, Cohen JM, Maravilla KR. Iliopsoas muscles: MR study of normal anatomy and disease. Radiology. (1985) 156:435–40. doi: 10.1148/radiology.156.2.4011906, PMID: PubMed DOI
Kuschel LB, Sonnenburg D, Engel T. Factors of muscle quality and determinants of muscle strength: a systematic literature review. Healthcare (Basel). (2022) 10:1937. doi: 10.3390/healthcare10101937, PMID: PubMed DOI PMC
Jones EJ, Bishop PA, Woods AK, Green JM. Cross-sectional area and muscular strength: a brief review. Sports Med. (2008) 38:987–94. doi: 10.2165/00007256-200838120-00003, PMID: PubMed DOI
Dahlqvist JR, Oestergaard ST, Poulsen NS, Knak KL, Thomsen C, Vissing J. Muscle contractility in spinobulbar muscular atrophy. Sci Rep. (2019) 9:4680. doi: 10.1038/s41598-019-41240-y, PMID: PubMed DOI PMC
Leung DG. Advancements in magnetic resonance imaging-based biomarkers for muscular dystrophy. Muscle Nerve. (2019) 60:347–60. doi: 10.1002/mus.26497, PMID: PubMed DOI PMC
Mannion AF. Fibre type characteristics and function of the human paraspinal muscles: normal values and changes in association with low back pain. J Electromyogr Kinesiol. (1999) 9:363–77. doi: 10.1016/s1050-6411(99)00010-3, PMID: PubMed DOI
Arbanas J, Starcevic Klasan G, Nikolic M, Jerkovic R, Miljanovic I, Malnar D. Fibre type composition of the human psoas major muscle with regard to the level of its origin. J Anat. (2009) 215:636–41. doi: 10.1111/j.1469-7580.2009.01155.x, PMID: PubMed DOI PMC
Bassez G, Chapoy E, Bastuji-Garin S, Radvanyi-Hoffman H, Authier F-J, Pellissier JF, et al. . Type 2 myotonic dystrophy can be predicted by the combination of type 2 muscle fiber central nucleation and scattered atrophy. J Neuropathol Exp Neurol. (2008) 67:319–25. doi: 10.1097/NEN.0b013e31816b4acc, PMID: PubMed DOI
Schoser BGH, Schneider-Gold C, Kress W, Goebel H-H, Reilich P, Koch MC, et al. . Muscle pathology in 57 patients with myotonic dystrophy type 2. Muscle Nerve. (2004) 29:275–81. doi: 10.1002/mus.10545, PMID: PubMed DOI
Lukas Z, Kroupova I, Bednarik J, Falk M, Fajkusova L, Zidková J, et al. . Muscular biopsy in myotonic dystrophy in the era of molecular genetics. Cesk Slov Neurol N. (2007) 70:395–401.
Wokke BH, Van Den Bergen JC, Versluis MJ, Niks EH, Milles J, Webb AG, et al. . Quantitative MRI and strength measurements in the assessment of muscle quality in Duchenne muscular dystrophy. Neuromuscul Disord. (2014) 24:409–16. doi: 10.1016/j.nmd.2014.01.015, PMID: PubMed DOI
Lenchik L, Mazzoli V, Cawthon PM, Hepple RT, Boutin RD. Muscle steatosis and fibrosis in older adults, from the AJR special series on imaging of fibrosis. AJR Am J Roentgenol. (2024) 222:e2329742. doi: 10.2214/AJR.23.29742, PMID: PubMed DOI
Meola G, Cardani R. Myotonic dystrophy type 2: an update on clinical aspects, genetic and Pathomolecular mechanism. J Neuromuscul Dis. (2015) 2:S59–71. doi: 10.3233/JND-150088, PMID: PubMed DOI PMC
Angelopoulou E, Karadima G, Pyrgelis E-S, Zambelis T, Zouvelou V. Camptocormia as an unusual presenting symptom of myotonic dystrophy type 2: an overlooked cause of axial myopathy. J Clin Neuromuscul Dis. (2023) 24:165–6. doi: 10.1097/CND.0000000000000417, PMID: PubMed DOI