The landscape of epilepsy-related GATOR1 variants
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
682345
European Research Council - International
K12 NS098482
NINDS NIH HHS - United States
PubMed
30093711
PubMed Central
PMC6292495
DOI
10.1038/s41436-018-0060-2
PII: S1098-3600(21)04626-8
Knihovny.cz E-zdroje
- Klíčová slova
- DEPDC5, Focal cortical dysplasia, Genetic focal epilepsy, SUDEP, mTORC1 pathway,
- MeSH
- Brugadův syndrom genetika mortalita patofyziologie MeSH
- dítě MeSH
- epilepsie komplikace epidemiologie genetika patofyziologie MeSH
- genetická predispozice k nemoci MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mTORC1 genetika MeSH
- multiproteinové komplexy genetika MeSH
- mutace INDEL genetika MeSH
- mutace ztráty funkce genetika MeSH
- nádorové supresorové proteiny genetika MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- proteiny aktivující GTPasu genetika MeSH
- represorové proteiny genetika MeSH
- rodokmen MeSH
- signální transdukce genetika MeSH
- variabilita počtu kopií segmentů DNA genetika MeSH
- záchvaty komplikace epidemiologie genetika patofyziologie MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DEPDC5 protein, human MeSH Prohlížeč
- mTORC1 MeSH
- multiproteinové komplexy MeSH
- nádorové supresorové proteiny MeSH
- NPRL2 protein, human MeSH Prohlížeč
- NPRL3 protein, human MeSH Prohlížeč
- proteiny aktivující GTPasu MeSH
- represorové proteiny MeSH
PURPOSE: To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway METHODS: We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants. RESULTS: The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia (20%). Infantile spasms were reported in 10% of the probands. Sudden unexpected death in epilepsy (SUDEP) occurred in 10% of the families. Novel classification framework of all 140 epilepsy-related GATOR1 variants (including the variants of this study) revealed that 68% are loss-of-function pathogenic, 14% are likely pathogenic, 15% are variants of uncertain significance and 3% are likely benign. CONCLUSION: Our data emphasize the increasingly important role of GATOR1 genes in the pathogenesis of focal epilepsies (>180 probands to date). The GATOR1 phenotypic spectrum ranges from sporadic early-onset epilepsies with cognitive impairment comorbidities to familial focal epilepsies, and SUDEP.
Bethel Epilepsy Centre Bielefeld Germany
Centre Hospitalier Universitaire de Rennes F 35000 Rennes France
CHU Reims American Memorial Hospital Service de Pédiatrie REIMS F 51092 France
CHU Reims Hôpital Maison Blanche Pôle de Biologie Service de Génétique Reims F 51092 France
Clinique Bernoise Crans Montana Switzerland
CNRS UMR 7225 F 75013 Paris France
Danish Epilepsy Centre Dianalund Denmark
Danish Epilepsy Centre Dianalund University of Copenhagen Copenhagen Denmark
Department of Genetics University Medical Center Utrecht Utrecht The Netherlands
Department of Neurology Academic Center for Epileptology Kempenhaeghe Heeze The Netherlands
Department of Neurology and Rehabilitation Tallinn Children's Hospital Tallinn Estonia
Department of Neurology Harvard Medical School Boston Massachusetts USA
Department of Pediatric Neurology Antwerp University Hospital Edegem Belgium
Department of Pediatric Neurosurgery Fondation Rothschild F 75019 Paris France
Department of Pediatrics Institute of Medicine University Hospital of Udine Udine Italy
Division of Genetics and Metabolism Phoenix Children's Hospital Phoenix Arizona USA
Epilepsy Center Clinic of Nervous System Diseases University of Foggia Riuniti Hospital Foggia Italy
Epilepsy Center for Children Brandenburg Medical School University Hospital Neuruppin Germany
IGBMC INSERM CNRS Strasbourg University Strasbourg France
INSERM U1127 F 75013 Paris France
Institut de Systématique Evolution Biodiversité ISYEB UMR 7205 CNRS MNHN UPMC EPHE Paris France
Institut du Cerveau et de la Moelle épinière Hôpital Pitié Salpêtrière F 75013 Paris France
Institute of Human Genetics University Hospital Magdeburg Germany
Institute of Human Genetics University of Leipzig Hospitals and Clinics Leipzig Germany
Kinderneurologisches Zentrum Düsseldorf Gerresheim Sana Kliniken Düsseldorf Germany
Kingston Health Sciences Centre Kingston Ontario K7L 2V7 Canada
Leiden University Medical Center Leiden The Netherlands
Medical Genetics Unit Polyclinic Sant' Orsola Malpighi University Hospital Bologna Italy
Neurogenetics Group VIB Department of Molecular Genetics University of Antwerp Antwerp Belgium
Pediatric Neurology Department Timone Hospital APHM Marseille France
Service d'Epileptologie Clinique CHU de Bordeaux France
Service de Génétique Médicale Pavillon Lefebvre Hôpital Purpan CHU Toulouse Toulouse France
Service de neurophysiologie et pédiatrie 1 CHU de Dijon Dijon France
Sorbonne Université UPMC Univ Paris 06 UMR S 1127 F 75013 Paris France
Stichting Epilepsie Instellingen Nederland Zwolle Heemstede The Netherlands
The Saxon Epilepsy Center Kleinwachau Radeberg Germany
Unit of Medical Genetics CHU La Réunion Saint Pierre F 97448 France
Unité d'épileptologie Service de Neurologie CHU 49033 Angers France
Vrije Universiteit Brussel Neurogenetics Research Group Laarbeeklaan 101 1090 Brussels Belgium
Zobrazit více v PubMed
Dibbens LM, de Vries B, Donatello S, et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet. 2013;45:546–51. doi: 10.1038/ng.2599. PubMed DOI
Ishida S, Picard F, Rudolf G, et al. Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat Genet. 2013;45:552–5. doi: 10.1038/ng.2601. PubMed DOI PMC
Bar-Peled L, Chantranupong L, Cherniack AD, et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013;340:1100–6. doi: 10.1126/science.1232044. PubMed DOI PMC
Baulac S. mTOR signaling pathway genes in focal epilepsies. Progress Brain Res. 2016;226:61–79. doi: 10.1016/bs.pbr.2016.04.013. PubMed DOI
Lal D, Reinthaler EM, Schubert J, et al. DEPDC5 mutations in genetic focal epilepsies of childhood. Ann Neurol. 2014;75:788–92. doi: 10.1002/ana.24127. PubMed DOI
Carvill GL, Crompton DE, Regan BM, et al. Epileptic spasms are a feature of DEPDC5 mTORopathy. Neurol Genet. 2015;1:e17. doi: 10.1212/NXG.0000000000000016. PubMed DOI PMC
Picard F, Makrythanasis P, Navarro V, et al. DEPDC5 mutations in families presenting as autosomal dominant nocturnal frontal lobe epilepsy. Neurology. 2014;82:2101–6. doi: 10.1212/WNL.0000000000000488. PubMed DOI
Scheffer IE, Heron SE, Regan BM, et al. Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations. Ann Neurol. 2014;75:782–7. doi: 10.1002/ana.24126. PubMed DOI
Baulac S, Ishida S, Marsan E, et al. Familial focal epilepsy with focal cortical dysplasia due to DEPDC5 mutations. Ann Neurol. 2015;77:675–83. doi: 10.1002/ana.24368. PubMed DOI
D’Gama AM, Geng Y, Couto JA, et al. Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann Neurol. 2015;77:720–5. doi: 10.1002/ana.24357. PubMed DOI PMC
Scerri T, Riseley JR, Gillies G, et al. Familial cortical dysplasia type IIA caused by a germline mutation in DEPDC5. Ann Clin Transl Neurol. 2015;2:575–80. doi: 10.1002/acn3.191. PubMed DOI PMC
Sim JC, Scerri T, Fanjul-Fernandez M, et al. Familial cortical dysplasia caused by mutation in the mammalian target of rapamycin regulator NPRL3. Ann Neurol. 2016;79:132–7. doi: 10.1002/ana.24502. PubMed DOI
Weckhuysen S, Marsan E, Lambrecq V, et al. Involvement of GATOR complex genes in familial focal epilepsies and focal cortical dysplasia. Epilepsia. 2016;57:994–1003. doi: 10.1111/epi.13391. PubMed DOI
Blumcke I, Spreafico R, Haaker G, et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med. 2017;377:1648–56. doi: 10.1056/NEJMoa1703784. PubMed DOI
Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91. doi: 10.1038/nature19057. PubMed DOI PMC
Jagadeesh KA, Wenger AM, Berger MJ, et al. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat Genet. 2016;48:1581–6. doi: 10.1038/ng.3703. PubMed DOI
Forbes SA, Beare D, Boutselakis H, et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45:D777–D783. doi: 10.1093/nar/gkw1121. PubMed DOI PMC
Nashef L, So EL, Ryvlin P, Tomson T. Unifying the definitions of sudden unexpected death in epilepsy. Epilepsia. 2012;53:227–33. doi: 10.1111/j.1528-1167.2011.03358.x. PubMed DOI
Devinsky O, Hesdorffer DC, Thurman DJ, et al. Sudden unexpected death in epilepsy: epidemiology, mechanisms, and prevention. Lancet Neurol. 2016;15:1075–88. doi: 10.1016/S1474-4422(16)30158-2. PubMed DOI
Nykamp K, Anderson M, Powers M, et al. Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet Med. 2017;19:1105–17. doi: 10.1038/gim.2017.37. PubMed DOI PMC
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24. doi: 10.1038/gim.2015.30. PubMed DOI PMC
Kelly MA, Caleshu C, Morales A, et al. Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel. Genet Med. 2018;20:351–9. doi: 10.1038/gim.2017.218. PubMed DOI PMC
Ricos MG, Hodgson BL, Pippucci T, et al. Mutations in the mammalian target of rapamycin pathway regulators NPRL2 and NPRL3 cause focal epilepsy. Ann Neurol. 2016;79:120–31. doi: 10.1002/ana.24547. PubMed DOI
Shen K, Huang RK, Brignole EJ, et al. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes. Nature. 2018;556:64–69. doi: 10.1038/nature26158. PubMed DOI PMC
Ribierre Théo, Deleuze Charlotte, Bacq Alexandre, Baldassari Sara, Marsan Elise, Chipaux Mathilde, Muraca Giuseppe, Roussel Delphine, Navarro Vincent, Leguern Eric, Miles Richard, Baulac Stéphanie. Second-hit mosaic mutation in mTORC1 repressor DEPDC5 causes focal cortical dysplasia–associated epilepsy. Journal of Clinical Investigation. 2018;128(6):2452–2458. doi: 10.1172/JCI99384. PubMed DOI PMC
Berg AT, Zelko FA, Levy SR, et al. Age at onset of epilepsy, pharmacoresistance, and cognitive outcomes: a prospective cohort study. Neurology. 2012;79:1384–91. doi: 10.1212/WNL.0b013e31826c1b55. PubMed DOI PMC
Burger BJ, Rose S, Bennuri SC, et al. Autistic siblings with novel mutations in two different genes: insight for genetic workups of autistic siblings and connection to mitochondrial dysfunction. Front Pediatr. 2017;5:219. doi: 10.3389/fped.2017.00219. PubMed DOI PMC
Nascimento FA, Borlot F, Cossette P, et al. Two definite cases of sudden unexpected death in epilepsy in a family with a DEPDC5 mutation. Neurol Genet. 2015;1:e28. doi: 10.1212/NXG.0000000000000028. PubMed DOI PMC
Bagnall RD, Crompton DE, Petrovski S, et al. Exome-based analysis of cardiac arrhythmia, respiratory control, and epilepsy genes in sudden unexpected death in epilepsy. Ann Neurol. 2016;79:522–34. doi: 10.1002/ana.24596. PubMed DOI
Harden C, Tomson T, Gloss D, et al. Practice guideline summary: sudden unexpected death in epilepsy incidence rates and risk factors: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology. 2017;88:1674–80. doi: 10.1212/WNL.0000000000003685. PubMed DOI
Cooper MS, McIntosh A, Crompton DE, et al. Mortality in Dravet syndrome. Epilepsy Res. 2016;128:43–47. doi: 10.1016/j.eplepsyres.2016.10.006. PubMed DOI
Marsan E, Ishida S, Schramm A, et al. Depdc5 knockout rat: a novel model of mTORopathy. Neurobiol Dis. 2016;89:180–9. doi: 10.1016/j.nbd.2016.02.010. PubMed DOI
Yuskaitis CJ, Jones BM, Wolfson RL, et al. A mouse model of DEPDC5-related epilepsy: neuronal loss of Depdc5 causes dysplastic and ectopic neurons, increased mTOR signaling, and seizure susceptibility. Neurobiol Dis. 2017;111:91–101. doi: 10.1016/j.nbd.2017.12.010. PubMed DOI PMC
Hughes J, Dawson R, Tea M, et al. Knockout of the epilepsy gene Depdc5 in mice causes severe embryonic dysmorphology with hyperactivity of mTORC1 signalling. Sci Rep. 2017;7:12618. doi: 10.1038/s41598-017-12574-2. PubMed DOI PMC
Myers KA, Scheffer IE. DEPDC5 as a potential therapeutic target for epilepsy. Expert Opin Ther Targets. 2017;21:591–600. doi: 10.1080/14728222.2017.1316715. PubMed DOI