Reduced removal of waste products from energy metabolism takes center stage in human brain aging
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P41 EB027061
NIBIB NIH HHS - United States
R01 NS100106
NINDS NIH HHS - United States
P41 EB027061
NIH HHS - United States
R01 AG087526
NIA NIH HHS - United States
R01 MH109159
NIMH NIH HHS - United States
R01 NS087568
NINDS NIH HHS - United States
R56 AG079086
NIA NIH HHS - United States
R01 AG087526
NIH HHS - United States
DP1 AG093028
NIA NIH HHS - United States
PubMed
40057554
PubMed Central
PMC11890754
DOI
10.1038/s41598-025-90342-3
PII: 10.1038/s41598-025-90342-3
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- energetický metabolismus * MeSH
- koncentrace vodíkových iontů MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mozek * metabolismus MeSH
- mozkový krevní oběh * fyziologie MeSH
- oxid uhličitý * metabolismus MeSH
- pozitronová emisní tomografie * MeSH
- senioři MeSH
- spotřeba kyslíku MeSH
- stárnutí * metabolismus fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxid uhličitý * MeSH
Despite extensive research on neuroimaging correlates of human brain aging, there is little mechanistic insight into how they are linked to loss of brain function. Previous studies on the role of cerebral blood flow (CBF) in supporting brain function have focused on delivery of nutrients, namely oxygen and glucose. However, CBF is required also to clear the byproducts of energy metabolism, namely CO2 and protons. With the goal of determining whether age-associated reduction in regional CBF may lead to abnormal brain partial pressure of carbon dioxide (pCO2) and pH levels that are sufficient to alter brain activity and cognitive function, we applied a recently introduced homeostatic modeling of nutrients and waste products to human neuroimaging PET data acquired in young and older adults (Goyal et al. in Cell Metab 26(2):353-360, 2017). Our results demonstrate that age-associated reductions in CBF, in the presence of virtually unaltered oxygen consumption rates, show concurrent regional age-associated increases in pCO2 and associated pH acid-shifts of possible functional relevance. We conclude that the implications of altered vascular health in older adults needs to be revisited in light of its central role in removing waste products from energy metabolism at resting state and, in future studies, during external stimulations.
Centro Ricerche Enrico Fermi Rome RM Italy
Department of Anesthesiology Yale University New Haven CT USA
Department of Biomedical Engineering Yale University New Haven CT USA
Department of Neurology University of Arkansas for Medical Sciences Little Rock AR USA
Department of Neurology Yale University School of Medicine New Haven CT USA
Department of Psychiatry Yale University School of Medicine New Haven CT USA
Department of Psychology Vanderbilt University Nashville TN USA
Department of Radiology Magnetic Resonance Research Center Yale University New Haven CT USA
Division of Biostatistics School of Public Health University of Minnesota Minneapolis MN USA
Fondazione Santa Lucia IRCCS Rome RM Italy
Vanderbilt Brain Institute Vanderbilt University Nashville TN USA
Zobrazit více v PubMed
Alexander, G. E. et al. Characterizing cognitive aging in humans with links to animal models. Front. Aging Neurosci.4, 21. 10.3389/fnagi.2012.00021 (2012). PubMed PMC
Dykiert, D., Der, G., Starr, J. M. & Deary, I. J. Age differences in intra-individual variability in simple and choice reaction time: Systematic review and meta-analysis. PLoS One. 7, e45759. 10.1371/journal.pone.0045759 (2012). PubMed PMC
Levin, O., Fujiyama, H., Boisgontier, M. P., Swinnen, S. P. & Summers, J. J. Aging and motor inhibition: A converging perspective provided by brain stimulation and imaging approaches. Neurosci. Biobehav Rev.43, 100–117. 10.1016/j.neubiorev.2014.04.001 (2014). PubMed
Gaspar-Silva, F., Trigo, D. & Magalhaes, J. Ageing in the brain: Mechanisms and rejuvenating strategies. Cell. Mol. Life Sci.80, 190. 10.1007/s00018-023-04832-6 (2023). PubMed PMC
Mattson, M. P. & Arumugam, T. V. Hallmarks of brain aging: Adaptive and pathological modification by metabolic states. Cell. Metab.27, 1176–1199. 10.1016/j.cmet.2018.05.011 (2018). PubMed PMC
Zimmerman, B., Rypma, B., Gratton, G. & Fabiani, M. Age-related changes in cerebrovascular health and their effects on neural function and cognition: A comprehensive review. Psychophysiology58, e13796. 10.1111/psyp.13796 (2021). PubMed PMC
Hutchison, J. L., Lu, H. & Rypma, B. Neural mechanisms of age-related slowing: The DeltaCBF/DeltaCMRO2 ratio mediates age-differences in BOLD signal and human performance. Cereb. Cortex23, 2337–2346. 10.1093/cercor/bhs233 (2013). PubMed PMC
Wu, S. et al. Cerebral blood flow predicts multiple demand network activity and fluid intelligence across the adult lifespan. Neurobiol. Aging121, 1–14. 10.1016/j.neurobiolaging.2022.09.006 (2023). PubMed PMC
Kim, D. et al. Relationship between cerebrovascular reactivity and cognition among people with risk of cognitive decline. Front. Physiol.12, 645342. 10.3389/fphys.2021.645342 (2021). PubMed PMC
Goyal, M. S. et al. Loss of brain aerobic glycolysis in normal human aging. Cell Metab26, 353–360e353. 10.1016/j.cmet.2017.07.010 (2017). PubMed PMC
Uthayakumar, B. et al. Age-associated change in pyruvate metabolism investigated with hyperpolarized (13) C-MRI of the human brain. Hum. Brain Mapp.44, 4052–4063. 10.1002/hbm.26329 (2023). PubMed PMC
Juttukonda, M. R. et al. Characterizing cerebral hemodynamics across the adult lifespan with arterial spin labeling MRI data from the human connectome project-aging. Neuroimage230, 117807. 10.1016/j.neuroimage.2021.117807 (2021). PubMed PMC
Tsvetanov, K. A., Henson, R. N. A. & Rowe, J. B. Separating vascular and neuronal effects of age on fMRI BOLD signals. Philos. Trans. R Soc. Lond. B Biol. Sci.376, 20190631. 10.1098/rstb.2019.0631 (2021). PubMed PMC
Zeki Al Hazzouri, A. & Yaffe, K. Arterial stiffness and cognitive function in the elderly. J. Alzheimers Dis.42 (Suppl 4), 503–514. 10.3233/JAD-141563 (2014). PubMed PMC
Lowerison, M. R. et al. Aging-related cerebral microvascular changes visualized using ultrasound localization microscopy in the living mouse. Sci. Rep.12, 619. 10.1038/s41598-021-04712-8 (2022). PubMed PMC
Sarabi, M. S. et al. Vessel density mapping of small cerebral vessels on 3D high resolution black blood MRI. Neuroimage286, 120504. 10.1016/j.neuroimage.2023.120504 (2024). PubMed PMC
Feng, X. et al. Brain regions vulnerable and resistant to aging without Alzheimer’s disease. PLoS One. 15, e0234255. 10.1371/journal.pone.0234255 (2020). PubMed PMC
Brown, W. R., Moody, D. M., Thore, C. R., Challa, V. R. & Anstrom, J. A. Vascular dementia in leukoaraiosis may be a consequence of capillary loss not only in the lesions, but in normal-appearing white matter and cortex as well. J. Neurol. Sci.257, 62–66. 10.1016/j.jns.2007.01.015 (2007). PubMed PMC
Brown, W. R. & Thore, C. R. Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol. Appl. Neurobiol.37, 56–74. 10.1111/j.1365-2990.2010.01139.x (2011). PubMed PMC
Schager, B. & Brown, C. E. Susceptibility to capillary plugging can predict brain region specific vessel loss with aging. J. Cereb. Blood Flow. Metab.40, 2475–2490. 10.1177/0271678X19895245 (2020). PubMed PMC
Chen, J. J., Rosas, H. D. & Salat, D. H. Age-associated reductions in cerebral blood flow are independent from regional atrophy. Neuroimage55, 468–478. 10.1016/j.neuroimage.2010.12.032 (2011). PubMed PMC
Aanerud, J. et al. Brain energy metabolism and blood flow differences in healthy aging. J. Cereb. Blood Flow. Metab.32, 1177–1187. 10.1038/jcbfm.2012.18 (2012). PubMed PMC
MacDonald, M. E. & Pike, G. B. MRI of healthy brain aging: A review. NMR Biomed.34, e4564. 10.1002/nbm.4564 (2021). PubMed
Chen, J. J. Functional MRI of brain physiology in aging and neurodegenerative diseases. Neuroimage187, 209–225. 10.1016/j.neuroimage.2018.05.050 (2019). PubMed
Bullock, T., Giesbrecht, B., Beaudin, A. E., Goodyear, B. G. & Poulin, M. J. Effects of changes in end-tidal PO(2) and PCO(2) on neural responses during rest and sustained attention. Physiol. Rep.9, e15106. 10.14814/phy2.15106 (2021). PubMed PMC
Driver, I. D., Whittaker, J. R., Bright, M. G., Muthukumaraswamy, S. D. & Murphy, K. Arterial CO2 fluctuations modulate neuronal rhythmicity: Implications for MEG and fMRI studies of resting-state networks. J. Neurosci.36, 8541–8550. 10.1523/JNEUROSCI.4263-15.2016 (2016). PubMed PMC
Shaw, D. M., Cabre, G. & Gant, N. Hypoxic hypoxia and brain function in military aviation: Basic physiology and applied perspectives. Front. Physiol.12, 665821. 10.3389/fphys.2021.665821 (2021). PubMed PMC
DiNuzzo, M. et al. Neurovascular coupling is optimized to compensate for the increase in proton production from nonoxidative glycolysis and glycogenolysis during brain activation and maintain homeostasis of pH, pCO(2), and pO(2). J. Neurochem. 168, 632–662. 10.1111/jnc.15839 (2024). PubMed PMC
Buxton, R. B. Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism. Front. Neuroenergetics2, 8. 10.3389/fnene.2010.00008 (2010). PubMed PMC
Drew, P. J. Neurovascular coupling: motive unknown. Trends Neurosci.45, 809–819. 10.1016/j.tins.2022.08.004 (2022). PubMed PMC
Leithner, C. & Royl, G. The oxygen paradox of neurovascular coupling. J. Cereb. Blood Flow. Metab.34, 19–29. 10.1038/jcbfm.2013.181 (2014). PubMed PMC
Valabregue, R., Aubert, A., Burger, J., Bittoun, J. & Costalat, R. Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange. J. Cereb. Blood Flow. Metab.23, 536–545. 10.1097/01.WCB.0000055178.31872.38 (2003). PubMed
Buxton, R. B. The thermodynamics of thinking: Connections between neural activity, energy metabolism and blood flow. Philos. Trans. R Soc. Lond. B Biol. Sci.376, 20190624. 10.1098/rstb.2019.0624 (2021). PubMed PMC
Herculano-Houzel, S. & Rothman, D. L. From a demand-based to a supply-limited framework of brain metabolism. Front. Integr. Neurosci.16, 818685. 10.3389/fnint.2022.818685 (2022). PubMed PMC
Hall, E. L. et al. The effect of hypercapnia on resting and stimulus induced MEG signals. Neuroimage58, 1034–1043. 10.1016/j.neuroimage.2011.06.073 (2011). PubMed
Halpern, P. et al. Middle cerebral artery flow velocity decreases and electroencephalogram (EEG) changes occur as acute hypercapnia reverses. Intensive Care Med.29, 1650–1655. 10.1007/s00134-003-1917-6 (2003). PubMed
Xu, F. et al. The influence of carbon dioxide on brain activity and metabolism in conscious humans. J. Cereb. Blood Flow. Metab.31, 58–67. 10.1038/jcbfm.2010.153 (2011). PubMed PMC
Zappe, A. C., Uludag, K. & Logothetis, N. K. Direct measurement of oxygen extraction with fMRI using 6% CO2 inhalation. Magn. Reson. Imaging. 26, 961–967. 10.1016/j.mri.2008.02.005 (2008). PubMed
Chesler, M. Regulation and modulation of pH in the brain. Physiol. Rev.83, 1183–1221. 10.1152/physrev.00010.2003 (2003). PubMed
Harada, Y., Kuno, M. & Wang, Y. Z. Differential effects of carbon dioxide and pH on central chemoreceptors in the rat in vitro. J. Physiol.368, 679–693. 10.1113/jphysiol.1985.sp015883 (1985). PubMed PMC
Sinning, A., Hubner, C. A. & Minireview pH and synaptic transmission. FEBS Lett.587, 1923–1928. 10.1016/j.febslet.2013.04.045 (2013). PubMed
Hladky, S. B. & Barrand, M. A. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS13, 19. 10.1186/s12987-016-0040-3 (2016). PubMed PMC
Giffard, R. G., Monyer, H., Christine, C. W. & Choi, D. W. Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen–glucose deprivation neuronal injury in cortical cultures. Brain Res.506, 339–342. 10.1016/0006-8993(90)91276-m (1990). PubMed
Plutino, S., Sciaccaluga, M. & Fucile, S. Extracellular mild acidosis decreases the ca(2+) permeability of the human NMDA receptors. Cell. Calcium80, 63–70. 10.1016/j.ceca.2019.04.001 (2019). PubMed
Sallard, E., Letourneur, D. & Legendre, P. Electrophysiology of ionotropic GABA receptors. Cell. Mol. Life Sci.78, 5341–5370. 10.1007/s00018-021-03846-2 (2021). PubMed PMC
Tang, C. M., Dichter, M. & Morad, M. Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc. Natl. Acad. Sci. U S A87, 6445–6449. 10.1073/pnas.87.16.6445 (1990). PubMed PMC
Traynelis, S. F. & Cull-Candy, S. G. Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature345, 347–350. 10.1038/345347a0 (1990). PubMed
Traynelis, S. F. & Cull-Candy, S. G. Pharmacological properties and H + sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones. J. Physiol.433, 727–763. 10.1113/jphysiol.1991.sp018453 (1991). PubMed PMC
Vyklicky, L. Jr., Vlachova, V. & Krusek, J. The effect of external pH changes on responses to excitatory amino acids in mouse hippocampal neurones. J. Physiol.430, 497–517. 10.1113/jphysiol.1990.sp018304 (1990). PubMed PMC
Spray, D. C., Harris, A. L. & Bennett, M. V. Gap junctional conductance is a simple and sensitive function of intracellular pH. Science211, 712–715. 10.1126/science.6779379 (1981). PubMed
Judd, M. G., Nagaraja, T. N. & Brookes, N. Potassium-induced stimulation of glutamate uptake in mouse cerebral astrocytes: The role of intracellular pH. J. Neurochem. 66, 169–176. 10.1046/j.1471-4159.1996.66010169.x (1996). PubMed
Palma, A., Li, L., Chen, X. J., Pappone, P. & McNamee, M. Effects of pH on acetylcholine receptor function. J. Membr. Biol.120, 67–73. 10.1007/BF01868592 (1991). PubMed
Regan, M. C. et al. Structural elements of a pH-sensitive inhibitor binding site in NMDA receptors. Nat. Commun.10, 321. 10.1038/s41467-019-08291-1 (2019). PubMed PMC
Hagihara, H. et al. Large-scale animal model study uncovers altered brain pH and lactate levels as a transdiagnostic endophenotype of neuropsychiatric disorders involving cognitive impairment. Elife12, RP89376. 10.7554/eLife.89376 (2024). PubMed PMC
Decker, Y. et al. Decreased pH in the aging brain and Alzheimer’s disease. Neurobiol. Aging. 101, 40–49. 10.1016/j.neurobiolaging.2020.12.007 (2021). PubMed
Connolly, D. M. & Barbur, J. L. Low contrast acuity at photopic and mesopic luminance under mild hypoxia, normoxia, and hyperoxia. Aviat. Space Environ. Med.80, 933–940. 10.3357/asem.2535.2009 (2009). PubMed
Connolly, D. M. & Hosking, S. L. Aviation-related respiratory gas disturbances affect dark adaptation: A reappraisal. Vis. Res.46, 1784–1793. 10.1016/j.visres.2005.10.027 (2006). PubMed
Zhang, Q., Haselden, W. D., Charpak, S. & Drew, P. J. Could respiration-driven blood oxygen changes modulate neural activity? Pflugers Arch.475, 37–48. 10.1007/s00424-022-02721-8 (2023). PubMed PMC
Buxton, R. B. Thermodynamic limitations on brain oxygen metabolism: Physiological implications. J. Physiol.602, 683–712. 10.1113/JP284358 (2024). PubMed
Samareh Fekri, M., Hashemi-Bajgani, S. M., Naghibzadeh-Tahami, A. & Arabnejad, F. Cognitive impairment among patients with chronic obstructive pulmonary disease compared to normal individuals. Tanaffos16, 34–39 (2017). PubMed PMC
Ranzini, L., Schiavi, M., Pierobon, A., Granata, N. & Giardini, A. From mild cognitive impairment (MCI) to dementia in chronic obstructive pulmonary disease. Implications for clinical practice and disease management: A mini-review. Front. Psychol.11, 337. 10.3389/fpsyg.2020.00337 (2020). PubMed PMC
Rothman, D. L., De Feyter, H. M., de Graaf, R. A., Mason, G. F. & Behar, K. L. 13 C MRS studies of neuroenergetics and neurotransmitter cycling in humans. NMR Biomed.24, 943–957. 10.1002/nbm.1772 (2011). PubMed PMC
Park, I. et al. Development of methods and feasibility of using hyperpolarized carbon-13 imaging data for evaluating brain metabolism in patient studies. Magn. Reson. Med.80, 864–873. 10.1002/mrm.27077 (2018). PubMed PMC
Kim, H., Krishnamurthy, L. C. & Sun, P. Z. Brain pH imaging and its applications. Neuroscience474, 51–62. 10.1016/j.neuroscience.2021.01.026 (2021). PubMed
Chen, L. Q. & Pagel, M. D. Evaluating pH in the extracellular tumor microenvironment using CEST MRI and other imaging methods. Adv. Radiol (2015). 10.1155/2015/206405 (2015). PubMed PMC
Coman, D., Trubel, H. K. & Hyder, F. Brain temperature by Biosensor Imaging of Redundant Deviation in shifts (BIRDS): Comparison between TmDOTP5- and TmDOTMA. NMR Biomed.23, 277–285. 10.1002/nbm.1461 (2010). PubMed PMC
Moeini, M. et al. Compromised microvascular oxygen delivery increases brain tissue vulnerability with age. Sci. Rep.8, 8219. 10.1038/s41598-018-26543-w (2018). PubMed PMC
Li, S. et al. Determining the rate of carbonic anhydrase reaction in the human brain. Sci. Rep.8, 2328. 10.1038/s41598-018-20746-x (2018). PubMed PMC
Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow. Metab.21, 1133–1145. 10.1097/00004647-200110000-00001 (2001). PubMed
Yu, Y., Herman, P., Rothman, D. L., Agarwal, D. & Hyder, F. Evaluating the gray and white matter energy budgets of human brain function. J. Cereb. Blood Flow. Metab.38, 1339–1353. 10.1177/0271678X17708691 (2018). PubMed PMC
Williams, R. J., MacDonald, M. E., Mazerolle, E. L. & Pike, G. B. The relationship between cognition and cerebrovascular reactivity: implications for task-based fMRI. Front. Phys.9, 645249. 10.3389/fphy.2021.645249 (2021).
Rothman, D. L. et al. Glucose sparing by glycogenolysis (GSG) determines the relationship between brain metabolism and neurotransmission. J. Cereb. Blood Flow. Metab.42, 844–860. 10.1177/0271678X211064399 (2022). PubMed PMC
Paulson, O. B., Hasselbalch, S. G., Rostrup, E., Knudsen, G. M. & Pelligrino, D. Cerebral blood flow response to functional activation. J. Cereb. Blood Flow. Metab.30, 2–14. 10.1038/jcbfm.2009.188 (2010). PubMed PMC
Bak, L. K., Walls, A. B., Schousboe, A. & Waagepetersen, H. S. Astrocytic glycogen metabolism in the healthy and diseased brain. J. Biol. Chem.293, 7108–7116. 10.1074/jbc.R117.803239 (2018). PubMed PMC
Duran, J., Saez, I., Gruart, A., Guinovart, J. J. & Delgado-Garcia, J. M. Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J. Cereb. Blood Flow. Metab.33, 550–556. 10.1038/jcbfm.2012.200 (2013). PubMed PMC
Cerveri, I. et al. Reference values of arterial oxygen tension in the middle-aged and elderly. Am. J. Respir Crit. Care Med.152, 934–941. 10.1164/ajrccm.152.3.7663806 (1995). PubMed
Hardie, J. A., Vollmer, W. M., Buist, A. S., Ellingsen, I. & Morkve, O. Reference values for arterial blood gases in the elderly. Chest125, 2053–2060. 10.1378/chest.125.6.2053 (2004). PubMed
Li, H. et al. Performance characteristics of the NeuroEXPLORER, a next-generation human brain PET/CT imager. J. Nucl. Med.10.2967/jnumed.124.267767 (2024). PubMed PMC
Ugurbil, K. Ultrahigh field and ultrahigh resolution fMRI. Curr. Opin. Biomed. Eng.18, 100288. 10.1016/j.cobme.2021.100288 (2021). PubMed PMC
Chen, J. J., Uthayakumar, B. & Hyder, F. Mapping oxidative metabolism in the human brain with calibrated fMRI in health and disease. J. Cereb. Blood Flow. Metab.42, 1139–1162. 10.1177/0271678X221077338 (2022). PubMed PMC
Benveniste, H. et al. Trajectories of brain lactate and re-visited oxygen–glucose index calculations do not support elevated non-oxidative metabolism of glucose across childhood. Front. Neurosci.12, 631. 10.3389/fnins.2018.00631 (2018). PubMed PMC
Blazey, T., Snyder, A. Z., Goyal, M. S., Vlassenko, A. G. & Raichle, M. E. A systematic meta-analysis of oxygen-to-glucose and oxygen-to-carbohydrate ratios in the resting human brain. PLoS One13, e0204242. 10.1371/journal.pone.0204242 (2018). PubMed PMC
Goyal, M. S., Hawrylycz, M., Miller, J. A., Snyder, A. Z. & Raichle, M. E. Aerobic glycolysis in the human brain is associated with development and neotenous gene expression. Cell. Metab.19, 49–57. 10.1016/j.cmet.2013.11.020 (2014). PubMed PMC
Hyder, F. et al. Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: no evidence of regional differences of aerobic glycolysis. J. Cereb. Blood Flow. Metab.36, 903–916. 10.1177/0271678X15625349 (2016). PubMed PMC
Dienel, G. A. Brain glucose metabolism: integration of energetics with function. Physiol. Rev.99, 949–1045. 10.1152/physrev.00062.2017 (2019). PubMed
Bennett, H. C. et al. Aging drives cerebrovascular network remodeling and functional changes in the mouse brain. Nat. Commun.15, 6398. 10.1038/s41467-024-50559-8 (2024). PubMed PMC
Hua, J. et al. MRI techniques to measure arterial and venous cerebral blood volume. Neuroimage187, 17–31. 10.1016/j.neuroimage.2018.02.027 (2019). PubMed PMC
Linninger, A. A. et al. Vascular synthesis based on hemodynamic efficiency principle recapitulates measured cerebral circulation properties in the human brain. J. Cereb. Blood Flow. Metab.44, 801–816. 10.1177/0271678X231214840 (2024). PubMed PMC
Liu, T. T. et al. Caffeine alters the temporal dynamics of the visual BOLD response. Neuroimage23, 1402–1413. 10.1016/j.neuroimage.2004.07.061 (2004). PubMed
DuBose, L. E. et al. Association between cardiorespiratory fitness and cerebrovascular reactivity to a breath-hold stimulus in older adults: Influence of aerobic exercise training. J. Appl. Physiol. (1985). 132, 1468–1479. 10.1152/japplphysiol.00599.2021 (2022). PubMed PMC
Thomas, B. P. et al. Life-long aerobic exercise preserved baseline cerebral blood flow but reduced vascular reactivity to CO2. J. Magn. Reson. Imaging. 38, 1177–1183. 10.1002/jmri.24090 (2013). PubMed PMC
Schaeffer, S. & Iadecola, C. Revisiting the neurovascular unit. Nat. Neurosci.24, 1198–1209. 10.1038/s41593-021-00904-7 (2021). PubMed PMC
Li, B. et al. More homogeneous capillary flow and oxygenation in deeper cortical layers correlate with increased oxygen extraction. Elife8, e42299. 10.7554/eLife.42299 (2019). PubMed PMC
Glasser, M. F. et al. The minimal preprocessing pipelines for the human connectome project. Neuroimage80, 105–124. 10.1016/j.neuroimage.2013.04.127 (2013). PubMed PMC
Arthurs, G. J. & Sudhakar, M. Carbon dioxide transport. Bja Educ.5, 207–210. 10.1093/bjaceaccp/mki050 (2005).