Reduced removal of waste products from energy metabolism takes center stage in human brain aging

. 2025 Mar 08 ; 15 (1) : 8127. [epub] 20250308

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40057554

Grantová podpora
P41 EB027061 NIBIB NIH HHS - United States
R01 NS100106 NINDS NIH HHS - United States
P41 EB027061 NIH HHS - United States
R01 AG087526 NIA NIH HHS - United States
R01 MH109159 NIMH NIH HHS - United States
R01 NS087568 NINDS NIH HHS - United States
R56 AG079086 NIA NIH HHS - United States
R01 AG087526 NIH HHS - United States
DP1 AG093028 NIA NIH HHS - United States

Odkazy

PubMed 40057554
PubMed Central PMC11890754
DOI 10.1038/s41598-025-90342-3
PII: 10.1038/s41598-025-90342-3
Knihovny.cz E-zdroje

Despite extensive research on neuroimaging correlates of human brain aging, there is little mechanistic insight into how they are linked to loss of brain function. Previous studies on the role of cerebral blood flow (CBF) in supporting brain function have focused on delivery of nutrients, namely oxygen and glucose. However, CBF is required also to clear the byproducts of energy metabolism, namely CO2 and protons. With the goal of determining whether age-associated reduction in regional CBF may lead to abnormal brain partial pressure of carbon dioxide (pCO2) and pH levels that are sufficient to alter brain activity and cognitive function, we applied a recently introduced homeostatic modeling of nutrients and waste products to human neuroimaging PET data acquired in young and older adults (Goyal et al. in Cell Metab 26(2):353-360, 2017). Our results demonstrate that age-associated reductions in CBF, in the presence of virtually unaltered oxygen consumption rates, show concurrent regional age-associated increases in pCO2 and associated pH acid-shifts of possible functional relevance. We conclude that the implications of altered vascular health in older adults needs to be revisited in light of its central role in removing waste products from energy metabolism at resting state and, in future studies, during external stimulations.

Zobrazit více v PubMed

Alexander, G. E. et al. Characterizing cognitive aging in humans with links to animal models. Front. Aging Neurosci.4, 21. 10.3389/fnagi.2012.00021 (2012). PubMed PMC

Dykiert, D., Der, G., Starr, J. M. & Deary, I. J. Age differences in intra-individual variability in simple and choice reaction time: Systematic review and meta-analysis. PLoS One. 7, e45759. 10.1371/journal.pone.0045759 (2012). PubMed PMC

Levin, O., Fujiyama, H., Boisgontier, M. P., Swinnen, S. P. & Summers, J. J. Aging and motor inhibition: A converging perspective provided by brain stimulation and imaging approaches. Neurosci. Biobehav Rev.43, 100–117. 10.1016/j.neubiorev.2014.04.001 (2014). PubMed

Gaspar-Silva, F., Trigo, D. & Magalhaes, J. Ageing in the brain: Mechanisms and rejuvenating strategies. Cell. Mol. Life Sci.80, 190. 10.1007/s00018-023-04832-6 (2023). PubMed PMC

Mattson, M. P. & Arumugam, T. V. Hallmarks of brain aging: Adaptive and pathological modification by metabolic states. Cell. Metab.27, 1176–1199. 10.1016/j.cmet.2018.05.011 (2018). PubMed PMC

Zimmerman, B., Rypma, B., Gratton, G. & Fabiani, M. Age-related changes in cerebrovascular health and their effects on neural function and cognition: A comprehensive review. Psychophysiology58, e13796. 10.1111/psyp.13796 (2021). PubMed PMC

Hutchison, J. L., Lu, H. & Rypma, B. Neural mechanisms of age-related slowing: The DeltaCBF/DeltaCMRO2 ratio mediates age-differences in BOLD signal and human performance. Cereb. Cortex23, 2337–2346. 10.1093/cercor/bhs233 (2013). PubMed PMC

Wu, S. et al. Cerebral blood flow predicts multiple demand network activity and fluid intelligence across the adult lifespan. Neurobiol. Aging121, 1–14. 10.1016/j.neurobiolaging.2022.09.006 (2023). PubMed PMC

Kim, D. et al. Relationship between cerebrovascular reactivity and cognition among people with risk of cognitive decline. Front. Physiol.12, 645342. 10.3389/fphys.2021.645342 (2021). PubMed PMC

Goyal, M. S. et al. Loss of brain aerobic glycolysis in normal human aging. Cell Metab26, 353–360e353. 10.1016/j.cmet.2017.07.010 (2017). PubMed PMC

Uthayakumar, B. et al. Age-associated change in pyruvate metabolism investigated with hyperpolarized (13) C-MRI of the human brain. Hum. Brain Mapp.44, 4052–4063. 10.1002/hbm.26329 (2023). PubMed PMC

Juttukonda, M. R. et al. Characterizing cerebral hemodynamics across the adult lifespan with arterial spin labeling MRI data from the human connectome project-aging. Neuroimage230, 117807. 10.1016/j.neuroimage.2021.117807 (2021). PubMed PMC

Tsvetanov, K. A., Henson, R. N. A. & Rowe, J. B. Separating vascular and neuronal effects of age on fMRI BOLD signals. Philos. Trans. R Soc. Lond. B Biol. Sci.376, 20190631. 10.1098/rstb.2019.0631 (2021). PubMed PMC

Zeki Al Hazzouri, A. & Yaffe, K. Arterial stiffness and cognitive function in the elderly. J. Alzheimers Dis.42 (Suppl 4), 503–514. 10.3233/JAD-141563 (2014). PubMed PMC

Lowerison, M. R. et al. Aging-related cerebral microvascular changes visualized using ultrasound localization microscopy in the living mouse. Sci. Rep.12, 619. 10.1038/s41598-021-04712-8 (2022). PubMed PMC

Sarabi, M. S. et al. Vessel density mapping of small cerebral vessels on 3D high resolution black blood MRI. Neuroimage286, 120504. 10.1016/j.neuroimage.2023.120504 (2024). PubMed PMC

Feng, X. et al. Brain regions vulnerable and resistant to aging without Alzheimer’s disease. PLoS One. 15, e0234255. 10.1371/journal.pone.0234255 (2020). PubMed PMC

Brown, W. R., Moody, D. M., Thore, C. R., Challa, V. R. & Anstrom, J. A. Vascular dementia in leukoaraiosis may be a consequence of capillary loss not only in the lesions, but in normal-appearing white matter and cortex as well. J. Neurol. Sci.257, 62–66. 10.1016/j.jns.2007.01.015 (2007). PubMed PMC

Brown, W. R. & Thore, C. R. Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol. Appl. Neurobiol.37, 56–74. 10.1111/j.1365-2990.2010.01139.x (2011). PubMed PMC

Schager, B. & Brown, C. E. Susceptibility to capillary plugging can predict brain region specific vessel loss with aging. J. Cereb. Blood Flow. Metab.40, 2475–2490. 10.1177/0271678X19895245 (2020). PubMed PMC

Chen, J. J., Rosas, H. D. & Salat, D. H. Age-associated reductions in cerebral blood flow are independent from regional atrophy. Neuroimage55, 468–478. 10.1016/j.neuroimage.2010.12.032 (2011). PubMed PMC

Aanerud, J. et al. Brain energy metabolism and blood flow differences in healthy aging. J. Cereb. Blood Flow. Metab.32, 1177–1187. 10.1038/jcbfm.2012.18 (2012). PubMed PMC

MacDonald, M. E. & Pike, G. B. MRI of healthy brain aging: A review. NMR Biomed.34, e4564. 10.1002/nbm.4564 (2021). PubMed

Chen, J. J. Functional MRI of brain physiology in aging and neurodegenerative diseases. Neuroimage187, 209–225. 10.1016/j.neuroimage.2018.05.050 (2019). PubMed

Bullock, T., Giesbrecht, B., Beaudin, A. E., Goodyear, B. G. & Poulin, M. J. Effects of changes in end-tidal PO(2) and PCO(2) on neural responses during rest and sustained attention. Physiol. Rep.9, e15106. 10.14814/phy2.15106 (2021). PubMed PMC

Driver, I. D., Whittaker, J. R., Bright, M. G., Muthukumaraswamy, S. D. & Murphy, K. Arterial CO2 fluctuations modulate neuronal rhythmicity: Implications for MEG and fMRI studies of resting-state networks. J. Neurosci.36, 8541–8550. 10.1523/JNEUROSCI.4263-15.2016 (2016). PubMed PMC

Shaw, D. M., Cabre, G. & Gant, N. Hypoxic hypoxia and brain function in military aviation: Basic physiology and applied perspectives. Front. Physiol.12, 665821. 10.3389/fphys.2021.665821 (2021). PubMed PMC

DiNuzzo, M. et al. Neurovascular coupling is optimized to compensate for the increase in proton production from nonoxidative glycolysis and glycogenolysis during brain activation and maintain homeostasis of pH, pCO(2), and pO(2). J. Neurochem. 168, 632–662. 10.1111/jnc.15839 (2024). PubMed PMC

Buxton, R. B. Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism. Front. Neuroenergetics2, 8. 10.3389/fnene.2010.00008 (2010). PubMed PMC

Drew, P. J. Neurovascular coupling: motive unknown. Trends Neurosci.45, 809–819. 10.1016/j.tins.2022.08.004 (2022). PubMed PMC

Leithner, C. & Royl, G. The oxygen paradox of neurovascular coupling. J. Cereb. Blood Flow. Metab.34, 19–29. 10.1038/jcbfm.2013.181 (2014). PubMed PMC

Valabregue, R., Aubert, A., Burger, J., Bittoun, J. & Costalat, R. Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange. J. Cereb. Blood Flow. Metab.23, 536–545. 10.1097/01.WCB.0000055178.31872.38 (2003). PubMed

Buxton, R. B. The thermodynamics of thinking: Connections between neural activity, energy metabolism and blood flow. Philos. Trans. R Soc. Lond. B Biol. Sci.376, 20190624. 10.1098/rstb.2019.0624 (2021). PubMed PMC

Herculano-Houzel, S. & Rothman, D. L. From a demand-based to a supply-limited framework of brain metabolism. Front. Integr. Neurosci.16, 818685. 10.3389/fnint.2022.818685 (2022). PubMed PMC

Hall, E. L. et al. The effect of hypercapnia on resting and stimulus induced MEG signals. Neuroimage58, 1034–1043. 10.1016/j.neuroimage.2011.06.073 (2011). PubMed

Halpern, P. et al. Middle cerebral artery flow velocity decreases and electroencephalogram (EEG) changes occur as acute hypercapnia reverses. Intensive Care Med.29, 1650–1655. 10.1007/s00134-003-1917-6 (2003). PubMed

Xu, F. et al. The influence of carbon dioxide on brain activity and metabolism in conscious humans. J. Cereb. Blood Flow. Metab.31, 58–67. 10.1038/jcbfm.2010.153 (2011). PubMed PMC

Zappe, A. C., Uludag, K. & Logothetis, N. K. Direct measurement of oxygen extraction with fMRI using 6% CO2 inhalation. Magn. Reson. Imaging. 26, 961–967. 10.1016/j.mri.2008.02.005 (2008). PubMed

Chesler, M. Regulation and modulation of pH in the brain. Physiol. Rev.83, 1183–1221. 10.1152/physrev.00010.2003 (2003). PubMed

Harada, Y., Kuno, M. & Wang, Y. Z. Differential effects of carbon dioxide and pH on central chemoreceptors in the rat in vitro. J. Physiol.368, 679–693. 10.1113/jphysiol.1985.sp015883 (1985). PubMed PMC

Sinning, A., Hubner, C. A. & Minireview pH and synaptic transmission. FEBS Lett.587, 1923–1928. 10.1016/j.febslet.2013.04.045 (2013). PubMed

Hladky, S. B. & Barrand, M. A. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS13, 19. 10.1186/s12987-016-0040-3 (2016). PubMed PMC

Giffard, R. G., Monyer, H., Christine, C. W. & Choi, D. W. Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen–glucose deprivation neuronal injury in cortical cultures. Brain Res.506, 339–342. 10.1016/0006-8993(90)91276-m (1990). PubMed

Plutino, S., Sciaccaluga, M. & Fucile, S. Extracellular mild acidosis decreases the ca(2+) permeability of the human NMDA receptors. Cell. Calcium80, 63–70. 10.1016/j.ceca.2019.04.001 (2019). PubMed

Sallard, E., Letourneur, D. & Legendre, P. Electrophysiology of ionotropic GABA receptors. Cell. Mol. Life Sci.78, 5341–5370. 10.1007/s00018-021-03846-2 (2021). PubMed PMC

Tang, C. M., Dichter, M. & Morad, M. Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc. Natl. Acad. Sci. U S A87, 6445–6449. 10.1073/pnas.87.16.6445 (1990). PubMed PMC

Traynelis, S. F. & Cull-Candy, S. G. Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature345, 347–350. 10.1038/345347a0 (1990). PubMed

Traynelis, S. F. & Cull-Candy, S. G. Pharmacological properties and H + sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones. J. Physiol.433, 727–763. 10.1113/jphysiol.1991.sp018453 (1991). PubMed PMC

Vyklicky, L. Jr., Vlachova, V. & Krusek, J. The effect of external pH changes on responses to excitatory amino acids in mouse hippocampal neurones. J. Physiol.430, 497–517. 10.1113/jphysiol.1990.sp018304 (1990). PubMed PMC

Spray, D. C., Harris, A. L. & Bennett, M. V. Gap junctional conductance is a simple and sensitive function of intracellular pH. Science211, 712–715. 10.1126/science.6779379 (1981). PubMed

Judd, M. G., Nagaraja, T. N. & Brookes, N. Potassium-induced stimulation of glutamate uptake in mouse cerebral astrocytes: The role of intracellular pH. J. Neurochem. 66, 169–176. 10.1046/j.1471-4159.1996.66010169.x (1996). PubMed

Palma, A., Li, L., Chen, X. J., Pappone, P. & McNamee, M. Effects of pH on acetylcholine receptor function. J. Membr. Biol.120, 67–73. 10.1007/BF01868592 (1991). PubMed

Regan, M. C. et al. Structural elements of a pH-sensitive inhibitor binding site in NMDA receptors. Nat. Commun.10, 321. 10.1038/s41467-019-08291-1 (2019). PubMed PMC

Hagihara, H. et al. Large-scale animal model study uncovers altered brain pH and lactate levels as a transdiagnostic endophenotype of neuropsychiatric disorders involving cognitive impairment. Elife12, RP89376. 10.7554/eLife.89376 (2024). PubMed PMC

Decker, Y. et al. Decreased pH in the aging brain and Alzheimer’s disease. Neurobiol. Aging. 101, 40–49. 10.1016/j.neurobiolaging.2020.12.007 (2021). PubMed

Connolly, D. M. & Barbur, J. L. Low contrast acuity at photopic and mesopic luminance under mild hypoxia, normoxia, and hyperoxia. Aviat. Space Environ. Med.80, 933–940. 10.3357/asem.2535.2009 (2009). PubMed

Connolly, D. M. & Hosking, S. L. Aviation-related respiratory gas disturbances affect dark adaptation: A reappraisal. Vis. Res.46, 1784–1793. 10.1016/j.visres.2005.10.027 (2006). PubMed

Zhang, Q., Haselden, W. D., Charpak, S. & Drew, P. J. Could respiration-driven blood oxygen changes modulate neural activity? Pflugers Arch.475, 37–48. 10.1007/s00424-022-02721-8 (2023). PubMed PMC

Buxton, R. B. Thermodynamic limitations on brain oxygen metabolism: Physiological implications. J. Physiol.602, 683–712. 10.1113/JP284358 (2024). PubMed

Samareh Fekri, M., Hashemi-Bajgani, S. M., Naghibzadeh-Tahami, A. & Arabnejad, F. Cognitive impairment among patients with chronic obstructive pulmonary disease compared to normal individuals. Tanaffos16, 34–39 (2017). PubMed PMC

Ranzini, L., Schiavi, M., Pierobon, A., Granata, N. & Giardini, A. From mild cognitive impairment (MCI) to dementia in chronic obstructive pulmonary disease. Implications for clinical practice and disease management: A mini-review. Front. Psychol.11, 337. 10.3389/fpsyg.2020.00337 (2020). PubMed PMC

Rothman, D. L., De Feyter, H. M., de Graaf, R. A., Mason, G. F. & Behar, K. L. 13 C MRS studies of neuroenergetics and neurotransmitter cycling in humans. NMR Biomed.24, 943–957. 10.1002/nbm.1772 (2011). PubMed PMC

Park, I. et al. Development of methods and feasibility of using hyperpolarized carbon-13 imaging data for evaluating brain metabolism in patient studies. Magn. Reson. Med.80, 864–873. 10.1002/mrm.27077 (2018). PubMed PMC

Kim, H., Krishnamurthy, L. C. & Sun, P. Z. Brain pH imaging and its applications. Neuroscience474, 51–62. 10.1016/j.neuroscience.2021.01.026 (2021). PubMed

Chen, L. Q. & Pagel, M. D. Evaluating pH in the extracellular tumor microenvironment using CEST MRI and other imaging methods. Adv. Radiol (2015). 10.1155/2015/206405 (2015). PubMed PMC

Coman, D., Trubel, H. K. & Hyder, F. Brain temperature by Biosensor Imaging of Redundant Deviation in shifts (BIRDS): Comparison between TmDOTP5- and TmDOTMA. NMR Biomed.23, 277–285. 10.1002/nbm.1461 (2010). PubMed PMC

Moeini, M. et al. Compromised microvascular oxygen delivery increases brain tissue vulnerability with age. Sci. Rep.8, 8219. 10.1038/s41598-018-26543-w (2018). PubMed PMC

Li, S. et al. Determining the rate of carbonic anhydrase reaction in the human brain. Sci. Rep.8, 2328. 10.1038/s41598-018-20746-x (2018). PubMed PMC

Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow. Metab.21, 1133–1145. 10.1097/00004647-200110000-00001 (2001). PubMed

Yu, Y., Herman, P., Rothman, D. L., Agarwal, D. & Hyder, F. Evaluating the gray and white matter energy budgets of human brain function. J. Cereb. Blood Flow. Metab.38, 1339–1353. 10.1177/0271678X17708691 (2018). PubMed PMC

Williams, R. J., MacDonald, M. E., Mazerolle, E. L. & Pike, G. B. The relationship between cognition and cerebrovascular reactivity: implications for task-based fMRI. Front. Phys.9, 645249. 10.3389/fphy.2021.645249 (2021).

Rothman, D. L. et al. Glucose sparing by glycogenolysis (GSG) determines the relationship between brain metabolism and neurotransmission. J. Cereb. Blood Flow. Metab.42, 844–860. 10.1177/0271678X211064399 (2022). PubMed PMC

Paulson, O. B., Hasselbalch, S. G., Rostrup, E., Knudsen, G. M. & Pelligrino, D. Cerebral blood flow response to functional activation. J. Cereb. Blood Flow. Metab.30, 2–14. 10.1038/jcbfm.2009.188 (2010). PubMed PMC

Bak, L. K., Walls, A. B., Schousboe, A. & Waagepetersen, H. S. Astrocytic glycogen metabolism in the healthy and diseased brain. J. Biol. Chem.293, 7108–7116. 10.1074/jbc.R117.803239 (2018). PubMed PMC

Duran, J., Saez, I., Gruart, A., Guinovart, J. J. & Delgado-Garcia, J. M. Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J. Cereb. Blood Flow. Metab.33, 550–556. 10.1038/jcbfm.2012.200 (2013). PubMed PMC

Cerveri, I. et al. Reference values of arterial oxygen tension in the middle-aged and elderly. Am. J. Respir Crit. Care Med.152, 934–941. 10.1164/ajrccm.152.3.7663806 (1995). PubMed

Hardie, J. A., Vollmer, W. M., Buist, A. S., Ellingsen, I. & Morkve, O. Reference values for arterial blood gases in the elderly. Chest125, 2053–2060. 10.1378/chest.125.6.2053 (2004). PubMed

Li, H. et al. Performance characteristics of the NeuroEXPLORER, a next-generation human brain PET/CT imager. J. Nucl. Med.10.2967/jnumed.124.267767 (2024). PubMed PMC

Ugurbil, K. Ultrahigh field and ultrahigh resolution fMRI. Curr. Opin. Biomed. Eng.18, 100288. 10.1016/j.cobme.2021.100288 (2021). PubMed PMC

Chen, J. J., Uthayakumar, B. & Hyder, F. Mapping oxidative metabolism in the human brain with calibrated fMRI in health and disease. J. Cereb. Blood Flow. Metab.42, 1139–1162. 10.1177/0271678X221077338 (2022). PubMed PMC

Benveniste, H. et al. Trajectories of brain lactate and re-visited oxygen–glucose index calculations do not support elevated non-oxidative metabolism of glucose across childhood. Front. Neurosci.12, 631. 10.3389/fnins.2018.00631 (2018). PubMed PMC

Blazey, T., Snyder, A. Z., Goyal, M. S., Vlassenko, A. G. & Raichle, M. E. A systematic meta-analysis of oxygen-to-glucose and oxygen-to-carbohydrate ratios in the resting human brain. PLoS One13, e0204242. 10.1371/journal.pone.0204242 (2018). PubMed PMC

Goyal, M. S., Hawrylycz, M., Miller, J. A., Snyder, A. Z. & Raichle, M. E. Aerobic glycolysis in the human brain is associated with development and neotenous gene expression. Cell. Metab.19, 49–57. 10.1016/j.cmet.2013.11.020 (2014). PubMed PMC

Hyder, F. et al. Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: no evidence of regional differences of aerobic glycolysis. J. Cereb. Blood Flow. Metab.36, 903–916. 10.1177/0271678X15625349 (2016). PubMed PMC

Dienel, G. A. Brain glucose metabolism: integration of energetics with function. Physiol. Rev.99, 949–1045. 10.1152/physrev.00062.2017 (2019). PubMed

Bennett, H. C. et al. Aging drives cerebrovascular network remodeling and functional changes in the mouse brain. Nat. Commun.15, 6398. 10.1038/s41467-024-50559-8 (2024). PubMed PMC

Hua, J. et al. MRI techniques to measure arterial and venous cerebral blood volume. Neuroimage187, 17–31. 10.1016/j.neuroimage.2018.02.027 (2019). PubMed PMC

Linninger, A. A. et al. Vascular synthesis based on hemodynamic efficiency principle recapitulates measured cerebral circulation properties in the human brain. J. Cereb. Blood Flow. Metab.44, 801–816. 10.1177/0271678X231214840 (2024). PubMed PMC

Liu, T. T. et al. Caffeine alters the temporal dynamics of the visual BOLD response. Neuroimage23, 1402–1413. 10.1016/j.neuroimage.2004.07.061 (2004). PubMed

DuBose, L. E. et al. Association between cardiorespiratory fitness and cerebrovascular reactivity to a breath-hold stimulus in older adults: Influence of aerobic exercise training. J. Appl. Physiol. (1985). 132, 1468–1479. 10.1152/japplphysiol.00599.2021 (2022). PubMed PMC

Thomas, B. P. et al. Life-long aerobic exercise preserved baseline cerebral blood flow but reduced vascular reactivity to CO2. J. Magn. Reson. Imaging. 38, 1177–1183. 10.1002/jmri.24090 (2013). PubMed PMC

Schaeffer, S. & Iadecola, C. Revisiting the neurovascular unit. Nat. Neurosci.24, 1198–1209. 10.1038/s41593-021-00904-7 (2021). PubMed PMC

Li, B. et al. More homogeneous capillary flow and oxygenation in deeper cortical layers correlate with increased oxygen extraction. Elife8, e42299. 10.7554/eLife.42299 (2019). PubMed PMC

Glasser, M. F. et al. The minimal preprocessing pipelines for the human connectome project. Neuroimage80, 105–124. 10.1016/j.neuroimage.2013.04.127 (2013). PubMed PMC

Arthurs, G. J. & Sudhakar, M. Carbon dioxide transport. Bja Educ.5, 207–210. 10.1093/bjaceaccp/mki050 (2005).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...