Prognosis of Crestally Placed Short Plateau Implants in Posterior Maxilla

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40077956

Crestal placement of short plateau implants in compromised jaws may cause implant failure due to bone overstress. The aim was to evaluate the impact of different sized implants on adjacent bone overload and the implant load-bearing ability in terms of the proposed index-ultimate functional load (UFL). Three-dimensional models of osseointegrated implants placed in types III and IV bone were analysed by the FEM for the case of patient-specific variations in cortical bone elasticity modulus. Maximum von Mises stresses in surrounding bone were calculated and compared with the cortical and cancellous bone ultimate strength characteristics to determine the UFL index for the studied implants. The implant UFL magnitudes were influenced by their dimensions, bone elasticity, and quality. The implant load-bearing ability was predetermined by cancellous bone strength. The maxilla with moderate elasticity modulus allows for the placement of wide short screwless implants in the compromised maxilla molar site with good clinical perspective.

Zobrazit více v PubMed

M. Ashrafi, F. Ghalichi, B. Mirzakouchaki, A. Arruga, and M. Doblare, “Finite Element Comparison of the Effect of Absorbers' Design in the Surrounding Bone of Dental Implants,” International Journal for Numerical Methods in Biomedical Engineering 36, no. 1 (2020): e3270, https://doi.org/10.1002/cnm.3270.

G. Telleman, G. M. Raghoebar, A. Vissink, L. den Hartog, J. J. Huddleston Slater, and H. J. Meijer, “A Systematic Review of the Prognosis of Short (<10 mm) Dental Implants Placed in the Partially Edentulous Patient,” Journal of Clinical Periodontology 38, no. 7 (2011): 667–676, https://doi.org/10.1111/j.1600‐051X.2011.01736.x.

D. S. Thoma, J. K. Cha, and U. W. Jung, “Treatment Concepts for the Posterior Maxilla and Mandible: Short Implants Versus Long Implants in Augmented Bone,” Journal of Periodontal & Implant Science 47, no. 1 (2017): 2–12, https://doi.org/10.5051/jpis.2017.47.1.2.

P. Felice, R. Pistilli, C. Barausse, V. Bruno, A. Trullenque‐Eriksson, and M. Esposito, “Short Implants as an Alternative to Crestal Sinus Lift: A 1‐Year Multicentre Randomised Controlled Trial,” European Journal of Oral Implantology 8, no. 4 (2015): 375–384.

A. R. Alqahtani, S. R. Desai, J. R. Patel, et al., “Investigating the Impact of Diameters and Thread Designs on the Biomechanics of Short Implants Placed in D4 Bone: A 3D Finite Element Analysis,” BMC Oral Health 23, no. 1 (2023): 686, https://doi.org/10.1186/s12903‐023‐03370‐8.

M. Morand and T. Irinakis, “The Challenge of Implant Therapy in the Posterior Maxilla: Providing a Rationale for the Use of Short Implants,” Journal of Oral Implantology 33, no. 5 (2007): 257–266, https://doi.org/10.1563/1548‐1336(2007)33[257:TCOITI]2.0.CO;2.

L. F. Gil, M. Suzuki, M. N. Janal, et al., “Progressive Plateau Root Form Dental Implant Osseointegration: A Human Retrieval Study,” Journal of Biomedical Materials Research. Part B, Applied Biomaterials 103, no. 6 (2015): 1328–1332, https://doi.org/10.1002/jbm.b.33311.

R. Mericske‐Stern and G. A. Zarb, “In Vivo Measurements of Some Functional Aspects With Mandibular Fixed Prostheses Supported by Implants,” Clinical Oral Implants Research 7, no. 2 (1996): 153–161, https://doi.org/10.1034/j.1600‐0501.1996.070209.x.

R. Mishra, S. K. Deb, S. Chakrabarty, et al., “Human Mastication Analysis‐A DEM Based Numerical Approach,” International Journal for Numerical Methods in Biomedical Engineering 40, no. 12 (2024): e3875, https://doi.org/10.1002/cnm.3875.

V. F. Vargas‐Moreno, M. C. O. Ribeiro, R. S. Gomes, F. Faot, A. A. Del Bel Cury, and R. M. Marcello‐Machado, “Clinical Performance of Short and Extrashort Dental Implants With Wide Diameter: A Systematic Review With Meta‐Analysis,” Journal of Prosthetic Dentistry 132, no. 6 (2024): 1260.e1–1260.e13, https://doi.org/10.1016/j.prosdent.2023.01.004.

J. H. Lee, V. Frias, K. W. Lee, and R. F. Wright, “Effect of Implant Size and Shape on Implant Success Rates: A Literature Review,” Journal of Prosthetic Dentistry 94, no. 4 (2005): 377–381, https://doi.org/10.1016/j.prosdent.2005.04.018.

M. C. Balkaya, “Investigation of Influence of Different Implant Size and Placement on Stress Distribution With 3‐Dimensional Finite Element Analysis,” Implant Dentistry 23, no. 6 (2014): 716–722, https://doi.org/10.1097/ID.0000000000000158.

W. H. Kim, J. C. Lee, D. Lim, et al., “Optimized Dental Implant Fixture Design for the Desirable Stress Distribution in the Surrounding Bone Region: A Biomechanical Analysis,” Materials 12, no. 17 (2019): 2749, https://doi.org/10.3390/ma12172749.

R. Eazhil, S. V. Swaminathan, M. Gunaseelan, G. V. Kannan, and C. Alagesan, “Impact of Implant Diameter and Length on Stress Distribution in Osseointegrated Implants: A 3D FEA Study,” Journal of International Society of Preventive & Community Dentistry 6, no. 6 (2016): 590–596, https://doi.org/10.4103/2231‐0762.195518.

X. E. Saab, J. A. Griggs, J. M. Powers, and R. L. Engelmeier, “Effect of Abutment Angulation on the Strain on the Bone Around an Implant in the Anterior Maxilla: A Finite Element Study,” Journal of Prosthetic Dentistry 97, no. 2 (2007): 85–92, https://doi.org/10.1016/j.prosdent.2006.12.002.

J. Kim and J. J. Kim, “Computational Comparison Study of Virtual Compression and Shear Test for Estimation of Apparent Elastic Moduli Under Various Boundary Conditions,” International Journal for Numerical Methods in Biomedical Engineering 40, no. 9 (2024): e3845, https://doi.org/10.1002/cnm.3845.

H. Moradi, R. Beh Aein, and G. Youssef, “Multi‐Objective Design Optimization of Dental Implant Geometrical Parameters,” International Journal for Numerical Methods in Biomedical Engineering 37, no. 9 (2021): e3511, https://doi.org/10.1002/cnm.3511.

A. Chakraborty, P. Datta, C. S. Kumar, S. Majumder, and A. Roychowdhury, “Probing Combinational Influence of Design Variables on Bone Biomechanical Response Around Dental Implant‐Supported Fixed Prosthesis,” Journal of Biomedical Materials Research. Part B, Applied Biomaterials 110, no. 10 (2022): 2338–2352, https://doi.org/10.1002/jbm.b.35081.

M. R. Niroomand and M. Arabbeiki, “Effect of the Dimensions of Implant Body and Thread on Bone Resorption and Stability in Trapezoidal Threaded Dental Implants: A Sensitivity Analysis and Optimization,” Computer Methods in Biomechanics and Biomedical Engineering 23, no. 13 (2020): 1005–1013, https://doi.org/10.1080/10255842.2020.1782390.

A. Robau‐Porrua, Y. Pérez‐Rodríguez, L. M. Soris‐Rodríguez, O. Pérez‐Acosta, and J. E. González, “The Effect of Diameter, Length and Elastic Modulus of a Dental Implant on Stress and Strain Levels in Peri‐Implant Bone: A 3D Finite Element Analysis,” Bio‐Medical Materials and Engineering 30, no. 5–6 (2020): 541–558, https://doi.org/10.3233/BME‐191073.

A. Shinya, Y. Ishida, D. Miura, and A. Shinya, “The Effect of Implant Length and Diameter on Stress Distribution Around Single Implant Placement in 3D Posterior Mandibular FE Model Directly Constructed Form In Vivo CT,” Materials 14, no. 23 (2021): 7344, https://doi.org/10.3390/ma14237344.

E. Sheikhan, M. Kadkhodazadeh, R. Amid, and A. Lafzi, “Interactive Effects of Five Dental Implant Design Parameters on the Peak Strains at the Interfacial Bone: A Finite Element Study,” International Journal of Oral and Maxillofacial Implants 37, no. 2 (2022): 302–310, https://doi.org/10.11607/jomi.9263.

S. Elleuch, H. Jrad, A. Kessentini, M. Wali, and F. Dammak, “Design Optimization of Implant Geometrical Characteristics Enhancing Primary Stability Using FEA of Stress Distribution Around Dental Prosthesis,” Computer Methods in Biomechanics and Biomedical Engineering 24, no. 9 (2021): 1035–1051, https://doi.org/10.1080/10255842.2020.1867112.

D. A. Forna, N. C. Forna, and S. A. Butnaru Moldoveanu, “Influence of Implant Dimensions in the Resorbed and Bone Augmented Mandible: A Finite Element Study,” Contemporary Clinical Dentistry 11, no. 4 (2020): 336–341, https://doi.org/10.4103/ccd.ccd_366_19.

H. Moriwaki, S. Yamaguchi, T. Nakano, Y. Yamanishi, S. Imazato, and H. Yatani, “Influence of Implant Length and Diameter, Bicortical Anchorage, and Sinus Augmentation on Bone Stress Distribution: Three‐Dimensional Finite Element Analysis,” International Journal of Oral and Maxillofacial Implants 31, no. 4 (2016): e84–e91, https://doi.org/10.11607/jomi.4217.

G. Raaj, P. Manimaran, C. D. Kumar, D. S. Sadan, and M. Abirami, “Comparative Evaluation of Implant Designs: Influence of Diameter, Length, and Taper on Stress and Strain in the Mandibular Segment‐A Three‐Dimensional Finite Element Analysis,” Journal of Pharmacy & Bioallied Sciences 11, no. Suppl 2 (2019): S347–S354, https://doi.org/10.4103/JPBS.JPBS_29_19.

C. Falcinelli, F. Valente, M. Vasta, and T. Traini, “Finite Element Analysis in Implant Dentistry: State of the Art and Future Directions,” Dental Materials: Official Publication of the Academy of Dental Materials 39, no. 6 (2023): 539–556, https://doi.org/10.1016/j.dental.2023.04.002.

S. Elleuch, H. Jrad, M. Wali, and F. Dammak, “Mandibular Bone Remodeling Around Osseointegrated Functionally Graded Biomaterial Implant Using Three Dimensional Finite Element Model,” International Journal for Numerical Methods in Biomedical Engineering 39, no. 9 (2023): e3750, https://doi.org/10.1002/cnm.3750.

J. Li, J. A. Jansen, X. F. Walboomers, and J. J. van den Beucken, “Mechanical Aspects of Dental Implants and Osseointegration: A Narrative Review,” Journal of the Mechanical Behavior of Biomedical Materials 103 (2020): 103574, https://doi.org/10.1016/j.jmbbm.2019.103574.

P. Qiu, R. Cao, Z. Li, and Z. Fan, “A Comprehensive Biomechanical Evaluation of Length and Diameter of Dental Implants Using Finite Element Analyses: A Systematic Review,” Heliyon 10, no. 5 (2024): e26876, https://doi.org/10.1016/j.heliyon.2024.e26876.

D. B. Alemayehu and Y. R. Jeng, “Three‐Dimensional Finite Element Investigation Into Effects of Implant Thread Design and Loading Rate on Stress Distribution in Dental Implants and Anisotropic Bone,” Materials 14, no. 22 (2021): 6974, https://doi.org/10.3390/ma14226974.

D. Martins, R. Couto, M. M. Fonseca Elza, and C. A. Rita, “Numerical Analysis of the Mechanical Stimuli Transferred From a Dental Implant to the Bone,” Journal of Computational and Applied Research in Mechanical Engineering (JCARME) 11, no. 1 (2021): 1–11, https://sid.ir/paper/670289/en.

M. Gibreel, A. Sameh, S. Hegazy, T. O. Närhi, P. K. Vallittu, and L. Perea‐Lowery, “Effect of Specific Retention Biomaterials for Ball Attachment on the Biomechanical Response of Single Implant‐Supported Overdenture: A Finite Element Analysis,” Journal of the Mechanical Behavior of Biomedical Materials 122 (2021): 104653, https://doi.org/10.1016/j.jmbbm.2021.104653.

Q. Mao, K. Su, Y. Zhou, M. Hossaini‐Zadeh, G. S. Lewis, and J. Du, “Voxel‐Based Micro‐Finite Element Analysis of Dental Implants in a Human Cadaveric Mandible: Tissue Modulus Assignment and Sensitivity Analyses,” Journal of the Mechanical Behavior of Biomedical Materials 94 (2019): 229–237, https://doi.org/10.1016/j.jmbbm.2019.03.008.

A. Brune, M. Stiesch, M. Eisenburger, and A. Greuling, “The Effect of Different Occlusal Contact Situations on Peri‐Implant Bone Stress ‐ A Contact Finite Element Analysis of Indirect Axial Loading,” Materials Science & Engineering. C, Materials for Biological Applications 99 (2019): 367–373, https://doi.org/10.1016/j.msec.2019.01.104.

M. Pirmoradian, H. A. Naeeni, M. Firouzbakht, D. Toghraie, M. K. Khabaz, and R. Darabi, “Finite Element Analysis and Experimental Evaluation on Stress Distribution and Sensitivity of Dental Implants to Assess Optimum Length and Thread Pitch,” Computer Methods and Programs in Biomedicine 187 (2020): 105258, https://doi.org/10.1016/j.cmpb.2019.105258.

E. de Souza Rendohl and W. C. Brandt, “Stress Distribution With Extra‐Short Implants in an Angled Frictional System: A Finite Element Analysis Study,” Journal of Prosthetic Dentistry 124, no. 6 (2020): 728.e1–728.e9, https://doi.org/10.1016/j.prosdent.2020.04.022.

A. Aslam, S. H. Hassan, H. M. Aslam, and D. A. Khan, “Effect of Platform Switching on Peri‐Implant Bone: A 3D Finite Element Analysis,” Journal of Prosthetic Dentistry 121, no. 6 (2019): 935–940, https://doi.org/10.1016/j.prosdent.2018.08.011.

G. Dimililer, S. Kücükkurt, and S. Cetiner, “Biomechanical Effects of Implant Number and Diameter on Stress Distributions in Maxillary Implant‐Supported Overdentures,” Journal of Prosthetic Dentistry 119, no. 2 (2018): 244–249 e6, https://doi.org/10.1016/j.prosdent.2017.03.016.

U. Narendrakumar, A. T. Mathew, N. Iyer, F. Rahman, and I. Manjubala, “A 3D Finite Element Analysis of Dental Implants With Varying Thread Angles,” Materials Today Proceedings 5 (2018): 11900–11905, https://doi.org/10.1016/j.matpr.2018.02.163.

X. Ding, S. H. Liao, X. H. Zhu, X. H. Zhang, and L. Zhang, “Effect of Diameter and Length on Stress Distribution of the Alveolar Crest Around Immediate Loading Implants,” Clinical Implant Dentistry and Related Research 11, no. 4 (2009): 279–287, https://doi.org/10.1111/j.1708‐8208.2008.00124.x.

A. Mosavar, A. Ziaei, and M. Kadkhodaei, “The Effect of Implant Thread Design on Stress Distribution in Anisotropic Bone With Different Osseointegration Conditions: A Finite Element Analysis,” International Journal of Oral and Maxillofacial Implants 30, no. 6 (2015): 1317–1326, https://doi.org/10.11607/jomi.4091.

O. Cantó‐Navés, X. Marimon, M. Ferrer, and J. Cabratosa‐Termes, “Comparison Between Experimental Digital Image Processing and Numerical Methods for Stress Analysis in Dental Implants With Different Restorative Materials,” Journal of the Mechanical Behavior of Biomedical Materials 113 (2021): 104092, https://doi.org/10.1016/j.jmbbm.2020.104092.

P. Marcián, J. Wolff, L. Horáčková, J. Kaiser, T. Zikmund, and L. Borák, “Micro Finite Element Analysis of Dental Implants Under Different Loading Conditions,” Computers in Biology and Medicine 96 (2018): 157–165, https://doi.org/10.1016/j.compbiomed.2018.03.012.

A. Kondratiev, V. Demenko, I. Linetskiy, H.‐W. Weisskircher, and L. Linetska, “Evaluation of Bone Turnover Around Short Finned Implants in Atrophic Posterior Maxilla: A Finite Element Study,” PRO 6, no. 5 (2024): 1170–1188, https://doi.org/10.3390/prosthesis6050084.

G. de la Rosa Castolo, S. V. Guevara Perez, P. J. Arnoux, L. Badih, F. Bonnet, and M. Behr, “Implant‐Supported Overdentures With Different Clinical Configurations: Mechanical Resistance Using a Numerical Approach,” Journal of Prosthetic Dentistry 121, no. 3 (2019): 546 e1, https://doi.org/10.1016/j.prosdent.2018.09.023.

F. A. Hussein, K. N. Salloomi, B. Y. Abdulrahman, A. R. Al‐Zahawi, and L. A. Sabri, “Effect of Thread Depth and Implant Shape on Stress Distribution in Anterior and Posterior Regions of Mandible Bone: A Finite Element Analysis,” Dental Research Journal 16, no. 3 (2019): 200–207.

F. M. Dastenaei, A. Hajarian, O. Zargar, M. M. Zand, and S. Noorollahian, “Effects of Thread Shape on Strength and Stability of Dental Miniscrews Against Orthodontic Forces,” Procedia Manufacturing 35 (2019): 1032–1038, https://doi.org/10.1016/j.promfg.2019.06.053.

V. Demenko, I. Linetskiy, K. Nesvit, and A. Shevchenko, “Ultimate Masticatory Force as a Criterion in Implant Selection,” Journal of Dental Research 90, no. 10 (2011): 1211–1215, https://doi.org/10.1177/0022034511417442.

J. Black and G. Hastings, Handbook of Biomaterial Properties (Chapman & Hall Publishers, 1998).

M. R. Bruce, D. B. Burr, and N. A. Sharkey, Skeletal Tissue Mechanics, vol. 1998 (Springer‐Verlag New York, 1998), 392.

E. F. Morgan and T. M. Keaveny, “Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site,” Journal of Biomechanics 34, no. 5 (2001): 569–577, https://doi.org/10.1016/s0021‐9290(01)00011‐2.

D. Bozkaya, S. Muftu, and A. Muftu, “Evaluation of Load Transfer Characteristics of Five Different Implants in Compact Bone at Different Load Levels by Finite Elements Analysis,” Journal of Prosthetic Dentistry 92, no. 6 (2004): 523–530, https://doi.org/10.1016/j.prosdent.2004.07.024.

J. P. Geng, K. B. Tan, and G. R. Liu, “Application of Finite Element Analysis in Implant Dentistry: A Review of the Literature,” Journal of Prosthetic Dentistry 85, no. 6 (2001): 585–598, https://doi.org/10.1067/mpr.2001.115251.

I. Linetskiy, M. Sutcliffe, A. Kondratiev, V. Demenko, L. Linetska, and O. Yefremov, “A Novel Method of Load Bearing Ability Analysis of Short Plateau Implants Placed in Compromised Bone,” in Proceedings of the 2023 IEEE 4nd KhPI Week on Advanced Technology (KhPIWeek) (IEEE, 2023), 1–6, https://doi.org/10.1109/KhPIWeek61412.2023.10312831.

H. Lee, M. Jo, and G. Noh, “Biomechanical Effects of Dental Implant Diameter, Connection Type, and Bone Density on Microgap Formation and Fatigue Failure: A Finite Element Analysis,” Computer Methods and Programs in Biomedicine 200 (2021): 105863, https://doi.org/10.1016/j.cmpb.2020.105863.

L. Baggi, S. Pastore, M. Di Girolamo, and G. Vairo, “Implant‐Bone Load Transfer Mechanisms in Complete‐Arch Prostheses Supported by Four Implants: A Three‐Dimensional Finite Element Approach,” Journal of Prosthetic Dentistry 109, no. 1 (2013): 9–21, https://doi.org/10.1016/S0022‐3913(13)60004‐9.

R. C. Van Staden, X. Li, H. Guan, N. W. Johnson, P. Reher, and Y. C. Loo, “A Finite Element Study of Short Dental Implants in the Posterior Maxilla,” International Journal of Oral and Maxillofacial Implants 29, no. 2 (2014): e147–e154, https://doi.org/10.11607/jomi.3234.

P. Xin, P. Nie, B. Jiang, S. Deng, G. Hu, and S. G. Shen, “Material Assignment in Finite Element Modeling: Heterogeneous Properties of the Mandibular Bone,” Journal of Craniofacial Surgery 24, no. 2 (2013): 405–410, https://doi.org/10.1097/SCS.0b013e31827ff137.

D. Grauer, L. S. Cevidanes, and W. R. Proffit, “Working With DICOM Craniofacial Images,” American Journal of Orthodontics and Dentofacial Orthopedics 136, no. 3 (2009): 460–470, https://doi.org/10.1016/j.ajodo.2009.04.016.

F. T. Barbosa, L. C. S. Zanatta, E. de Souza Rendohl, and S. A. Gehrke, “Comparative Analysis of Stress Distribution in One‐Piece and Two‐Piece Implants With Narrow and Extra‐Narrow Diameters: A Finite Element Study,” PLoS One 16, no. 2 (2021): e0245800, https://doi.org/10.1371/journal.pone.0245800.

S. Y. Moon, Y. J. Lim, M. J. Kim, and H. B. Kwon, “Three‐Dimensional Finite Element Analysis of Platform Switched Implant,” Journal of Advanced Prosthodontics 9, no. 1 (2017): 31–37, https://doi.org/10.4047/jap.2017.9.1.31.

P. H. W. Tretto, M. B. F. Dos Santos, A. O. Spazzin, G. K. R. Pereira, and A. Bacchi, “Assessment of Stress/Strain in Dental Implants and Abutments of Alternative Materials Compared to Conventional Titanium Alloy‐3D Non‐Linear Finite Element Analysis,” Computer Methods in Biomechanics and Biomedical Engineering 23, no. 8 (2020): 372–383, https://doi.org/10.1080/10255842.2020.1731481.

K. Akca and M. C. Cehreli, “Biomechanical Consequences of Progressive Marginal Bone Loss Around Oral Implants: A Finite Element Stress Analysis,” Medical & Biological Engineering & Computing 44, no. 7 (2006): 527–535, https://doi.org/10.1007/s11517‐006‐0072‐y.

X. Yan, X. Zhang, W. Chi, H. Ai, and L. Wu, “Comparing the Influence of Crestal Cortical Bone and Sinus Floor Cortical Bone in Posterior Maxilla Bi‐Cortical Dental Implantation: A Three‐Dimensional Finite Element Analysis,” Acta Odontologica Scandinavica 73, no. 4 (2015): 312–320, https://doi.org/10.3109/00016357.2014.967718.

N. Okumura, R. Stegaroiu, E. Kitamura, K. Kurokawa, and S. Nomura, “Influence of Maxillary Cortical Bone Thickness, Implant Design and Implant Diameter on Stress Around Implants: A Three‐Dimensional Finite Element Analysis,” Journal of Prosthodontic Research 54, no. 3 (2010): 133–142, https://doi.org/10.1016/j.jpor.2009.12.004.

X. Ding, S. L. Liao, X. Zhu, H. Wang, and B. Zou, “Effect of Orthotropic Material on Finite Element Modeling of Completely Dentate Mandible,” Materials and Design 84 (2015): 144–153, https://doi.org/10.1016/j.matdes.2015.06.091.

L. Baggi, I. Cappelloni, M. Di Girolamo, F. Maceri, and G. Vairo, “The Influence of Implant Diameter and Length on Stress Distribution of Osseointegrated Implants Related to Crestal Bone Geometry: A Three‐Dimensional Finite Element Analysis,” Journal of Prosthetic Dentistry 100, no. 6 (2008): 422–431, https://doi.org/10.1016/S0022‐3913(08)60259‐0.

E. P. Holmgren, R. J. Seckinger, L. M. Kilgren, and F. Mante, “Evaluating Parameters of Osseointegrated Dental Implants Using Finite Element Analysis–A Two‐Dimensional Comparative Study Examining the Effects of Implant Diameter, Implant Shape, and Load Direction,” Journal of Oral Implantology 24, no. 2 (1998): 80–88, https://doi.org/10.1563/1548‐1336(1998)024<0080:EPOODI>2.3.CO;2.

L. Linetska, A. Kipenskyi, V. Demenko, I. Linetskiy, A. Kondratiev, and O. Yefremov, “Finite Element Study of Biomechanical Behavior of Short Dental Implants With Bone Loss Effects – Evaluation of Bone Turnover,” in Proceedings of the 2023 IEEE 4nd KhPI Week on Advanced Technology (KhPIWeek) (IEEE, 2023), 1–6, https://doi.org/10.1109/KhPIWeek61412.2023.10312964.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...