• This record comes from PubMed

p-Type TiO2 Nanotubes: Quantum Confinement and Pt Single Atom Decoration Enable High Selectivity Photocatalytic Nitrate Reduction to Ammonia

. 2025 May 26 ; 64 (22) : e202415865. [epub] 20250330

Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
CZ.02.1.01/0.0/0.0/15_003/0000416 The Operational Research Program, Development and Education
23-08019X Czech Science Foundation project GA CR-EXPRO
HORIZON-WIDERA-2021-ACCESS-03-01: 101079384 European Union's Horizon 2020 project SAN4Fuel
CollaborativeResearchCentre1452-CatalysisatLiquidInterfaces[project431791331] DFG CEP Register

We synthesize p-type TiO2 nanotubes that allow band-gap adjustment by quantum confinement. These tubes therefore enable reductive photocatalytic reactions that are not thermodynamically possible on classic titania photocatalysts. Here, we demonstrate the direct photocatalytic nitrate reduction to ammonia without any need of hole scavengers. The quantum confinement effect (and thus the thermodynamic driving force) can be controlled by the thickness of the nanotube walls. Notably, the use of Pt single atoms as cocatalysts decorated on the TiO2 nanotubes additionally offers a superior ammonia production and a remarkable enhanced selectivity compared to Pt nanoparticles. Overall, the work not only highlights the potential of size-controlled modifications of electronic properties in extending the utility of a most classical photocatalyst but also exemplifies its use in technologically relevant reactions.

See more in PubMed

Fujishima A., Honda K., Nature 1972, 238, 37–38. PubMed

Hamad S., Catlow C. R. A., Woodley S. M., Lago S., Mejías J. A., J. Phys. Chem. B 2005, 109, 15741–15748. PubMed

Ni M., Leung M. K. H., Leung D. Y. C., Sumathy K., Renew. Sust. Energy Rev. 2007, 11, 401–425.

Henderson M. A., Lyubinetsky I., Chem. Rev. 2013, 113, 4428–4455. PubMed

Guo Q., Zhou C., Ma Z., Yang X., Adv. Mater. 2019, 31, 1901997. PubMed

Khan S. U. M., Al‐Shahry M., W. B. Ingler, Jr. , Science 2002, 297, 2243–2245. PubMed

Habisreutinger S. N., Schmidt‐Mende L., Stolarczyk J. K., Angew. Chem. Int. Ed. 2013, 52, 7372–7408. PubMed

Mills A., Davies R. H., Worsley D., Chem. Soc. Rev. 1993, 22, 417–425.

Jung H., Song J., Lee S., Lee Y. W., Wi D. H., Goo B. S., Han S. W., J. Mater. Chem. A 2019, 7, 15831–15840.

Jung H., Cho Y., Kang S., Nho H.‐W., Kim Y., Kwon O.‐H., Han S. W., ACS App. Mater. Interfaces 2024, 16, 2341–2350. PubMed

Naldoni A., Altomare M., Zoppellaro G., Liu N., Kment S., Zbořil R., Schmuki P., ACS Catal. 2019, 9, 345–364. PubMed PMC

Ruan X., Li S., Huang C., Zheng W., Cui X., Ravi S. K., Adv. Mater. 2024, 36, 2305285. PubMed

Hisatomi T., Kubota J., Domen K., Chem. Soc. Rev. 2014, 43, 7520–7535. PubMed

Tan H. L., Abdi F. F., Ng Y. H., Chem. Soc. Rev. 2019, 48, 1255–1271. PubMed

Zhao J., Holmes M. A., Osterloh F. E., ACS Nano 2013, 7, 4316–4325. PubMed

Li A., Wang T., Li C., Huang Z., Luo Z., Gong J., Angew. Chem. Int. Ed. 2019, 58, 3804–3808. PubMed

Tiwari C. K., Roy S., Tubul‐Sterin T., Baranov M., Leffler N., Li M., Yin P., Neyman A., Weinstock I. A., Angew. Chem. Int. Ed. 2023, 62, e202213762. PubMed

Wu H.‐L., Qi M.‐Y., Tang Z.‐R., Xu Y.‐J., J. Mater. Chem. A 2023, 11, 3262–3280.

Bavykin D. V., Walsh F. C., Titanate and Titania Nanotubes: Synthesis, Properties and Applications, Royal Society of Chemistry, Cambridge, UK, 2009.

Monticone S., Tufeu R., Kanaeva A. V., Scolan E., Sanchez C., Appl. Surf. Sci. 2000, 162–163, 565–570.

Wang L., Ge J., Wang A., Deng M., Wang X., Bai S., Li R., Jiang J., Zhang Q., Luo Y., Xiong Y., Angew. Chem. Int. Ed. 2014, 53, 5107–5111. PubMed

Yang S., Lu Q., Wang F., Zhi Y., Chen J., Wang Y., Zhang H., Yin H., Sun P., Cao W., Chem. Eng. J. 2023, 478, 147345.

He Z.‐K., Lu Y., Zhao J., Zhao J., Gao Z., Song Y.‐Y., Appl. Surf. Sci. 2023, 613, 155974.

Yang J., Wang D., Han H., Li C., Acc. Chem. Res. 2013, 46, 1900–1909. PubMed

Hernley P. A., Chavez S. A., Quinn J. P., Linic S., ACS Photonics 2017, 4, 979–985.

Ji L., Spanu D., Denisov N., Recchia S., Schmuki P., Altomare M., Chem. Asian J. 2020, 15, 301–309. PubMed PMC

Takata T., Jiang J., Sakata Y., Nakabayashi M., Shibata N., Nandal V., Seki K., Hisatomi T., Domen K., Nature 2020, 581, 411–414. PubMed

Liu J., Li Y., Zhou X., Jiang H., Yang H. G., Li C., J. Mater. Chem. A 2020, 8, 17–26.

Gao C., Low J., Long R., Kong T., Zhu J., Xiong Y., Chem. Rev. 2020, 120, 12175–12216. PubMed

Wang L., Sun Y., Zhang F., Hu J., Hu W., Xie S., Wang Y., Feng J., Li Y., Wang G., Zhang B., Wang H., Zhang Q., Wang Y., Adv. Mater. 2023, 35, 2205782. PubMed

Wu S.‐M., Hwang I., Osuagwu B., Will J., Wu Z., Sarma B. B., Pu F.‐F., Wang L.‐Y., Badura Z., Zoppellaro G., Spiecker E., Schmuki P., ACS Catal. 2023, 13, 33–41.

Wang Y., Qin S., Denisov N., Kim H., Baďura Z., Sarma B. B., Schmuki P., Adv. Mater. 2023, 35, 2211814. PubMed

Kerketta U., Kim H., Denisov N., Schmuki P., Adv. Energy Mater. 2024, 14, 2302998.

Denisov N., Qin S., Will J., Vasiljevic B. N., Pašti I. A., Sarma B. B., Osuagwu B., Yokosawa T., Voss J., Wirth J., Spiecker E., Schmuki P., Adv. Mater. 2023, 35, 2206569. PubMed

Garcia‐Segura S., Lanzarini‐Lopes M., Hristovski K., Westerhoff P., Appl. Catal. B 2018, 236, 546–568.

Xiong Y., Wang Y., Zhou J., Liu F., Hao F., Fan Z., Adv. Mater. 2024, 36, 2304021. PubMed

Armstrong G., Armstrong A. R., Canales J., Bruce P. G., Chem. Commun. 2005, 2454–2456. PubMed

Sato H., Ono K., Sasaki T., Yamagishi A., J. Phys. Chem. B 2003, 107, 9824–9828.

Scragg J. J., Dale P. J., Peter L. M., Zoppi G., Forbes I., Phys. Status Solidi B 2008, 245, 1772–1778.

Kim K.‐J., Kreider P. B., Choi C., Chang C.‐H., Ahn H.‐G., RSC Adv. 2013, 3, 12702–12710.

Dey B., Panda S. K., Mallick J., Sen S., Parida B. N., Mondal A., Kar M., Srivastava S. K., J. Alloys Compd. 2023, 930, 167442.

Dvořák F., Camellone M. F., Tovt A., Tran N. D., Negreiros F. R., Vorokhta M., Skála T., Matolínová I., Mysliveček J., Matolín V., Fabris S., Nat. Commun. 2016, 7, 10801. PubMed PMC

Hantusch M., Bessergenev V., Mateus M. C., Knupfer M., Burkel E., Catal. Today 2018, 307, 111–118.

Xie Z.‐L., Wang D., Gong X.‐Q., ACS Catal. 2022, 12, 9887–9896.

Ranjit K. T., Varadarajan T. K., Viswanathan B., J. Photochem. Photobiol. A 1995, 89, 67–68.

Bems B., Jentoft F. C., Schlögl R., Appl. Catal. B 1999, 20, 155–163.

Freire J. M. A., Matos M. A. F., Abreu D. S., Becker H., Diógenes I. C. N., Valentini A., Longhinotti E., J. Environ. Chem. Eng. 2020, 8, 103844.

Poudel B., Wang W. Z., Dames C., Huang J. Y., Kunwar S., Wang D. Z., Banerjee D., Chen G., Ren Z. F., Nanotechnology 2005, 16, 1935–1940.

Yamauchi M., Abe R., Tsukuda T., Kato K., Takata M., J. Am. Chem. Soc. 2011, 133, 1150–1152. PubMed

Li J., Chen R., Wang J., Zhou Y., Yang G., Dong F., Nat. Commun. 2022, 13, 1098. PubMed PMC

Varapragasam S. J. P., Andriolo J. M., Skinner J. L., Grumstrup E. M., ACS Omega 2021, 6, 34850–34856. PubMed PMC

Jin C., Dai Y., Wie W., Ma X., Li M., Huang B., Appl. Surf. Sci. 2017, 426, 639–646.

Wu S.‐M., Wu L., Denisov N., Badura Z., Zoppellaro G., Yang X.‐Y., Schmuki P., J. Am. Chem. Soc. 2024, 146, 16363–16368. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...