p-Type TiO2 Nanotubes: Quantum Confinement and Pt Single Atom Decoration Enable High Selectivity Photocatalytic Nitrate Reduction to Ammonia
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/15_003/0000416
The Operational Research Program, Development and Education
23-08019X
Czech Science Foundation project GA CR-EXPRO
HORIZON-WIDERA-2021-ACCESS-03-01: 101079384
European Union's Horizon 2020 project SAN4Fuel
CollaborativeResearchCentre1452-CatalysisatLiquidInterfaces[project431791331]
DFG
CEP Register
PubMed
40080455
PubMed Central
PMC12105680
DOI
10.1002/anie.202415865
Knihovny.cz E-resources
- Keywords
- Photocatalytic nitrate reduction, Pt single atoms, Quantum confinement, p‐type titanium dioxide,
- Publication type
- Journal Article MeSH
We synthesize p-type TiO2 nanotubes that allow band-gap adjustment by quantum confinement. These tubes therefore enable reductive photocatalytic reactions that are not thermodynamically possible on classic titania photocatalysts. Here, we demonstrate the direct photocatalytic nitrate reduction to ammonia without any need of hole scavengers. The quantum confinement effect (and thus the thermodynamic driving force) can be controlled by the thickness of the nanotube walls. Notably, the use of Pt single atoms as cocatalysts decorated on the TiO2 nanotubes additionally offers a superior ammonia production and a remarkable enhanced selectivity compared to Pt nanoparticles. Overall, the work not only highlights the potential of size-controlled modifications of electronic properties in extending the utility of a most classical photocatalyst but also exemplifies its use in technologically relevant reactions.
See more in PubMed
Fujishima A., Honda K., Nature 1972, 238, 37–38. PubMed
Hamad S., Catlow C. R. A., Woodley S. M., Lago S., Mejías J. A., J. Phys. Chem. B 2005, 109, 15741–15748. PubMed
Ni M., Leung M. K. H., Leung D. Y. C., Sumathy K., Renew. Sust. Energy Rev. 2007, 11, 401–425.
Henderson M. A., Lyubinetsky I., Chem. Rev. 2013, 113, 4428–4455. PubMed
Guo Q., Zhou C., Ma Z., Yang X., Adv. Mater. 2019, 31, 1901997. PubMed
Khan S. U. M., Al‐Shahry M., W. B. Ingler, Jr. , Science 2002, 297, 2243–2245. PubMed
Habisreutinger S. N., Schmidt‐Mende L., Stolarczyk J. K., Angew. Chem. Int. Ed. 2013, 52, 7372–7408. PubMed
Mills A., Davies R. H., Worsley D., Chem. Soc. Rev. 1993, 22, 417–425.
Jung H., Song J., Lee S., Lee Y. W., Wi D. H., Goo B. S., Han S. W., J. Mater. Chem. A 2019, 7, 15831–15840.
Jung H., Cho Y., Kang S., Nho H.‐W., Kim Y., Kwon O.‐H., Han S. W., ACS App. Mater. Interfaces 2024, 16, 2341–2350. PubMed
Naldoni A., Altomare M., Zoppellaro G., Liu N., Kment S., Zbořil R., Schmuki P., ACS Catal. 2019, 9, 345–364. PubMed PMC
Ruan X., Li S., Huang C., Zheng W., Cui X., Ravi S. K., Adv. Mater. 2024, 36, 2305285. PubMed
Hisatomi T., Kubota J., Domen K., Chem. Soc. Rev. 2014, 43, 7520–7535. PubMed
Tan H. L., Abdi F. F., Ng Y. H., Chem. Soc. Rev. 2019, 48, 1255–1271. PubMed
Zhao J., Holmes M. A., Osterloh F. E., ACS Nano 2013, 7, 4316–4325. PubMed
Li A., Wang T., Li C., Huang Z., Luo Z., Gong J., Angew. Chem. Int. Ed. 2019, 58, 3804–3808. PubMed
Tiwari C. K., Roy S., Tubul‐Sterin T., Baranov M., Leffler N., Li M., Yin P., Neyman A., Weinstock I. A., Angew. Chem. Int. Ed. 2023, 62, e202213762. PubMed
Wu H.‐L., Qi M.‐Y., Tang Z.‐R., Xu Y.‐J., J. Mater. Chem. A 2023, 11, 3262–3280.
Bavykin D. V., Walsh F. C., Titanate and Titania Nanotubes: Synthesis, Properties and Applications, Royal Society of Chemistry, Cambridge, UK, 2009.
Monticone S., Tufeu R., Kanaeva A. V., Scolan E., Sanchez C., Appl. Surf. Sci. 2000, 162–163, 565–570.
Wang L., Ge J., Wang A., Deng M., Wang X., Bai S., Li R., Jiang J., Zhang Q., Luo Y., Xiong Y., Angew. Chem. Int. Ed. 2014, 53, 5107–5111. PubMed
Yang S., Lu Q., Wang F., Zhi Y., Chen J., Wang Y., Zhang H., Yin H., Sun P., Cao W., Chem. Eng. J. 2023, 478, 147345.
He Z.‐K., Lu Y., Zhao J., Zhao J., Gao Z., Song Y.‐Y., Appl. Surf. Sci. 2023, 613, 155974.
Yang J., Wang D., Han H., Li C., Acc. Chem. Res. 2013, 46, 1900–1909. PubMed
Hernley P. A., Chavez S. A., Quinn J. P., Linic S., ACS Photonics 2017, 4, 979–985.
Ji L., Spanu D., Denisov N., Recchia S., Schmuki P., Altomare M., Chem. Asian J. 2020, 15, 301–309. PubMed PMC
Takata T., Jiang J., Sakata Y., Nakabayashi M., Shibata N., Nandal V., Seki K., Hisatomi T., Domen K., Nature 2020, 581, 411–414. PubMed
Liu J., Li Y., Zhou X., Jiang H., Yang H. G., Li C., J. Mater. Chem. A 2020, 8, 17–26.
Gao C., Low J., Long R., Kong T., Zhu J., Xiong Y., Chem. Rev. 2020, 120, 12175–12216. PubMed
Wang L., Sun Y., Zhang F., Hu J., Hu W., Xie S., Wang Y., Feng J., Li Y., Wang G., Zhang B., Wang H., Zhang Q., Wang Y., Adv. Mater. 2023, 35, 2205782. PubMed
Wu S.‐M., Hwang I., Osuagwu B., Will J., Wu Z., Sarma B. B., Pu F.‐F., Wang L.‐Y., Badura Z., Zoppellaro G., Spiecker E., Schmuki P., ACS Catal. 2023, 13, 33–41.
Wang Y., Qin S., Denisov N., Kim H., Baďura Z., Sarma B. B., Schmuki P., Adv. Mater. 2023, 35, 2211814. PubMed
Kerketta U., Kim H., Denisov N., Schmuki P., Adv. Energy Mater. 2024, 14, 2302998.
Denisov N., Qin S., Will J., Vasiljevic B. N., Pašti I. A., Sarma B. B., Osuagwu B., Yokosawa T., Voss J., Wirth J., Spiecker E., Schmuki P., Adv. Mater. 2023, 35, 2206569. PubMed
Garcia‐Segura S., Lanzarini‐Lopes M., Hristovski K., Westerhoff P., Appl. Catal. B 2018, 236, 546–568.
Xiong Y., Wang Y., Zhou J., Liu F., Hao F., Fan Z., Adv. Mater. 2024, 36, 2304021. PubMed
Armstrong G., Armstrong A. R., Canales J., Bruce P. G., Chem. Commun. 2005, 2454–2456. PubMed
Sato H., Ono K., Sasaki T., Yamagishi A., J. Phys. Chem. B 2003, 107, 9824–9828.
Scragg J. J., Dale P. J., Peter L. M., Zoppi G., Forbes I., Phys. Status Solidi B 2008, 245, 1772–1778.
Kim K.‐J., Kreider P. B., Choi C., Chang C.‐H., Ahn H.‐G., RSC Adv. 2013, 3, 12702–12710.
Dey B., Panda S. K., Mallick J., Sen S., Parida B. N., Mondal A., Kar M., Srivastava S. K., J. Alloys Compd. 2023, 930, 167442.
Dvořák F., Camellone M. F., Tovt A., Tran N. D., Negreiros F. R., Vorokhta M., Skála T., Matolínová I., Mysliveček J., Matolín V., Fabris S., Nat. Commun. 2016, 7, 10801. PubMed PMC
Hantusch M., Bessergenev V., Mateus M. C., Knupfer M., Burkel E., Catal. Today 2018, 307, 111–118.
Xie Z.‐L., Wang D., Gong X.‐Q., ACS Catal. 2022, 12, 9887–9896.
Ranjit K. T., Varadarajan T. K., Viswanathan B., J. Photochem. Photobiol. A 1995, 89, 67–68.
Bems B., Jentoft F. C., Schlögl R., Appl. Catal. B 1999, 20, 155–163.
Freire J. M. A., Matos M. A. F., Abreu D. S., Becker H., Diógenes I. C. N., Valentini A., Longhinotti E., J. Environ. Chem. Eng. 2020, 8, 103844.
Poudel B., Wang W. Z., Dames C., Huang J. Y., Kunwar S., Wang D. Z., Banerjee D., Chen G., Ren Z. F., Nanotechnology 2005, 16, 1935–1940.
Yamauchi M., Abe R., Tsukuda T., Kato K., Takata M., J. Am. Chem. Soc. 2011, 133, 1150–1152. PubMed
Li J., Chen R., Wang J., Zhou Y., Yang G., Dong F., Nat. Commun. 2022, 13, 1098. PubMed PMC
Varapragasam S. J. P., Andriolo J. M., Skinner J. L., Grumstrup E. M., ACS Omega 2021, 6, 34850–34856. PubMed PMC
Jin C., Dai Y., Wie W., Ma X., Li M., Huang B., Appl. Surf. Sci. 2017, 426, 639–646.
Wu S.‐M., Wu L., Denisov N., Badura Z., Zoppellaro G., Yang X.‐Y., Schmuki P., J. Am. Chem. Soc. 2024, 146, 16363–16368. PubMed